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Thisyear, 2007, marks the 300th anniversary of Euler’ sbirth on April 15, 1707. We begin our
celebration of Euler’s birthday by discussng one of Euler’s most fundamenta contributions to
mathematics, the idea of afunction.

Theword “function” comesto us from the Latin functio, meaning a performance, an evert or an
activity, not, aswe might hope, from the German der Funke, aspark or aglimmer. (The colloquid
“funky” comes from the German.)

Today, functions are one of the centra objects in mathematics. David Hilbert told us, “Besides
the concept of number, the concept of function is the most important onein mathematics.” [T] Onthe
other hand, Hilbert's student, Hermann Weyl wrote, “Nobody can explain the function concept:” [T]

The Ancients knew some of the relations between curves and algebraic expressions. Both
Apollonius and Archimedes, for example, knew how the shape of a parabolawas related to the dgebraic

expression ay = x>, though they didn’t use dgebraic notation to expressthe relation.  They were
philosophically and notationally unable to make sense of an expression like y = x* because one object
in the expression, y, is alength and the other, x> represents an area. They regarded relations like

ay = x* asproperties of curves, and not as definitions of the curves themsalves, and they caled such
properties symptoms.

In the early 1600’ s, Descartes devoted a big piece of his Geometria to giving meaning to
nonhomogeneous expressions likey = x*. Soon the idea developed that every curve had an associated

agebraic expresson of some sort, but the formulawas till regarded as a property of the curve,
Formulas were not yet stand-a one objects.

Functions gradually earned their own identity as the 18" century progressed. In 1696, when
L"Hopital wrote Analyse des infiniment petits pour I'intelligence des lignes courbes, the world' s first
caculus book, he wrote about curves, and a curve existed if it could be congtructed by some mechanica
or geometric process. Fifty yearslater, Euler wrote the Introductio in analysin infinitorum from the
point of view of functions, and a curve existed if it could be described by an analytic expresson. In fact,
Rob Bradley [B] describes an interesting story contrasting the two ideas of what makes a curve.
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L"Hopital had described a*“cusp of the second kind” sometimes called a“bird' sbeak.” L’Hopital was
sudying involutes of curves like the curve

BANDC shown at theright in hisFigure 91. The B

curve has an inflection point & A. Theinvolute

of the curve is shown as the awkwardly named
curve DMFF, which, & its point F corresponding
to the inflection point A, has a cusp for which
both branches curve the same direction, like a
bird' s beak. Hence the name.

In 1696, people had no problem accepting
that such curves existed. Therewas aclear
mechanica congruction. By 1740, though,
people weren't so sure, since they couldn’t seem
to find an analytica representation of such
curves. In1748in the Introductio, Euler gavea
formula, and the bird’' s beak was restored. It was
curious that people believed their formulas more than they believed their eyes.

We may return to this episode in some future column.

Euler was a bit like Hermann Weyl when it came to the function concept itsdf. Euler knew what
he wanted functions to do, but he sometimes struggled to articulate whet they are. Early on, afunction
was an analytic expression describing acurve. In an expression like x® + y? =1, x isafunction of y, but
y isdso afunction of x, snce knowing one, x or y, we can determine the other. Euler dso dlowed
multi-valued functions. For example, inthe expression y = x*, y isasngle-vaued function of x, but x
isamulti-valued function of .

Euler ds0 acoepted solutions to differentid equations as functions, even if those solutions might
not be written down explicitly. Of course, he was quite unaware of the exatic “pathologica” functions
that Weerstrass and Dirichlet would describein the 19" century.

Euler was not always consstent as he struggled to refine the concept of afunction. Asan
example of this struggle, we will take a closer ook at Euler’ s thoughts about what we now call
“piecewise defined functions”

Euler usudly thought that afunction had to be defined by the same anaytica expresson
everywhere. Since he did not have any notation for the absolute vaue function, perhaps the best-known
piecewise-defined function, he never had cause to redize that a function as naturd as the absolute value
function is actually defined piecewise. He occasondly came across the absolute value function

disguised as «/F , but when he did, he was dways interested in other issues.

He began regjecting piecewise functions early in his career. Two of his earliest papers, E3,
“Methodus inveniendi traiectorias reciprocas dgebraicas’ and E5, “Problematis traiectoriarum
reciprocarum solution,” deal with the now forgotten and misunderstood topic of “reciproca
trgectories” curveswith a peculiar kind of symmetry that people sometimes incorrectly believe has
something to do with ballistic trgectories. Reciproca trgectories are somewhat esoteric, and rather than
inveding the time to explain them, we'll jump forward afew years to the fruits of one of Euler’ s shortest
papers.
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In 1745, Euler sent a short note to Nova Acta eruditorum forwarding a problem posed
anonymoudly by Chrigtian Goldbach. The note became an eight-line “paper” [E79] titled “ A problem of
geometry proposed publicly by an anonymous geometer,” probably
Euler’ s shortest paper and maybe one of the shortest mathematics il
paper anyone ever wrote. In E79, Euler and Goldbach, referring to
the figure & the right, ask what curves like AMBN there might be
with the property that thereisapoint F from which any ray, like A
FM, reflected twice, returns to the point F.

