I| ¥ i F -

How Euler Did It

if.-FH

¥
S by Ed Sandifer

Orthogona matrices

August 2006

Jeff Miller’s excdllent ste [M] “Earliest Known Uses of Some of the Words of
Mathematics’ reports:

“The teem MATRIX was coined in 1850 by James Joseph
Sylvester (1814-1897):

[...] For this purpose we must commence, not with a square, but with an
oblong arrangement of terms consisting, suppose, of mlines and n
columns. This will not in itself represent a determinant, but is, as it
were, a Matrix out of which we may form various systems of
determinants by fixing upon a number p, and selecting at will p lines
and p columns, the squares corresponding of pth order.
The citation above is from "Additions to the Articles On a new
class of theorems, and On Pascal's theorem,” Philosophica
Magazine, pp. 363-370, 1850. Reprinted in Sylvester's Collected
Mathematical Papers, vol. 1, pp. 145-151, Cambridge (At the
University Press), 1904, page 150.”

On the subject of orthogona matrices, he writes

The tem ORTHOGONAL MATRIX was used in 1854 by
Charles Hermite (1822-1901) in the Cambridge and Dublin
Mathematical Journal, adthough it was not until 1878 that the
foomd ddfinition of an orthogond marix was published by
Frobenius (Kline, page 809).

Imagine my surprise when | was browsing Series | Volume 6 of Euler’s Opera Omnia
trying to answer a question for Rob Bradley, Presdent of The Euler Society. Thisisthe volume
Ad theoriam aeguationum pertinentes,” “pertaining to the theory of equations” In the middle of
that volume | found an article [E407] with the unremarkable title “ Algebraic problems that are



memorable because of their specid properties,” Problema algebraicum ob affectiones prorsus
singulares memorabile. Usudly, it seems, when Euler cdls a problem “memorable” | don't
agree. Thiswas an exception.

Euler asks us to find nine numbers,

A B, C,
D, E, F,
G, H, |1
that satisfy twelve conditions:
1. A2+ D?+G% =1 4. AB+ DE+ GH=0
2 B2+E2+H? =1 5. AC+ DF+ GI=0
7. A?+B%2+C%=1 100 AD+BE+CF=0
8. D2+E2+F2=1 11. AG+BH+CI=0
If we regard the nine numbers as a 3x3 matrix
éA B Cy
_é a
M = eD E F@
€6 H Iy
then conditions 1, 2, 3, 10, 11 and 12 are exactly the conditionsthat make MM ™ =1 . Inmodern
terms, this makes M an orthogona matrix.
Note that the other six conditionsmake M™M = | , another characterization of

orthogona matrices.

Of course, Euler doesn’t know these are orthogona matrices. When he wrote this paper
in 1770, people didn't use matrices to do their linear dgebra. As Jeff Miller's Site suggests,
Euler was doing this 80 years before these objects joined the mathematical consciousness.

What, then, was Euler thinking when he formulated this problem? We can only
speculate. 1t was probably something more than that he admired the pretty patterns, but
something less than that he sensed the profound power of operations on such arrays of numbers.

Let'slook at Euler’s paper. Firgt he notes that we have 12 equations, but only 9
unknowns, so thereis a chance that the problem has no solution. Rather than showing that the
system of equations has a solution by giving an example of asolution (say A= E=1 =1, dl the
rest of the unknowns equaing zero), he offers a theorem:



Theorem: If nine numbers satisfy the first Sx conditions given above, then they dso satisfy the
other Six.

Euler himsdlf describes the proof of this theorem as cal cul os vehementer intricatos,
“vehemently intricate caculations,” and we won't describe them in any sgnificant detall. He
does do an interesting step at the beginning, though.

Euler re-writes conditions 4, 5 and 6 as
4. AB = —-DE-GH
5. AC = -DF -Gl
6. BC = —-EF —HI

Then he asks us to multiply equation 4 by equation 5, then divide by equation 6 to get, as he
writesit,

. :AA:_(DE+GH)(DF+G|)_
6 BC EF +HI

The notation % is not an arithmetic operation, but an ad hoc notation for an agebraic

operation on equations 4, 5 and 6. Euler does this one or two timesin other papers, but thisisthe
only time he uses such a notation in this paper.

After three pages of such cdculations, Euler eventudly derives dl of the conditions 7 to
12 from conditions 1 to 6, thus proving his theorem.

Now Euler turnsto the “solution of the problem that was proposed at the beginning.”
Condition 1 (or 7) guarantees that A is between —1 and 1, o it has to be the cosine of something.
Let A=cosz . (Notethat Euler till uses cos. as an abbreviation for “cosine,” hence the period.

Now that we ve mentioned it, we' Il writeit the modern way. We Il dso write sinz where
Euler wrote sinz ?.)

Then, from conditions 1 and 7, we get

DD +GG=1- AA=1- cos’z =sn’z

and similarly
BB+CC =dn’z .
These equations will be satisfied by taking
B =snz cosh C=sinz gnh D =sinz cosq G=dnzsing .



Let’s check the score. We have Sx equations, nine unknowns, and we' ve made three

arbitrary decisonsby choosing z,, h and g. Euler knows enough linear algebra (see, for
example, [S 2004]) to suspect that thiswill determine a unique solution. Indeed, they determine

A, B, C, D and G. Indeed, with haf apage of cdculations he fird finds that

E =sinh sinqg - cosz sinh cosq and
| =cosh cosq - cosz sinh sing

and then that
F =- coshsing - cosz sinh cosq and

H = - sinh cosq - cosz cosh sing .

This solves the problem. In typicd Eulerian fashion, though, he does't stop there.
Instead, he develops some dightly more efficient techniques and goes on to solve andogous

problems for 4x4 and 5x5.
Almogt asif Euler did not want usto believe that he was actudly doing modern linear
agebra Euler'slast problemisto find a4x4 array of integers

A B C D
E F G H
I K L M
N O P Q

(he skipped “J" on purpose) satisfying the 12 orthogonality equations

AE+BF+ CG+ DH=0
Al + BK+CL+DM=0

etc.
and the additiond condition on the sums of the squares of the numbers on the two diagonds,

A+ F+1°+ Q=D+ G+ K+N.

He demondtrates how to find two different solutions. Oneis
68 -29 41 -37
-17 31 79 32

59 28 -23 61
-11 -77 8 49

where the dot product of any row (column) with any other row (column) is zero, and the sum of
the squares of 68, 31, -23 and 49 equals the sum of the squares of —37, 79, 28, -11. They both

equal 8415.



His other solution is

73 -8 65 -11
-53 31 107 41
-89 -67 1 -67
-29 -65 -35 103

where the sums of the squares on the diagonds are 16,900. Euler’s methods are typica of his
work in Diophantine equations, and would dlow us to generate as many solutions as we want.
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