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 As we begin a new academic year, many of us are introducing another generation of 
students to the magic of calculus. As always, those of us who teach calculus are asking ourselves 
again, “What is the best way to begin calculus?”  More specifically, “How do we start to teach 
students what a derivative is?”  Some of us will start with slopes and others choose limits. 
Among those who begin with limits, some will use epsilons and deltas and others will use a more 
intuitive approach to the algebra of limits.  A few might use non-standard analysis, as rigorously 
presented in the wonderful book  [K] by Jerome Kiesler.  Newton began with “fluxions,” while 
Leibniz used differentials and a “differential triangle.”  Regular readers of this column, though, 
know to ask “How did Euler do it?” 
 
 Almost as soon as it was invented (or, if you prefer, discovered) people began arguing 
about its foundations.  Leibniz looked for an algebraic basis for calculus, while Newton argued 
in favor of geometric foundations.   The controversy continued for more than a hundred years, 
with key contributions from Berkeley and Lagrange, until most of the issues were finally 
resolved in the time of Cauchy, Riemann and Weierstrass.   
 
 Euler published his differential calculus book, Institutiones calculi differentialis, [E212], 
in 1755.  The book has two parts.  Euler describes the first part, nine chapters, 278 pages in the 
original, as “containing a complete explanation of this calculus.”  John Blanton translated this 
part of the book into English in 2000, and most of the quotations used in this column are from 
John Blanton’s edition.  The second part of the book, 18 chapters, 602 pages, “contains the use 
of this calculus in finite analysis and in the doctrine of series.”  A translation of this part of the 
book has not yet been published, though there are rumors that people are working on it. 
 
 When Euler sat down to write the Calculus differentialis, as it is commonly called, he had 
to decide how to explain the foundations of calculus and the reasons calculus “works.”  In his 
preface he writes (in John Blanton’s translation, p. vii.): 
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[D]ifferential calculus … is a method for determining the ratio of 
the vanishing increments that any functions take on when the 
variable, of which they are functions, is given a vanishing 
increment.” 

 
 This echoes with Newtonian sentiments.  “Vanishing increments” sound like Newton’s 
“evanescent quantities,” and are open to Berkeley’s sarcastic barbs, calling derivatives “ghosts of 
departed quantities.”  Euler, who learned his calculus from Johann Bernoulli, a follower of 
Leibniz, understands these criticisms, and in the very next paragraph he writes 
 

“[D]ifferential calculus is concerned not so much with vanishing 
increments, which indeed are nothing, but with the ratio and 
mutual proportion.  Since these ratios are expressed as finite 
quantities, we must think of calculus as being concerned with finite 
quantities.” 

 
 Later (p. viii.) he writes  
 

“To many who have discussed the rules of differential 
calculus, it has seemed that there is a distinction between 
absolutely nothing and a special order of quantities infinitely small, 
which do not quite vanish completely but retain a certain quantity 
that is indeed less than any assignable quantity.” 

 
 Euler seems to want it both ways.  He wants to use infinite numbers, usually denoted i or 
n, as well as infinitesimals (he calls them “infinitely small,”) usually denoted ω. He wants to take 
their ratios, add, subtract and multiply them as if they matter, and then throw them away when it 
suits his purposes.  It is exactly the behavior that Berkeley was trying to discourage and that 
Cauchy and Weierstrass eventually repaired. 
 
 Now that we’ve seen these philosophical underpinnings, let’s look at how Euler teaches 
us calculus. 
 
 Euler’s Chapter 1 is “On finite differences” (De differentiis finites.)  Euler gives us a 
variable quantity x, and an increment ω.  For now, ω  is assumed to be finite.   He asks how 
substituting  x + ω  for x in a function “transforms” that function, and gives us the example 
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 The value x and its increment ω give an arithmetic sequence, x, x + ω, x+ 2ω, x + 3ω, 
etc., and these, in turn, transform a function y into a sequence of values that he denotes y, yI, yII, 
yIII, etc. 
 



