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Jeff Miller’s excellent site [M] “Earliest Known Uses of Some of the Words of 
Mathematics” reports: 
 

“The term MATRIX was coined in 1850 by James Joseph 
Sylvester (1814-1897):  

[...] For this purpose we must commence, not with a square, but with an 
oblong arrangement of terms consisting, suppose, of m lines and n 
columns. This will not in itself represent a determinant, but is, as it 
were, a Matrix out of which we may form various systems of 
determinants by fixing upon a number p, and selecting at will p lines 
and p columns, the squares corresponding of pth order. 

The citation above is from "Additions to the Articles On a new 
class of theorems, and On Pascal's theorem," Philosophical 
Magazine, pp. 363-370, 1850. Reprinted in Sylvester's Collected 
Mathematical Papers, vol. 1, pp. 145-151, Cambridge (At the 
University Press), 1904, page 150.” 

 
 On the subject of orthogonal matrices, he writes 
 

The term ORTHOGONAL MATRIX was used in 1854 by 
Charles Hermite (1822-1901) in the Cambridge and Dublin 
Mathematical Journal, although it was not until 1878 that the 
formal definition of an orthogonal matrix was published by 
Frobenius (Kline, page 809). 

 
 Imagine my surprise when I was browsing Series I Volume 6 of Euler’s Opera Omnia 
trying to answer a question for Rob Bradley, President of The Euler Society.  This is the volume 
Ad theoriam aequationum pertinentes,” “pertaining to the theory of equations.”  In the middle of 
that volume I found an article [E407] with the unremarkable title “Algebraic problems that are 
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memorable because of their special properties,” Problema algebraicum ob affectiones prorsus 
singulares memorabile.  Usually, it seems, when Euler calls a problem “memorable,” I don’t 
agree.  This was an exception. 
 
 Euler asks us to find nine numbers, 
 

, , ,
, , ,
, ,

A B C
D E F
G H I

 

 
that satisfy twelve conditions: 
 

1. 2 2 2 1A D G+ + =  
2. 2 2 2 1B E H+ + =  
3. 2 2 2 1C F I+ + =  
 

4. AB + DE + GH = 0 
5. AC + DF + GI = 0 
6. BC + EF + HI = 0 

7. 2 2 2 1A B C+ + =  
8. 2 2 2 1D E F+ + =  
9. 2 2 2 1G H I+ + =  

10. AD + BE + CF = 0 
11. AG + BH + CI = 0 
12. DG + EH + FI = 0 

 
 If we regard the nine numbers as a 3x3 matrix 
 

A B C

M D E F
G H I

 
 =  
  

 

 
then conditions 1, 2, 3, 10, 11 and 12 are exactly the conditions that make TMM I= .  In modern 
terms, this makes M an orthogonal matrix. 
 
 Note that the other six conditions make TM M I= , another characterization of 
orthogonal matrices. 
 
 Of course, Euler doesn’t know these are orthogonal matrices.  When he wrote this paper 
in 1770, people didn’t use matrices to do their linear algebra.  As Jeff Miller’s site suggests, 
Euler was doing this 80 years before these objects joined the mathematical consciousness. 
 
 What, then, was Euler thinking when he formulated this problem?  We can only 
speculate.  It was probably something more than that he admired the pretty patterns, but 
something less than that he sensed the profound power of operations on such arrays of numbers.    
 
 Let’s look at Euler’s paper.  First he notes that we have 12 equations, but only 9 
unknowns, so there is a chance that the problem has no solution.  Rather than showing that the 
system of equations has a solution by giving an example of a solution (say A = E = I = 1, all the 
rest of the unknowns equaling zero), he offers a theorem: 
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Theorem:  If nine numbers satisfy the first six conditions given above, then they also satisfy the 
other six. 
 
 Euler himself describes the proof of this theorem as calculos vehementer intricatos, 
“vehemently intricate calculations,” and we won’t describe them in any significant detail.  He 
does do an interesting step at the beginning, though. 
 
 Euler re-writes conditions 4, 5 and 6 as 
 

4. AB = – DE – GH  
5. AC = – DF – GI  
6. BC = – EF – HI  

 
Then he asks us to multiply equation 4 by equation 5, then divide by equation 6 to get, as he 
writes it, 
 

( ) ( )4 5
:

6
DE GH DF GIAABC

AA
BC EF HI

+ +⋅
= = −

+
. 

 

The notation 
4 5
6
⋅

 is not an arithmetic operation, but an ad hoc notation for an algebraic 

operation on equations 4, 5 and 6.  Euler does this one or two times in other papers, but this is the 
only time he uses such a notation in this paper. 
 
 After three pages of such calculations, Euler eventually derives all of the conditions 7 to 
12 from conditions 1 to 6, thus proving his theorem. 
 
 Now Euler turns to the “solution of the problem that was proposed at the beginning.”  
Condition 1 (or 7) guarantees that A is between –1 and 1, so it has to be the cosine of something.  
Let cos.A ζ= .  (Note that Euler still uses cos. as an abbreviation for “cosine,” hence the period.  
Now that we’ve mentioned it, we’ll write it the modern way.  We’ll also write 2sin ζ  where 
Euler wrote 2sin.ζ .) 
 
 Then, from conditions 1 and 7, we get 
 

2 21 1 cos sinDD GG AA ζ ζ+ = − = − =  
and similarly 

2sinBB CC ζ+ = . 
These equations will be satisfied by taking 
 

sin cosB ζ η=  sin sinC ζ η=  sin cosD ζ θ=  sin sinG ζ θ= . 
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 Let’s check the score.  We have six equations, nine unknowns, and we’ve made three 
arbitrary decisions by choosing ζ,, η and θ.  Euler knows enough linear algebra (see, for 
example, [S 2004]) to suspect that this will determine a unique solution.  Indeed, they determine 
A, B, C, D and G.  Indeed, with half a page of calculations he first finds that 
 

sin sin cos sin cosE η θ ζ η θ= −  and 
cos cos cos sin sinI η θ ζ η θ= −  

and then that 
cos sin cos sin cosF η θ ζ η θ= − −  and 
sin cos cos cos sinH η θ ζ η θ= − − . 

 
 This solves the problem. In typical Eulerian fashion, though, he doesn’t stop there.  
Instead, he develops some slightly more efficient techniques and goes on to solve analogous 
problems for 4x4 and 5x5. 
 
 Almost as if Euler did not want us to believe that he was actually doing modern linear 
algebra, Euler’s last problem is to find a 4x4 array of integers 
 

A B C D
E F G H
I K L M
N O P Q

 

 
(he skipped “J” on purpose) satisfying the 12 orthogonality equations 
 

AE + BF + CG + DH = 0 
AI  + BK + CL + DM = 0 
etc. 

 
and the additional condition on the sums of the squares of the numbers on the two diagonals, 
 

2 2 2 2 2 2 2 2 .A F L Q D G K N+ + + = + + +  
 
 He demonstrates how to find two different solutions.  One is 
 

68 29 41 37
17 31 79 32

59 28 23 61
11 77 8 49

− −
−

−
− −

 

 
where the dot product of any row (column) with any other row (column) is zero, and the sum of 
the squares of 68, 31, -23 and 49 equals the sum of the squares of –37, 79, 28, -11.  They both 
equal 8415. 
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 His other solution is  
 

73 85 65 11
53 31 107 41
89 67 1 67
29 65 35 103

− −
−
− − −
− − −

 

 
where the sums of the squares on the diagonals are 16,900.  Euler’s methods are typical of his 
work in Diophantine equations, and would allow us to generate as many solutions as we want. 
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