Ellipses have this property. The point F can be either of the
fod of thedlipse. Itisafamiliar property of dlipsesthat any ray from one focus reflects to pass
through the other focus. There it becomes aray from afocus, S0 it will reflect again and return to the
first focus. Goldbach and Euler ask if there are any other such curves, or if thisis initsdf adefining

property of an dlipse?

In E79, Euler only posed the problem, but he solved it

two years later in E106, “Solution to the catoptric problemin E
Novis Actis Eruditorum Lipsiensibus proposed in November F
1745.” He found that there were, indeed, curves other than the C u

dlipse with this specia property, and then, in typica Eulerian

style, he turned to variations of the same problem. Helooked

a aproblem that is projectively related to the dlipse-like

problem he started with. He sought to find if the parabolais i

the only curve like FMBmMf, shown in the illudration a the F Y]
right, with the property that rays like CM, pardld to the axis of 0
the curve AB reflected twice, as Mm, then mc, will givearay e

mc pardld to the origind.

Much like elipses, parabolas have this property. The
reflection of theray CM will pass through the focus of the parabola, shown in the figure asthe point R
on the axis AB of the parabola. Euler asks if there are any other such curves, and, of course he finds
some. Inthe course of hisandyss, though, he explicitly rgects curves like the one shown in the next
figure, where the two branches are not described by the same
andytic expresson. Inthisfigure, the branch AC is perpendicular C
to the branch AB, and the rays KL and MN are paralle to the
bisector of angle CAB. ®

There was a philosophica basis for rgecting curves like the
absolute value function.  Leibniz championed something usudly
cdled the “principle of continuity,” but snce the word “continuity”
means something different to mathematicians, we'll cal it the N M
“principle of continuation.”* Broadly spesking, the principle of B
continuation says that Smilar things will behave smilarly. Leibniz
summarized the principle writing “ Nature makes no legps.” We have seen Euler use the principle of
continuation before when he does arithmetic with infinite and infinitesma “numbers’ judt like they
were ordinary finite numbers.

1 Of course, the name “principle of continuation” has its own meaning in other contexts. For example, to geologists, it
describes a property of layers of sediments.
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In the present problems, the principle of continuation tells us that the solution to a“naturd”
problem will not have any “legps’ init, and it will be described by a single anaytic expresson.

Given thisworld view, it would be surprising if Euler proposed a piecewise function asthe
solution to a“naturd” problem. Yet he did exactly that when he andlyzed bdlidtic trgectories.  In the
article we described in last month’'s column [E217] he tells us that the forces acting on a cannonbdl (not
neglecting air resstance) give different differential equations for the ascending branch than for the
descending branch. In particular, Euler takes x and y coordinates as usud, sto be arc length, t to be
time, and ¢ isaparameter describing the properties of ar. The variable v, though, might be confusing to
the modern reader. It isthe height from which an object would have to be dropped to have the same
speed as the cannon ball has at timet. Hence, v isalength, not avelocity or a speed, and because of his

choice of units, the speed, % isgiven by % =/V. Sinceair resistance is taken to be proportiona to

the square of the speed, this makes air resstance proportional to v itsdlf. Euler dso tekesa to bethe
acceleration due to gravity.

With this notation in place, Euler resolves forces and finds that the acceleration in the x direction
is given by the same differential equation,
2ddx _ vdx

td? cds

whether the cannonball is ascending or descending. In what seemsto be aviolation of the law of
continuation, the acceleration is given by

2ddy _ vdy
; —a-
dt cds

when the cannonball is ascending, but it is given by
2ddy vdy
;. —at
dt cds

when it is descending.

| sugpect that Euler was not thinking about the law of continuation when he wrote this. If he had,
though, he might have tried to explain it by noting that at the apex, where the trgectory changes from its
dy

ascending branch to its descending branch, the factor o
S

gradualy vanishes and regppears. Thelegp
ig't in nature, but in our notation.

We can't let Euler off the hook that easily, though. | was careful above to describe the symbol ¢
as aparameter, not aconstant. Euler takes € to be the volume of water with the same mass asthe
cannonball and d to be the diameter of the cannonball. Then hetelsusthat if the speed of the projectile
isnot too fadt, then

_213%°
c= :
dd

However, he seems to have done some experiments and concluded that “if the movement is so
rapid that air cannot immediately occupy the space behind the globe, then globe will leave behind itsdlf
akind of void space, and so for that instant the globe will be subject to the full pressure of the
atmosphere, which will not be counterba anced by an equa pressure from behind, and so it is clear that
the resistance will be augmented by the entire pressure of the atmosphere on the part a the front of the
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globe” Euler caculatesthat this changesthe air resstance from YioYs

v , 5666k , wherek isthe air

c C 4c

pressure measured in feet of water.

Thisisasudden change in force that Euler’ s data indicates occurs when v > 28050 feet. Euler

tellsusthistrandates to 1325 feet per second. Modern theory puts this change close to the speed of
sound, 1087 feet per second. Euler knew the speed of sound fairly accurately, so he gpparently didn’'t
understand how the speed of sound is related to this phenomenon.

Euler gpparently did not try to reconcile this sudden change in force with the principle of

continuation. After al, the theory worked to describe trgjectories. The void space behind the
cannonball seemed to explain the phenomenon, even if the andytic representation makes that
troublesome legp.

| think that, in not committing too strongly to the principle of continuation, Euler displayed an

admirable lack of rigor that left the concept of afunction with enough flexibility that it could evolve into
the foundation of mathematics it has become today.
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