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 How do we know what to try to prove?   
 
 A logician, or perhaps a Euclidean geometer, might try to say that we don’t try to prove 
anything.  We select some axioms or hypotheses.  We apply some rules of inference and build a proof.  
Then the last line of the proof tells us what we’ve proved. 
 
 Uncharitable people sometimes claim that philosophers omit the axioms from this process, that 
politicians omit the rules of inference, and that people in the humanities never get to the last line, 
 
 A scientist, on the other hand, might claim that there is no need for axioms or rules of inference.  
One need only collect the data, and a correct analysis of the data will reveal the truth. 
 
 Much of the culture and image of mathematics is built on this “creation myth,” that mathematical 
theorems are revealed in their statements, and that they are discovered by their proofs.  Mathematical 
truths are imbued with a kind of crystalline purity, true in some absolute sense and unsullied by such 
vague and uncertain processes like experimentation and creativity. 
 
 Today, these notions may seem like idle, post-modernist speculations, but in Euler’s time there 
was a great controversy in science over whether science should be based on observation or on deduction.  
In rough terms, the sides lined up as Newton vs. Leibniz.  Their disagreements weren’t based only on 
the priority dispute in calculus.  Leibniz followed in the tradition of Descartes and believed that one 
should start with known truths and then apply logical methods to discover the truths that must follow 
from the known truths.  Descartes had promoted this basis for reasoning in his Method, and used it to 
with great success to discover analytic geometry and to give the first correct explanation of the colors of 
the rainbow.   
 
 Newton, on the other hand, placed a great value on observations.  He would make observations, 
then formulate theories that seemed to explain those observations.  He would test those theories, and, if 
necessary, revise the theories.  However, when he explained his theories, he, like Archimedes, would 
frequently hide the methods by which he made his discoveries. 
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 Of course, Newton was not purely “Newtonian,” just as Leibniz and Descartes were not purely 
“Cartesian,” but these are the rough outlines of their disputes.  Further details are in Hall’s fine book 
Philosophers at War.  [H] 
 
 Euler practiced observation in his work on applied mathematics, though he often hid his method, 
in the style of Archimedes. He also followed Newton and Descartes in replacing the constructive 
methods of Geometry with the analytic methods of algebra and calculus.  
 
 Early in his career, Euler tended to be Leibnizian and Cartesian. As he matured, he selected 
principles from both sides of the dispute, but in general he became more and more Newtonian.  His 
exposition, though, seemed more and more Leibnizian, as he developed a very modern-looking style of 
theorem – proof – corollary.  One could think from his writing that he was a “proof machine” that never 
made an observation or made a conjecture. 
 
 In 1756, Euler decided to “come clean” about how he knew what to try to prove.  He wrote a 
paper, Specimen de usu obserationum in mathesi pura, “Example of the use of observation in pure 
mathematics,” [E256] in which he describes his path from observation to theorem.  He attributes the 
technique, on slim evidence, to Fermat.  
 
 To explain his method, Euler selects material from some of his then-recent papers on number 
theory, especially E 164 (the principal subject of last month’s column), about the quadratic forms  
aa + pbb, and E 241, in which he gives his proof that the prime numbers of the form 4n + 1 are exactly 
the ones that are the sum of two squares.   
 
 Here in E 256, Euler studies numbers of the form 2aa + bb, a special case of the numbers he 
studied in E 164.  After a two page introduction about the relation between observation and proof, Euler 
begins his work with eight observations about numbers of the form 2aa + bb, taking a and b to be 
relatively prime.  This takes only two pages.  He spends the last 15 pages of the paper trying to prove 
these eight observations.  As it turns out, he isn’t able to prove all of them, and the things that were 
hardest to observe aren’t always the hardest ones to prove.   In the course of his proofs, though, Euler 
comes across other things that are true, and proves them, too.   
 
