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The story of Euler and complex numbersis a complicated one. Earlier in his career, Euler was a
champion of equa rights for complex numbers, treating them just like real numbers whenever he could.

For example, he showed how to integrate ¢ 1 1dx without usng inverse trigonometric functions. He

X2 +

factored x* +1= (x+ J_l)(x - «/I) then used partia fractionsto rewrite

1 31 3
X2+1 x+a-1 x-A-1]

then integrated this difference to get

c‘)x+ 1«/—1|X~/‘/:

Euler typicaly omitted congtants of integration until he needed them, and dso seldom used i in place of
J-1. Hisrdeintha particular notationa innovation is exaggerated.

Euler struck a second, and better-known blow for justice for complex numbers when he took the
variable in the exponentia function € to be an imaginary number, say x = qﬂ , and showed that

eVl cosg ++/- 1sinq.
Euler continued to use complex numberslate in hislife, but his applications seem to meto be

less sweeping and more technica, showing how they solved a variety of specific problems. This month
we look a one such problem from 1773.

Thetitle of E447 is"Summatio progressonum sinj ' +sin2j ' +sin3 ' +K +sinnj
cosj ' +cos2j ' +cos3 ' +K +cosnj ' " Right off, thisis confusing to the modern reader, because




Euler writes sinj ' where we would write sin' j  and mean (sinj )' . For this, we will use the modern
notation.

Euler beginsby asking usto let
cosj +\/Isinj =p ad
cosj - J-_lsinj =Q

Then, from de Moivres formula, we have

n n

cosn = P*q and
2
) . pn_ qn
snn = ,
" 24-1
and because sin’j +cos’j =1, wehave
pq=1.

Properties of geometric seriestdl us

DU .l L)

1-p

qa +q2a +q3a +L qna :qaf]:-qgm)_

If we add these together and repeatedly apply the identities pg =1 and p*® + g = 2coskaj (a
consequence of de Moivre's formula), we get

, oosnaj - cos(n +1)aj
1- cosaj '

-1

Likewise, if we subtract the g- series from the p-series we get

snaj - sn(n+1)aj +sinnaj N
- 1.
1- cosaj

Euler uses anintegrd sgn, ?, where we would use a summation Sgn, ?, so he writes these results as

cosnaj - cos(n+1)aj

Y na na - 1
(1) ()(p a ) ¥ 1- cosaj and
\(a _wm)_SNaj +snnaj - sin(n+1)aj
- = J-1
O(p a ) 1- cosaj

Now Euler isready to work on the sumsin thetitle of thearticle. Hetakes | =1, and histwo
series become



s=dgnj +sn2] +sn3d +L +dgnn

=osnn and
t=cosj +cos2j +cos3 +L +cosn
= Qcosn .
Because of de Moivresidentities,
) . pn_ qn
snn = and
AP
n+ n
cosn = P ,
2

these two series can be rewritten as
2sJ-1= (‘)(p“ - q”) and
2=0("+q)
But from formula (1) above, and teking a =1, thisgives

_dnj +sinn - sin(n+1)

2(1- cosj ) and
1 cosnj - cos(n+1)j
t=- =+
2 2(1- cosj )

Note how unexpectedly smple these formulas are. They each the sum of n terms using only the
terms a the beginning and the terms at the end, without using any of the termsin between.

Now take | =2 sothat
s=sn? +sn?2] +L +sn’nj

=psn‘n  and
t=cos’j +cos’2j +L +cos nj

=Qcos’n .

Recdling that pq = 1 we get



sn’nj =(sinn )

n n =2
_¥p -gq0
§2V-19
3 p2n _ 2pnqn +q2n
-4
:E_ p2n +qn
2 4
Smilaly,
2n 2n
cos’n = l,p*a
4
Summing these, we get

45=201- O (p2” +q") and
4=281+(p* +a”
Obvioudy, ()1 =n, 0, using formula (1) we get

cosnj - cos2(n +1)j

n 1
S=—+—- _ and
2 4 4(1- cos2j )
n 1 ocosn - cos2(n+1)j
t=—- =+
2 4 4(1- cos2j )

Itisreassuring to note that s+ t = n, asit should be, because sisasum of n squared snesand t is
asum of the corresponding squared cosines.

Eulerdoes| =3 and | =4, and hisexpressonsfor sand t grow first to three, then to four
terms, though the terms grow no more complicated, except for involving higher powers of 2. Moreover,
his expressons have the same genera form.

Let'slook abit more closdly at thisexpression for sinthecase | = 2, the sum of the squares of a
sequence of sines. Note how the last term does not increase as the number n increases. Also, if cos 2
isnot very closeto 1, then the denominator in the last term is not very smal. Moreover, the two cosines
in the numerator are dways between -1 and 1, so their differenceis between -2 and 2. Consequently, the
last term is bounded between two vaues, +M and - M , that do not depend on n. Hence, sisdways
between 2+ L +M and g+ % - M. Thus, asn goesto infinity, o dso doess. The same reasoning

gppliestot.

Note that this was not the case for the series correspondingto | =1. Thelast termsin the
expressonsfor sand t are both bounded, by the same argument we gave above, but neither expression
contains aterm that goesto infinity as n increases.



Indeed, these remarks about | =1 are truefor al odd exponents. That isto say, if | isodd,
then neither s nor t increase without bound as n increases, but for |  even, the series behaveslike | = 2,
and both sand t grow without bounds.