  3 

 With this notation in place, he is ready to describe the first, and higher differences of the 
function.  This is apparently the first time the symbol ∆ for this purpose.  The image below, from 
The Euler Archive, shows Euler’s definition of the higher differences: 
 

 
 
 Next we get some of the elementary properties of higher differences, starting with their 
values in terms of the values of y.  
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and so on up to 5th differences.  He follows these with rules for sums and products: 
 
 If y p q= +  then ,y p q∆ = ∆ + ∆  and 
 
 If y pq=  then .y p q q p∆ = ∆ + ∆  
 
 By the end of this 24-page chapter, Euler has taught us to find differences of sums, 
products and radicals involving polynomials, sines, cosines, logarithms and radicals, as well as 
inverse differences, finding a function that has a given first difference. 
 
 In Chapter 2 Euler uses differences to study what he calls “series.”  We would call them 
“sequences.”  Probably his most interesting result in the chapter is the discrete Taylor series. 
Consider a sequence , , ,I IIa a a  etc., with indices 1, 2, 3, 4, etc. Let the first, second, third, etc. 
differences be b, c, d, etc.  Then the “general term” of index x is given by 
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 Euler’s chapter 3, “On the Infinite and the Infinitely Small,” he returns to the 
philosophical underpinnings of calculus.  The chapter is 30 pages long, and is mostly a 
fascinating philosophy-laced essay on the nature of infinites and infinitesimals in the real world.  
In the 18th century, real numbers were not the free-standing axiomatized objects they became late 
in the 19th century (thanks to Dedekind and his cuts).  The properties of the real numbers were 
expected to reflect the properties of the real world they describe.  Hence, the debate between 
Newton and Leibniz about whether real world objects are infinitely and continuously divisible 
(Newton), or composed of indivisible ultimate particles (that Leibniz called monads) was also a 
dispute over the nature of the real numbers.  That, in turn, became a dispute about the nature and 
foundations of calculus.  Though their public argument was mostly about who first discovered 
calculus, each also believed that the other’s version of calculus was based on false foundations. 
 
 After careful consideration, Euler eventually sides mostly with Newton and accepts the 
“reality” of the infinite and infinitely small.  The difficult part of this is that, if dx is an infinitely 
small quantity, then 
 

“Since the symbol ∞  stands for an infinitely large quantity, we 
have the equation 

.
a
dx

= ∞  

The truth of this is clear also when we invert: 

0
a

dx= =
∞

.” 

 
 So, Euler is stuck with the paradox that the quantity dx is, in some sense, both zero and 
not zero.  He cannot resolve this paradox, so he has to figure out a way to avoid it. 
 

To do this, he begins to use his results on differences from the first two chapters.  When 
he takes a sequence with an infinitely small quantity dx as its difference, then considers second 
differences, he is forced to conclude that “ 2/a dx  is a quantity infinitely greater than /a dx ,” and 
similarly for higher differences.  “We have, therefore, an infinity of grades of infinity, of which 
each is infinitely greater than its predecessor.” 

 
Essentially, he introduces some rules for the use of infinite and infinitesimal quantities, 

roughly equivalent to our techniques for manipulating limits.  A quantity like / : /a dx A dx , 
where a and A are finite quantities (i.e., neither infinite nor infinitesimal) should not be resolved 
by first dividing by dx, for that leads to /∞ ∞ .  This cannot be evaluated because, as he noted 
above, there are many different sizes of infinity, and this expression doesn’t tell us which size we 
have.  Instead, the quantity / : /a dx A dx  should first be reduced to a/A, a ratio of finite 
quantities. 
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Euler tells us that also “it is possible not only for the product of an infinitely large 
quantity and an infinitely small quantity to produce a finite quantity, … but also that a product of 
this kind can also be either infinitely large or infinitely small.” 
 
 The last part of chapter 3 deals with issues of convergence.  It could be the basis of some 
future column. 
 
