E345  Integratio aequationis \( \frac{dx}{\sqrt{}(A+Bx+Cx^2+Dx^3+Ex^4)} = \frac{dy}{\sqrt{}(A+By+Cy^2+Dy^3+Ey^4)} \)
(The integration of the equation \( \frac{dx}{\sqrt{}(A+Bx+Cx^2+Dx^3+Ex^4)} = \frac{dy}{\sqrt{}(A+By+Cy^2+Dy^3+Ey^4)} \))
Summary:
According
to the records, it was presented to the St. Petersburg Academy on December 19, 1765.
Publication:

Originally published in Novi Commentarii academiae scientiarum Petropolitanae 12, 1768, pp. 316

Opera Omnia: Series 1, Volume 20, pp. 302  317
Documents Available:
 Original Document: E345
 German translation (Alexander Aycock and Arseny Skryagin): E345
Return to the Euler Archive