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 Much of a modern course in elementary number theory has its roots in Euler (though the notation 
is largely due to Gauss.)  Euler, in turn, cites as his inspiration the works of Fermat, Diophantus, 
Goldbach and Pell, among others.  This month we will look at the so-called Pell’s Equation, 

2 2 1y ax= + , a, x and y integers, named after the English mathematician John Pell (1611-1685), who 
lived about a hundred years earlier than Euler. 
 It was Euler who attached the name “Pell’s equation” to this formula.  People often say that 
Euler made a mistake in attributing the equation to Pell, but the entry on Pell at MacTutor [O’C] reports: 
 

 Pell's equation 2 2 1y ax= + , where a is a non-square integer, was first 
studied by Brahmagupta and Bhaskara II. Its complete theory was worked out by 
Lagrange, not Pell. It is often said that Euler mistakenly attributed Brouncker's 
work on this equation to Pell. However the equation appears in a book by Rahn 
which was certainly written with Pell's help: some say entirely written by Pell. 
Perhaps Euler knew what he was doing in naming the equation. 

 
 Euler’s first excursion into Pell’s equation was his 1732 paper E-29, bearing a title that translates 
as “On the solution of problems of Diophantus about integer numbers.”  The main result of this paper is 
to show how certain quadratic Diophantine equations can be reduced to the Pell equation.  In particular, 
he shows that if we can find a solution to the Diophantine equation 2 2y an bn c= + +  and we can find 
solutions to the Pell equation, 2 2 1q ap= + , then we can use the solutions to the Pell equation to 
construct more solutions to the original Diophantine equation.  He also shows how to use two solutions 
to a Pell equation to construct more solutions, and notes that solutions to a Pell equation give good 
rational approximations for a .  When Euler discovers the connection between the Pell equation and 
continued fractions, most of this becomes obsolete, so we will not dwell on it here. 
 
 Euler returns to the Pell equation more than 30 years later with his paper “On the use of a new 
algorithm in solving the Pell problem,” E-323.  The Summarium at the beginning of the article 
announces that the new algorithm will enable us to find easily a solution in the case a = 61.  This is 
rather dramatic, since the smallest solution to the equation 2 261 1p q= +  has p a ten-digit number and q 
a nine digit one.  To find such solutions by hand would indeed be arduous. 
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 Euler begins to describe his algorithm with an example, using a = 13.  We know that 13  is 
between 3 and 4, so he writes 

1
13 3

a
= +  

where we know that a > 1.  A bit of algebra finds a to be exactly 
13 3

4
a

+
= . 

 Knowing that 3 13 4< <  makes it easy to show that 1 < a < 2, so we write 
13 3 1

1
4

a
b

+
= = +  

where, again, b > 1.  An almost identical calculation shows that 
4 1
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b
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−
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If we pause to take stock of what has happened, we get a clue to what Euler is doing here.  If we make 
the substitutions, we get that 
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Euler is building a continued fraction.  He continues, finding, in turn, d, e, and f, and he finds that f = a, 
so the process is cyclic, and, after the initial 3, the coefficients that repeat are 1, 1, 1, 1 and 6.  He does 
some more examples, including a = 61, 67, 31, 46, then 54.  In each case, he notes that there is an initial 
integer followed by a pattern that repeats.  The initial integer, he denotes v, is the integer part of a .   
This is followed by a palindromic sequence of integers, followed by the integer 2v.  Then the 
palindrome and the 2v repeat.  He gives a table of the cycles for all non-square integers from 2 to 120.  
He also notes some of the very interesting patterns within these cycles.  Hardly any of these properties 
were in E-71, Euler’s pioneering paper on continued fractions. 
 
 With the existence of these patterns in place, though, he is ready to use some results of his earlier 
paper.  That paper has been translated into English and published in the journal Mathematical Systems 
Theory. [E71]  Euler reviews some of his results on how to evaluate continued fractions if you know the 
pattern of the “indices.”  
 To evaluate the continued fraction corresponding to a sequence of indices, make a table as 
below: 
 

Indices  v a b c … m n  
x 1 v av+1 (av+1)b+v   M N nN+M 
y 0 1 a ab+1   P Q nQ+P 

 
 Today we would say that the sequence of numerators, x and of denominators y, each satisfy a 
recursive relation of order 2, with initial conditions 1, v and 0, 1 respectively. 
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  Let’s do an example.  The indices for 3  are 1, 1, 2, 1, 2, 1, 2, etc., so v = 1, 2v = 2, and the 
palindrome is just 1.  To evaluate the first several values of the continued fraction  

1
3 1

1
1

1
2

1
1

2 etc.

= +
+

+
+

+

 

we start with a table  
 
Indices  1 1 2 1 2 1 2 
x 1 v 

2x       

y 0 1 
2y       

 
 Now, v = 1 since 1< 3 <2.  The next index is 1, so 2 21 1 2 and 1 1 0 1x v y= ⋅ + = = ⋅ + = , giving 
 
Indices  1 1 2 1 2 1 2 
x 1 1 2      
y 0 1 1      
 
 The next index is 2, so we get 
 
Indices  1 1 2 1 2 1 2 
x 1 1 2 5     
y 0 1 1 3     
 
 Continuing, 
 
Indices  1 1 2 1 2 1 2 
x 1 1 2 5 7 19 26 71 
y 0 1 1 3 4 11 15 41 
 
 These quotients give progressively better approximations of 3 , alternating between being too 
large and being too small.  The last one, 71/41, is accurate to three decimal places.  But solutions the 
Pell equation 3 1qq pp+ =  also have quotients that approximate 3 . In fact, several, but not all of these 
quotients give rise to solutions to the equation, (p, q) = (0, 1),  (1, 2), (4,7), and (15, 26).  In this 
particular case, the pattern of solutions and non-solutions is fairly simple, but Euler’s paper gives rules 
for the pattern of solutions in every case.  We leave finding and describing these patterns to interested 
readers and to students in search of a number theory project. 

Also, some quotients give rise to solutions to 3 1qq pp− = , and Euler gives ways use these 
solutions to find solutions to Pell’s equation. 
 
 Eight years later, in 1773, Euler returns to the Pell equation with E-559, “New aids for solving 
the formula axx + 1 = yy,” not published until 1783.  In this paper, he gives ways to generate solutions 
of the Pell equation from solutions to related equations, app – 1 = pp, app – 2 = pp, app + 2 = pp and  
app + 4 = pp.  This provides a kind of converse to the main results of E-29, published 50 years earlier.  
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 Euler wrote over 160 papers that the editors of the Opera Omnia have classified as “number 
theory.”  They fill volumes 2, 3, 4 and 5 of series I, 1bout 1700 pages.  The three papers we have looked 
at here comprise only about 2% of Euler’s number theory papers, but they extend from one of his very 
first papers, E-29, to one of his last, E-559, published in 1783, the year Euler died.  Though the Pell 
equation was a relatively minor aspect of Euler’s work, it did hold his interest for his whole life.  And it 
is still interesting today. 
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