 Euler begins his observation with a list. He tabulates all the numbers less than 500 of the form 
2aa + bb, with a and b relatively prime.  His list looks something like this: 

 
2 + bb) 3, 6, 11, 18, 27, 38, 51, 66, 83, 102, 123, 146, 171, 198, 

227, 258, 291, 326, 363, 402, 443, 486. 
8 + bb) 9, 17, 33, 57, 89, 129, 177, 233, 297, 369, 449. 
… 
450 + bb) 451, 454, 466, 499. 
 

 Note that Euler expects both a and b to be non-zero.  Now he starts mining his list for 
information and making his observations: 
 
Observation 1:   We look at the 45 prime numbers that appear on the list: 
 

3, 11, 17, 19, 41, 43, 59, 67, 73, … 491, 499. 
 

None of these numbers appears more than once on the list, hence we speculate that such prime 
numbers are uniquely represented in this form.  As Euler gets to proving the theorems behind these 
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observations, it becomes clear that this is really two statements, first that prime numbers appear only 
once, and second that (odd) numbers that appear only once are prime. 
 
Observation 2: Next we list the doubles of the prime numbers. 
 

6, 22, 34, 38, 82, 86, 118, 134, 146, … 466, 482. 
 
 They, too, appear only once each, so they, too, are uniquely represented.  They are exactly the 
doubles of the primes in the first list, and there are no numbers on the list that are multiples of 4.   
 
 Since before Euclid’s time, about 2400 years ago, numbers that are divisible by 2 but not 
divisible by 4 have been called “oddly even.”  Observation 2 says, among other things, that even 
numbers of the form 2aa + bb are oddly even.  Knowing this, we quote Euler’s next observation. 
 
Observation 3: “Compare the numbers that are odd and the ones that are even, but oddly even, 
and I observe: If an odd number is represented, then so also is its double, and also, if an even number 
appears, half of it will appear as well.” 
 
Observation 4:   For those remaining numbers (i.e., not prime, also not even) list their prime 
factorization, and at the same time, in parentheses give the number of times each number appears in the 
list: 
 

32 (1) 33 (1) 3·11 (2), 3·17 (2) 3·19 (2), 34 (1), 32·11 (2), 112 (1), 3·41 (2), etc. 
 
 From this we see that any product of the prime numbers we saw in Observation 1 also occurs on 
the list, and it occurs more than once if it is composed of different factors.  For example, 33 has two 
prime factors, 3 and 11, and it occurs twice on the list because it has two different representations of the 
form 2aa + bb, being 2 4 25 and 2 16 1.⋅ + ⋅ +  
 
 Note that Euler does NOT claim, though it is true, that the number of times a number occurs 
doubles for each odd prime factor it has. 
 
 To deal with the special prime number 2, Euler specifically notes that we can get it by taking  
b = 0 and a = 1, despite his general assumption that both a and b be non-zero.  
 
Observation 5: Among the factors of these numbers there are no primes except those that are also 
of the form 2aa+bb. 
 
Observation 6: No prime numbers of the forms 8n – 1 or 8n – 3 are of the form 2aa + bb, nor can 
they be divisors of numbers of the form 2aa + bb, as long as a and b are relatively prime. 
 
Observation 7: No number of the form 2aa + bb, with a and b relatively prime has any prime 
divisors other than 2 and prime numbers of one or the other forms 8n + 1 or 8n + 3. 
 
Observation 8: Now it is of greatest interest to observe that every prime number of these two 
forms 8n + 1 and 8n + 3 occurs on the list. 
 

Euler notes that all of these observations are easy to make, and some of them can be proved, but 
for others the proofs are “most difficult.” Into the first category (the easy ones) fall observations 1, 2, 3, 
4, and the first part of 6.  The hard ones are 5, the second part of 6, and 7. The very deepest, he says, is 
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Observation 8.   Moreover, he notes, these properties are similar in many ways to the properties of the 
sums of two squares that he described in E 228 and E 241. 

 
Now that he has shown us how observations give him ideas about what to prove, the character of 

this paper changes dramatically.  Euler sets out to prove the things he observed, and he uses his usual 
Theorem-Proof-Corollary structure, with a few examples put in near the end. 
 