 Now that Euler believes he has convinced us of the logical integrity of his foundations, he 
returns to his calculations with series and differences.  He reminds us that, given a variable x, a 
quantity y that depends on x, and an increment x ω∆ = , then y has a difference of the form 
 

I 2 3 4 etc.y y y P Q R Sω ω ω ω∆ = − = + + + +  
 

 Taking dxω = , we get that dy=Pdx, or, as we would write it today, 
dy

P
dx

= .  Note that 

Euler and his contemporaries did calculus with differentials, dy and dx, and not with derivatives, 
dy
dx

.  Euler explains how the higher coefficients, Q, R, S, etc., are related to higher differences, 

and he’s ready to go with the rules of calculus. 
 
 Before he goes, though, he makes a remark to appease his Leibnizian friends by 
criticizing Newton’s fluxion notation.  Newton would write y& , y&&  or y&&&  where Euler would write 
P, Q or R, or maybe 2,dy d y  or 3d y .  Euler writes that Newton’s notation “cannot be criticized 
if the number of dots is small … On the other hand, if many dots are required, much confusion 
and even more inconvenience may be the result.”  As an example, he gives (and here, for the first 
time, we don’t follow Blanton’s translation) “The tenth fluxion, though would be very 

inconveniently represented by y
&&&&&&&&&& , and our notation of 10d y  is much easier to understand.” 

 
 With this, Euler sets out to give the usual rules of differential calculus, of course using 
differentials instead of derivatives and, in part one, omitting all applications.  This column is 
about Euler’s foundations of calculus, so we will leave out most of the content, for now.  One of 
Euler’s examples, though, is particularly elegant, from chapter 6, “On the Differentiation of 
Transcendental Functions:” 
 

“If 
xeey e= , then 

.
xe xe e xdy e e e dx= ” 

 
 It is visually striking if you write it on a blackboard and use a longer string of e’s. 
 
 Euler is sometimes criticized by modern mathematicians for what seems like a reckless 
use of infinite and infinitesimal numbers in his calculations, and for ignoring the foundations of 
calculus.  What he writes in the Calculus differentialis, though, makes it clear that he was very 
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aware of the issues involved, and that he tried hard to resolve them.  In fact, he himself believed 
that he had indeed put calculus on a solid philosophical foundation.   
 
 Two generations after Euler, though, the way we build the foundations of mathematics 
changed, and a philosophical basis was no longer accepted.  The age of Cauchy and Weierstrass 
sought less geometric and more axiomatic foundations, and Euler’s approach was discarded as 
insufficiently rigorous. 
 
 In the 20th century, though, Abraham Robinson developed non-standard analysis, and 
showed how Euler’s techniques could be made rigorous.  Jerome Keisler, [K] in turn, used 
Robinson’s constructions to write a modern calculus text. It took 220 years, but Euler’s Calculus 
differentialis was eventually shown to have rigorous foundations.  Now, if we want to, we can do 
the way Euler did it. 
 
References: 
 
[E212] Euler, Leonhard, Insitutiones calculi differentialis cum ejus usu in analysi finitorum ac doctrina serierum, 

St. Petersburg, 1755.  Reprinted in Opera Omnia, Series I vol 10.  English translation of chapters 1 to 9 by 
John Blanton, Springer, New York, 2000. Original is available online through The Euler Archive at 
EulerArchive.org. 

[K] Keisler, H. Jerome, Elementary Calculus, Prindle, Weber & Schmidt, Boston, 1976.  The entire book is 
available (Free! under a Creative Commons License) at www.math.wisc.edu/~keisler/calc.html. 

 
 
Ed Sandifer (SandiferE@wcsu.edu) is Professor of Mathematics at Western Connecticut State 
University in Danbury, CT.  He is an avid marathon runner, with 34 Boston Marathons on his 
shoes, and he is Secretary of The Euler Society (www.EulerSociety.org).  His new book, The 
Early Mathematics of Leonhard Euler, will be published by the MAA in December, 2006, in 
advance of the celebrations of Euler’s tercentennial in 2007.   
 
 
How Euler Did It is updated each month. 
Copyright ©2006 Ed Sandifer 