Euler notices this, too, and wants to examine it a bit. In Euler's time, there were severa notions
of the value of aseries. One of them, proposed by Jekob Bernoulli, was that the value was the limit of
the average vaue of the partid sums. Using this notion, the series

1-1+1-1+1-1+1- etc.

would have vaue equd to Y2, because hdf the time the partid sums are 1 and haf the time they are zero.
Hence, the weighted average value of the partid sumsis’z

Thisis gpparently the notion that jugtifies Euler's next steps. Teking | =1, he has shown that

s=dgnj +sn2] +snd +L +snnj
_sinj +snn - sn(n+1)
2(1- cosj ) '

Euler arguesthat the average vaue of sinnj - sin(n +1)j iszero, S0, if welet n go to infinity the vaue
of the now-infinite series s can be considered to be

2(1- cosj )
The same andyss makes the infinite series
1
t=-=.
2

Modern anaysts throughout the world cringe a this, because Euler has given an exact, finite sum
to two series for which the terms do not converge to zero. The andysts don't let us do that anymore.

Perhaps Euler redlizes we may have doubts about this particular result, for he reassures us that it
is easy to show that this makes sense. Herewritest as

_ cosj -1
2(1- cosj )’

Multiplying both Sdesby 2 - 2cosj andwriting t asthe seriesit represents, Euler gets

cosj - 1=(2- 2cosj )t
=(2- 2cosj )(cosj +cos2j +cos3 +L )
=2cos] +2cos2] +2cos3 +2cosd] +etc.
- 2c08°j - 2c0sj c0S2j - 2cosj cos3 - €tc.

Now, from the angle addition formula for cosines we know that in tenerdl



2cosacosb = cos(a - b)cos(a+b).
Applied to the negative terms of the preceding series, this makes

2cos’j =1+cos?j,
2cosj cos?2l =cos] +cosd ,
2cosj cos3d =cos2j +cosdj ,
2cos] cosdj =cos3 +cosh ,
2cos] cosS =cos4j +cosf ,
2cos] cos§ =coshj cos7?j ,
etc.

Now, substituting these for those negative terms, and, at the same time rearranging the terms a bit, we
get
cosj - 1=2cosj +2cos2j +2cos3 +2cos4dj +etc.
-1 - COS] - COoSZ - cos3 - cosdj - etc.
- cos?2l - cos3 - cosdj - etc

Note how, when we subgtituted 1+ cos2j for 2cos’j , we put the 1 in the second row of the
new expression, and the cos2j inthethird row. Likewisefor dl the other subgtitutions. As modern

mathematicians, we benefit from the work of Cauchy and we know that such rearrangements of terms
may not be valid unless the series involved are absolutely convergent, and that the seriesin question
here are not absolutely convergent. Today, Euler would have to find another way to do this.

Getting back to our formulas, let's rewrite the preceding formula, digned a bit differently, so that
things that cancel can be seen more clearly. We get

cosj - 1= 2cosj +2cos2) +2cos3 +2cosdj +etc.
-1 -cosf -cos -cos3d - cosdj - etc.
- cos2 -cos3 - cosdj - etc.

which isdearly true.

Thisjudifies Euler's daim that, for infinite vaues of n,

Euler thought he was finished, but the Editor's summary at the beginning of the volume of the
Novi commentarii mentions that he later added an gppendix "Summatio generdis infinitarum aiarum



progressonum ad hoc genus referendarum” (Summation of infinitely many generd progressons reated
to thiskind). It contains atheorem and two examples.

Theorem: If we know the sum of a progression

Az+BZ +CZ +Dz' +L +NZ',
thenit dways permits us to sum the two progressons

S=Axsnj +Bx’sn2j +Cx°’sn3 +L +Nx"sinnj

T = Axcosj +Bx?cos2j +Cx*cos3 +L + Nx"cosn .

The proof is graightforward, but in the course of the proof, Euler introduces the function
notation as he generdly usesit in the 1760s. When he writes

D:.z
he means us to subgtitute the function defined by the progression
Az+ Bz +CZ2+ Dz +L +NzZ".

Though he had used the modern f (x) function notation briefly in the 1730s, Euler did not stick with

that notation, and from the 1760s until his degth in 1783, he and his assstants used this notation with a
symbol, usudly an upper-case Greek |etter, followed by a colon, and then the varigble.

Then he notesthat, with p and g as before, that is,

p = cosj +J-—13inj and
g=cos - ﬂsinj ,

his function notetion gives
2SJ/-1=D:px- Dgx and
2T =D:px+D:gx.

Then he gives examples.

Example 1: If dl the coefficientsin ?:z are equa to 1 and if the seriesistaken to be an infinite
seies, then
D:z= i.
1-2z
Then, from the equations in the proof of his theorem aswell asthe identities p- q= 2+~ 1sin;j ,
p+qg=2cosj and pg=1, Euler getsthat



Xsnj

= and
1- 2xcosj +X°

_ xcosj - X
1- 2xcosj +x*

Typicaly, Euler checksthat his result agrees with what he dready knows. In acorollary, he finds that
for the specia case x = 1, this gives back the formulas from earlier in the paper, that

As asecond example, Euler takes

and he finds thet

We leave the details to the reader.
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