 As we mentioned above, Euler does not prove the same things he observes, and when he proves 
these observations, he doesn’t prove them in the same order he observed them, either.  His first theorem 
is a proof of the first part of Observation 3.  We quote: 
 

“Theorem 1: If N is of the form 2aa + bb, then so is its double. 
 
Proof: Take N = 2mm + nn, so that 2N = 4mm + 2nn.  Take 2m = k.  This makes 2N = kk + 2nn, 
and so 2N is a number of the form 2aa + bb.  Q.E.D.” 

 
 Predictably, Theorem 2 is the converse of Theorem 1, and completes his proof of Observation 3, 
which, in turn, implies the result in Observation 2.  Again we quote: 
 

“Theorem 2: If a number 2N is of the form 2aa + bb, then so also its half, N is of the same 
form. 
 
Proof:  For this to happen, it is necessary that nn be even, and so n itself is even.  Write n = 2k, 
so that 2N = 2mm + 4kk and so N = mm +2kk, which is a number of the form 2aa + bb.  Q.E.D.” 

 
 Something about this gave Euler the idea of asking whether the product of two numbers of the 
form 2aa + bb was again a number of that form, even though he had not made any observations about 
the question.  He answers the question in the affirmative, and adds a little bit, with Theorem 3. Euler’s 
proof of his Theorem 3 is a bit longer and wordier, so we only paraphrase it: 
 

Theorem 3: If M and N are of the form, then so is their product MN. 
 
Proof: Take M = 2aa + bb and N = 2cc + dd.  Then  
 

( ) ( )2 2

4 2 2
4 2 24 4

2 2

MN aacc aadd ccbb bbdd
aacc bacbd acbdbdd aadd ccbb

ac bd ad cb

= + + +
= + +

= + + −

−+ +  

 
 Note also that if we reverse the signs of the added terms, we get MN in a second way, as 

( ) ( )2 2

4 2 2
4 2 24 4

2 2

MN aacc aadd ccbb bbdd
aacc bacbd acbdbdd aadd ccbb

ac bd ad cb

= + + +
= − +

= − + +

++ +  

 
 Moreover, these two ways must be different. 
 Note that there might be a little hang-up if any of the calculated values come out 
negative.  If that happens, take their corresponding positive values. 
Q.E.D. 
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 Surely Euler noticed that this same proof would work for any quadratic form paa + bb, but he 
does not mention that here.  He is doing a good job maintaining his focus on the particular form  
2aa + bb. 
 
 Now Euler turns to his first observation, that the prime numbers appear only once on the list.  In 
his Theorem 4, he states the result in its contrapositive, and then proves it by contradiction.  Although 
the proof is a bit long, it is a very clever proof.  Also, Euler doesn’t do such straightforward proofs by 
contradiction very often, so it is interesting for that as well.  Again, we paraphrase: 
 

Theorem 4: Any number that can be resolved in two ways into a form 2aa + bb is not prime. 
 
Proof: Euler uses proof by contradiction. 
 

Suppose N is prime and N can be resolved in two different ways.  Say  N = 2aa + bb  and 
N = 2cc + dd, with a and b different from c and d.  Multiply the first resolution by cc and the 
second by aa and subtract to get, on the one hand, ( )aa cc N− , and on the other hand  
aadd – bbcc, which factors as the difference of squares as (ad – bc) (ad + bc). 
 Since N is prime, it must divide one or the other of these factors.  This is the consequence 
that Euler will contradict. 
 
 Now also, add the two forms and get  

2N = 2aa + bb + 2cc + dd. 
 
 From this take away 2ad + 2bc and there remains 
 

2N – 2ad – 2bc = 2aa + bb + 2cc + dd – 2ad – 2bc 
 
which can be reorganized as 

( ) ( )2 2
2 2 2N ad bc aa a d cc c b− − = + − + + − . 

 
 Now, the RHS is the sum of four squares, and so it is certainly greater than zero, and so 

2 2 2 0, soN ad bc
N ad bc

− − >
> +

 

 
 So N must also be greater than ad – bc, and so N can divide neither ad + bc nor ad – bc, 
so the consequence we flagged above cannot be true. 
 
