II r ] '- —~

How Euler Did It

by Ed Sandifer

Foundations of Calculus
September 2006

Aswe begin anew academic year, many of us are introducing another generation of
students to the magic of caculus. As dways, those of us who teach calculus are asking ourselves
agan, “What isthe best way to begin caculus?” More specificaly, “How do we gtart to teach
sudents what aderivativeis?” Some of uswill sart with dopes and others choose limits.
Among those who begin with limits, some will use epsilons and deltas and others will use amore
intuitive gpproach to the dgebra of limits. A few might use non-standard analys's, as rigoroudy
presented in the wonderful book [K] by Jerome Kieder. Newton began with “fluxions,” while
Leibniz used differentids and a* differentid triangle” Regular readers of this column, though,
know to ask “How did Euler do it?’

Almogt as soon asit was invented (or, if you prefer, discovered) people began arguing
about its foundations. Leibniz looked for an agebraic bassfor caculus, while Newton argued
in favor of geometric foundations. The controversy continued for more than a hundred years,
with key contributions from Berkeley and Lagrange, until most of the issues were findly
resolved in the time of Cauchy, Riemann and Welerdtrass.

Euler published his differentid caculus book, Institutiones calculi differentialis, [E212],
in 1755. The book hastwo parts. Euler describesthe first part, nine chapters, 278 pagesin the
origind, as “containing a complete explanation of thiscaculus” John Blanton trandated this
part of the book into English in 2000, and most of the quotations used in this column are from
John Blanton's edition. The second part of the book, 18 chapters, 602 pages, “ contains the use
of thiscaculusin finite andysis and in the doctrine of series” A trandation of this part of the
book has not yet been published, though there are rumors that people are working on it.

When Euler sat down to write the Calculus differentialis, asit is commonly called, he had
to decide how to explain the foundations of caculus and the reasons caculus “works.” In his
preface he writes (in John Blanton' s trandation, p. vii.):




[D]ifferentid cdculus ... is a method for determining the retio of
the vanishing increments that any functions take on when the
vaiable, of which they ae functions is given a vanishing
increment.”

This echoes with Newtonian sentiments. “Vanishing increments’ sound like Newton's
“evanescent quantities,” and are open to Berkeley’ s sarcadtic barbs, caling derivatives “ ghosts of
departed quantities” Euler, who learned his cdculus from Johann Bernoulli, a follower of
Leibniz, understands these criticisms, and in the very next paragraph he writes

“ID]ifferentid caculus is concerned not so much with vanishing
increments, which indeed ae nothing, but with the raio and
mutua proportion.  Since these rétios are expressed as finite
quantities, we mugt think of cadculus as being concerned with finite
quantities”

Later (p. viii.) hewrites

“To many who have discussed the rules of differentid
cdculus, it has seemed that there is a didinction between
absolutely nothing and a specid order of quantities infinitdly small,
which do not quite vanish completely but retain a certan quantity
that isindeed less than any assgnable quantity.”

Euler ssemsto want it both ways. He wants to use infinite numbers, usudly denoted i or
n, aswdl asinfinitesmas (he cdls them “infinitdy smadl,”) usudly denoted w. He wants to take
ther ratios, add, subtract and multiply them asiif they matter, and then throw them away when it
auits his purposes. It is exactly the behavior that Berkeley was trying to discourage and that
Cauchy and Weierstrass eventudly repaired.

Now that we' ve seen these philosophica underpinnings, let’s look a how Euler teaches
uscaculus.

Euler's Chapter 1is"On finite differences’ (De differentiisfinites.) Euler givesusa

varigble quantity x, and an increment w. For now, w isassumed to befinite. He asks how
subdtituting x + w for x in afunction “transforms’ that function, and gives us the example

atx . : a+Xx+w
>— istransformed into ———; 5.
a +x a+ X +2xw+w

Thevdue x and itsincrement w give an arithmetic sequence, X, X + w, X+ 2w, X + 3w,
etc., and these, in turn, transform afunction y into a sequence of values that he denotesy, ', y'',
y' etc.



With this notation in place, heis ready to describe the first, and higher differences of the

function. Thisis gpparently thefirgt time the symbol D for this purpose. The image below, from
The Euler Archive, shows Euler’ s definition of the higher differences
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Next we get some of the eementary properties of higher differences, starting with their
vauesin terms of thevauesof y.

DDy =y" -2y +y
DDyI - yIII _2y|| +y|
D3y: yIII _ 3yll + 3yl _ y

and so on up to 5" differences. He follows these with rules for sums and products:
If y=p+q then Dy =Dp +Dqg, ad

If y=pq then Dy = pDg+ qDp.

By the end of this 24-page chapter, Euler has taught us to find differences of sums,
products and radicds involving polynomids, sines, cosines, logarithms and radicds, aswell as
inverse differences, finding afunction that has a given firs difference.

In Chapter 2 Euler uses differences to study what he calls “series” Wewould cal them
“sequences.”  Probably his most interesting result in the chapter isthe discrete Taylor series.

Consider asequence a,a' ,a" , etc., withindices 1, 2, 3, 4, etc. Let the first, second, third, etc.
differencesbeb, c, d, etc. Then the “genera term” of index x isgiven by



+(x-l)b_k(x-l)(x- 2)c+(x_1)(x_2)(x_3)d+etc.
1 1% 18

a

Euler’s chapter 3, “On the Infinite and the Infinitdly Small,” he returnsto the
philosophica underpinnings of caculus. The chapter is 30 pageslong, and ismostly a
fascinating philosophy-laced essay on the nature of infinites and infinitesmalsin the real world.

