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This year, 2007, marks the 300th anniversary of Euler’s birth on April 15, 1707.  We begin our 
celebration of Euler’s birthday by discussing one of Euler’s most fundamental contributions to 
mathematics, the idea of a function. 

 
The word “function” comes to us from the Latin functio, meaning a performance, an event or an 

activity, not, as we might hope, from the German der Funke, a spark or a glimmer.  (The colloquial 
“funky” comes from the German.)   
 
 Today, functions are one of the central objects in mathematics.  David Hilbert told us, “Besides 
the concept of number, the concept of function is the most important one in mathematics.” [T]  On the 
other hand, Hilbert’s student, Hermann Weyl wrote,  “Nobody can explain the function concept:”  [T] 
 
 The Ancients knew some of the relations between curves and algebraic expressions.  Both 
Apollonius and Archimedes, for example, knew how the shape of a parabola was related to the algebraic 
expression 2ay x= , though they didn’t use algebraic notation to express the relation.   They were 
philosophically and notationally unable to make sense of an expression like 2y x=  because one object 
in the expression, y, is a length and the other, 2x  represents an area.  They regarded relations like 

2ay x=  as properties of curves, and not as definitions of the curves themselves, and they called such 
properties symptoms. 
 

In the early 1600’s, Descartes devoted a big piece of his Geometria to giving meaning to 
nonhomogeneous expressions like 2y x= .  Soon the idea developed that every curve had an associated 
algebraic expression of some sort, but the formula was still regarded as a property of the curve.  
Formulas were not yet stand-alone objects.  

 
Functions gradually earned their own identity as the 18th century progressed. In 1696, when 

L’Hôpital wrote Analyse des infiniment petits pour l'intelligence des lignes courbes, the world’s first 
calculus book, he wrote about curves, and a curve existed if it could be constructed by some mechanical 
or geometric process.  Fifty years later, Euler wrote the Introductio in analysin infinitorum from the 
point of view of functions, and a curve existed if it could be described by an analytic expression.  In fact, 
Rob Bradley [B] describes an interesting story contrasting the two ideas of what makes a curve.  
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L’Hôpital had described a “cusp of the second kind” sometimes called a “bird’s beak.”  L’Hôpital was 
studying involutes of curves like the curve 
BANDC shown at the right in his Figure 91.  The 
curve has an inflection point at A.  The involute 
of the curve is shown as the awkwardly named 
curve DMFF, which, at its point F corresponding 
to the inflection point A, has a cusp for which 
both branches curve the same direction, like a 
bird’s beak. Hence the name. 

 
In 1696, people had no problem accepting 

that such curves existed.  There was a clear 
mechanical construction.  By 1740, though, 
people weren’t so sure, since they couldn’t seem 
to find an analytical representation of such 
curves.  In 1748 in the Introductio, Euler gave a 
formula, and the bird’s beak was restored.  It was 
curious that people believed their formulas more than they believed their eyes. 

 
We may return to this episode in some future column. 
 
Euler was a bit like Hermann Weyl when it came to the function concept itself.  Euler knew what 

he wanted functions to do, but he sometimes struggled to articulate what they are.  Early on, a function 
was an analytic expression describing a curve.  In an expression like 2 2 1x y+ = , x is a function of y, but 
y is also a function of x, since knowing one, x or y, we can determine the other.  Euler also allowed 
multi-valued functions.  For example, in the expression 2y x= ,  y is a single-valued function of x, but x 
is a multi-valued function of y.  

 
Euler also accepted solutions to differential equations as functions, even if those solutions might 

not be written down explicitly.  Of course, he was quite unaware of the exotic “pathological” functions 
that Weierstrass and Dirichlet would describe in the 19th century. 

 
Euler was not always consistent as he struggled to refine the concept of a function.  As an 

example of this struggle, we will take a closer look at Euler’s thoughts about what we now call 
“piecewise defined functions.” 

 
Euler usually thought that a function had to be defined by the same analytical expression 

everywhere.  Since he did not have any notation for the absolute value function, perhaps the best-known 
piecewise-defined function, he never had cause to realize that a function as natural as the absolute value 
function is actually defined piecewise.  He occasionally came across the absolute value function 

disguised as 2x , but when he did, he was always interested in other issues.  
 
 He began rejecting piecewise functions early in his career.  Two of his earliest papers, E3, 
“Methodus inveniendi traiectorias reciprocas algebraicas” and E5, “Problematis traiectoriarum 
reciprocarum solution,” deal with the now forgotten and misunderstood topic of “reciprocal 
trajectories,” curves with a peculiar kind of symmetry that people sometimes incorrectly believe has 
something to do with ballistic trajectories.  Reciprocal trajectories are somewhat esoteric, and rather than 
investing the time to explain them, we’ll jump forward a few years to the fruits of one of Euler’s shortest 
papers. 
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 In 1745, Euler sent a short note to Nova Acta eruditorum forwarding a problem posed 
anonymously by Christian Goldbach.  The note became an eight-line “paper” [E79] titled “A problem of 
geometry proposed publicly by an anonymous geometer,”  probably 
Euler’s shortest paper and maybe one of the shortest mathematics 
paper anyone ever wrote.  In E79, Euler and Goldbach, referring to 
the figure at the right, ask what curves like AMBN there might be 
with the property that there is a point F from which any ray, like 
FM, reflected twice, returns to the point F. 
 
 Ellipses have this property.  The point F can be either of the 
foci of the ellipse.  It is a familiar property of ellipses that any ray from one focus reflects to pass 
through the other focus. There it becomes a ray from a focus, so it will reflect again and return to the 
first focus.  Goldbach and Euler ask if there are any other such curves, or if this is in itself a defining 
property of an ellipse? 
 