 All this derived from the hypothesis that there were two resolutions, so there can’t be two 
distinct resolutions of a prime number.  QED. 

 
 Observation 5 is next on Euler’s agenda, that all prime factors of a number of the form 2aa + bb 
(where a and b are relatively prime) must also be of that form.  This is the first of the observations that 
Euler described as being more difficult.  Indeed, his Theorems 5 to 8 are rather difficult technical 
lemmas that lead to Theorem 9, which we quote: 
 

“Theorem 9: No number of the form 2aa + bb, for which a and b are relatively prime, can have 
a prime factor that is not also of this form.” 
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 Theorems 10 and 11 explain Observation 1 and the first part of Observation 6, respectively: 
 

Theorem 10: If a number of the form 2aa + bb resolves into this form in just one way, and if a 
and b are relatively prime, then the number is certainly prime. 
 
Theorem 11: No number of the forms 8n – 1 or 8n – 3 can divide any number 2aa + bb, as long 
as a and b are relatively prime. 

 
 Euler’s last theorem in this vein is related to the other results, but it is not explicit among his 
eight observations: 

 
Theorem 12:  If a number in one or the other of the forms 8n + 1 or 8n + 3 cannot be resolved 
into the form 2aa + bb, then it is not prime; and if can be so resolved in exactly one form, then it 
is prime; and if it can be resolved in more than one such way, then it is not prime, but it is 
composite. 

 
 Except for the part about observations at the beginning, this paper really has turned into a fairly 
typical Euler paper in number theory.  In true Eulerian form, there are two examples.   
 
 First, Euler asks whether the number 67579 is prime.  He sees that it is of the form 8n + 3, and 
so, by Theorem 12, he can show it is prime by showing that it is uniquely of the form 2aa + bb.  He does 
this more or less by brute force, and finds that 2 267579 2 87 229= ⋅ + , and this is its only representation 
in the form 2aa + bb, hence it is prime. 
 
 In Euler’s time, 67579 is not a particularly large prime number.  They knew several seven-digit 
prime numbers, but didn’t know any eight-digit ones yet. 
 
 Euler’s second example is to demonstrate that 40081 is not a prime number.  Though it is of the 
form 8n + 1, it is not of the form 2aa + bb, so, again by Theorem 12, it is not prime.  In fact, it is the 
product of 149 and 269, but nothing in this technique helps to find the factorization. 
 
 If Euler had ended the paper here, the bulk of this paper would be much like many of his other 
papers, but he has a surprise ending, two entirely unexpected theorems about square and triangular 
numbers that are corollaries of the theorems he has already proved: 
 

Theorem 13: If a number n is in no way the sum of a square and a triangular number, then the 
number 8n + 1 certainly is not prime. 
 
Proof: If n were not of the form aa + ½(bb + b), then 8n + 1 could not be of the form  
 

8aa + 4bb + 4b + 1, 
 
and hence could not be (taking p = 2a and q = 2b + 1) of the form 2pp + qq, and so could not be 
prime.  Q. E. D 

 
 This is a negative result.  Its contrapositive, that if 8n + 1 is prime, then n is a square plus a 
triangle, is only a necessary, and not a sufficient condition. For (my) example, 10 = 9 + 1 is a square and 
a triangle, but 81 is not prime. 
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Theorem 14:  If n is in no way the sum of a triangular number and the double of a triangular 
number, then 8n + 3 is certainly not prime. 
 
Proof:  Here our number does not start as aa + a + ½(bb + b), which, multiplying by 8 and 
adding 3 (in the form 2 + 1) gives 8aa + 8a + 2 + 4bb + 4b + 1, which is of the form 2pp + qq.  
Hence, our number is not of this form, and cannot be prime.  Q. E. D. 

 
The Reader is encouraged to verify these surprising results with some further experiments. 
 
This ends Euler’s remarkable description of the delicate dance between observation and 

deductive proof, complete with examples and a surprise ending. 
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