In the 18™ century, real numbers were not the free-standing axiomatized objects they became late
in the 19™" century (thanks to Dedekind and his cuts). The properties of the real numbers were
expected to reflect the properties of the red world they describe. Hence, the debate between
Newton and Leibniz about whether red world objects are infinitely and continuoudy divisble
(Newton), or composed of indivisible ultimate particles (that Leibniz caled monads) wasaso a
dispute over the nature of the real numbers. That, in turn, became a digpute about the nature and
foundations of caculus. Though their public argument was mosily about who first discovered
caculus, each dso bdieved that the other’ s version of calculus was based on false foundations.

After careful consderation, Euler eventudly sides mostly with Newton and accepts the
“redity” of theinfinite and infinitdly smal. The difficult part of thisisthat, if dx isaninfinitdy
smdl quantity, then

“Sincethesymbol ¥ dandsfor aninfinitely large quantity, we

have the equation
2 -y
dx
Thetruth of thisis clear ds0 when we invert;
2 -dx=0"
¥

S0, Euler is stuck with the paradox that the quantity dx is, in some sense, both zero and
not zero. He cannot resolve this paradox, so he has to figure out away to avoid it.

To do this, he begins to use his results on differences from the first two chapters. When
he takes a sequence with an infinitdly smadl quantity dx as its difference, then considers second
differences, heisforced to conclude that “a/ dx® isaquantity infinitely greater than a/ dx,” and
amilarly for higher differences. “We have, therefore, an infinity of grades of infinity, of which
each isinfinitely greater than its predecessor.”

Essntidly, he introduces some rules for the use of infinite and infinitesmal quantities,
roughly equivaent to our techniques for manipulaing limits. A quantity like a/dx: A/dx,
where a and A arefinite quantities (i.e,, neither infinite nor infinitesmal) should not be resolved
by firgt dividing by dx, for that leadsto ¥ /¥ . Thiscannot be evaluated because, as he noted
above, there are many different szes of infinity, and this expression doesn't tell us which szewe
have. Ingtead, the quantity a/dx: A/dx should first be reduced to a/A, aratio of finite
quantities.



Euler tdlsusthat dso “it is possible not only for the product of an infinitdy large
quantity and an infinitely small quantity to produce afinite quantity, ... but dso that a product of
thiskind can dso be ather infinitdly large or infinitdy smdl.”

The last part of chapter 3 deals with issues of convergence. It could be the basis of some
future column.

Now that Euler believes he has convinced us of the logicd integrity of his foundations, he
returnsto his caculations with series and differences. He reminds ustha, given avarigble x, a

quantity y that depends on x, and an increment Dx =w , then y has a difference of the form

Dy=y -y=Pw+Qw?*+Rwn®+3Sn* +etc.

Taking w =dx , we get that dy=Pdx, or, aswe would write it today, gy = P. Note that
X

Euler and his contemporaries did caculus with differentias, dy and dx, and not with derivatives,

%. Euler explains how the higher coefficients, Q, R, S etc., are reated to higher differences,
X

and he sready to go with the rules of caculus.

Before he goes, though, he makes aremark to appease his Lebnizian friends by
criticizing Newton's fluxion notation. Newton would write v, y or § where Euler would write

P, Qor R or maybe dy, d’y or d®y. Euler writes that Newton’s notation “cannot be criticized

if the number of dotsissmdl ... On the other hand, if many dots are required, much confusion
and even more inconvenience may betheresult.” Asan example, he gives (and here, for the first
time, we don't follow Blanton’ strmslatlon) ‘The tenth fluxion, though would be very

inconveniently represented by y and our notation of d*°y is much easier to understand.”

With this, Euler sets out to give the usud rules of differential calculus, of course usng
differentids instead of derivatives and, in part one, omitting al gpplications. Thiscolumniis
about Euler’ s foundations of calculus, so we will leave out most of the content, for now. One of
Euler’s examples, though, is particularly éegant, from chapter 6, “On the Differentiation of
Transcendental Functions.”

“f y=¢ , then
dy =e® &e*dx.”
Itisvisudly griking if you write it on ablackboard and use alonger string of €'s.
Euler is sometimes criticized by modern mathematicians for what seems like areckless

use of infinite and infinitesma numbersin his caculations, and for ignoring the foundations of
cdculus. What he writesin the Calculus differentialis, though, makesit clear that he was very



aware of the issues involved, and that he tried hard to resolve them. In fact, he himsdaf beieved
that he had indeed put caculus on a solid philosophica foundation.

Two generations after Euler, though, the way we build the foundations of mathematics
changed, and a philosophica basis was no longer accepted. The age of Cauchy and Welerdrass
sought less geometric and more axiomatic foundations, and Euler’ s approach was discarded as
insufficiently rigorous.

In the 20" century, though, Abraham Robinson developed non-standard analysis, and
showed how Euler’ s techniques could be made rigorous. Jerome Kelder, [K] in turn, used
Robinson’ s congtructions to write a modern calculus text. It took 220 years, but Euler’s Calculus
differentialis was eventualy shown to have rigorous foundations. Now, if we want to, we can do
the way Euler did it.
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