 In E79, Euler only posed the problem, but he solved it 
two years later in E106, “Solution to the catoptric problem in 
Novis Actis Eruditorum Lipsiensibus proposed in November 
1745.”  He found that there were, indeed, curves other than the 
ellipse with this special property, and then, in typical Eulerian 
style, he turned to variations of the same problem.  He looked 
at a problem that is projectively related to the ellipse-like 
problem he started with.  He sought to find if the parabola is 
the only curve like FMBmf, shown in the illustration at the 
right, with the property that rays like CM, parallel to the axis of 
the curve AB reflected twice, as Mm, then mc, will give a ray 
mc parallel to the original. 
 
 Much like ellipses, parabolas have this property.  The 
reflection of the ray CM will pass through the focus of the parabola, shown in the figure as the point R 
on the axis AB of the parabola.  Euler asks if there are any other such curves, and, of course he finds 
some.  In the course of his analysis, though, he explicitly rejects curves like the one shown in the next 
figure, where the two branches are not described by the same 
analytic expression.  In this figure, the branch AC is perpendicular 
to the branch AB, and the rays KL and MN are parallel to the 
bisector of angle CAB.    
 
 There was a philosophical basis for rejecting curves like the 
absolute value function.  Leibniz championed something usually 
called the “principle of continuity,” but since the word “continuity” 
means something different to mathematicians, we’ll call it the 
“principle of continuation.”1  Broadly speaking, the principle of 
continuation says that similar things will behave similarly.  Leibniz 
summarized the principle writing “Nature makes no leaps.”  We have seen Euler use the principle of 
continuation before when he does arithmetic with infinite and infinitesimal “numbers” just like they 
were ordinary finite numbers. 

                                                                 
1 Of course, the name “principle of continuation” has its own meaning in other contexts.  For example, to geologists, it 
describes a property of layers of sediments.  
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 In the present problems, the principle of continuation tells us that the solution to a “natural” 
problem will not have any “leaps” in it, and it will be described by a single analytic expression. 
 
 Given this world view, it would be surprising if Euler proposed a piecewise function as the 
solution to a “natural” problem.  Yet he did exactly that when he analyzed ballistic trajectories.   In the 
article we described in last month’s column [E217] he tells us that the forces acting on a cannonball (not 
neglecting air resistance) give different differential equations for the ascending branch than for the 
descending branch.  In particular, Euler takes x and y coordinates as usual, s to be arc length, t to be 
time, and c is a parameter describing the properties of air.  The variable v, though, might be confusing to 
the modern reader.  It is the height from which an object would have to be dropped to have the same 
speed as the cannon ball has at time t.  Hence, v is a length, not a velocity or a speed, and because of his 

choice of units, the speed, 
ds
dt

 is given by 
ds

v
dt

= .  Since air resistance is taken to be proportional to 

the square of the speed, this makes air resistance proportional to v itself.  Euler also takes α to be the 
acceleration due to gravity. 
 
 With this notation in place, Euler resolves forces and finds that the acceleration in the x direction 
is given by the same differential equation,  

2

2ddx vdx
td cds

= −  

whether the cannonball is ascending or descending.  In what seems to be a violation of the law of 
continuation, the acceleration is given by 

2

2ddy vdy
dt cds

α= −  

when the cannonball is ascending, but it is given by 

2

2ddy vdy
dt cds

α= +  

when it is descending. 
 
 I suspect that Euler was not thinking about the law of continuation when he wrote this.  If he had, 
though, he might have tried to explain it by noting that at the apex, where the trajectory changes from its 

ascending branch to its descending branch, the factor 
dy
ds

 gradually vanishes and reappears.  The leap 

isn’t in nature, but in our notation. 
 
 We can’t let Euler off the hook that easily, though.  I was careful above to describe the symbol c 
as a parameter, not a constant.  Euler takes 3e  to be the volume of water with the same mass as the 
cannonball and d to be the diameter of the cannonball.  Then he tells us that if the speed of the projectile 
is not too fast, then 

32133e
c

dd
= . 

 However, he seems to have done some experiments and concluded that “if the movement is so 
rapid that air cannot immediately occupy the space behind the globe, then globe will leave behind itself 
a kind of void space, and so for that instant the globe will be subject to the full pressure of the 
atmosphere, which will not be counterbalanced by an equal pressure from behind, and so it is clear that 
the resistance will be augmented by the entire pressure of the atmosphere on the part at the front of the 
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globe.”   Euler calculates that this changes the air resistance from 
v
c

 to 
6666

4
v k
c c

+ , where k is the air 

pressure measured in feet of water. 
   

This is a sudden change in force that Euler’s data indicates occurs when v > 28050 feet.  Euler 
tells us this translates to 1325 feet per second.  Modern theory puts this change close to the speed of 
sound, 1087 feet per second.  Euler knew the speed of sound fairly accurately, so he apparently didn’t 
understand how the speed of sound is related to this phenomenon. 

 
Euler apparently did not try to reconcile this sudden change in force with the principle of 

continuation.  After all, the theory worked to describe trajectories.  The void space behind the 
cannonball seemed to explain the phenomenon, even if the analytic representation makes that 
troublesome leap. 

 
I think that, in not committing too strongly to the principle of continuation, Euler displayed an 

admirable lack of rigor that left the concept of a function with enough flexibility that it could evolve into 
the foundation of mathematics it has become today. 
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