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 Last month, we began to examine Euler’s two papers on the general properties of polyhedra, 
often cited as the pioneering work on the subject and one of the first contributions to the field of 
topology.  Euler had written what is usually regarded as the first topology paper in 1736, when he wrote 
of the bridges of Königsburg. 
 

The Euler wrote his first paper on this subject, “Elements of the doctrine of solids,” in 1750.  In 
that paper, he claimed two main results: 

 
Proposition 4: In any solid enclosed by planes, the sum of the number of solid 

angles the number of faces exceeds the number of edges by 2. 
 

Proposition 9:  The sum of all the plane angles which occur on the outside of a 
given solid is equal to eight less than four right angles for each solid angle. 
 

 In E-230, Euler seems to think that these two results are of about equal importance.  He gives a 
proof of the second of these, using the first one, but he says that he is unable to find a proof of 
Proposition 4, the familiar Euler Formula, that V – E + F = 2. 
 
 Last month, we listed four “half-truths” about Euler and the Euler Formula, and we set about to 
find what truth there was in these half-truths.  When we finished reading E-230, we left it like this: 
 
 

1. Euler got it wrong, because he thought his formula applies to all polyhedra. 
This still seems half-true.  Sometimes, as in Proposition 1, Euler claims his theorem is true for 
any solid.  When he does that, he sometimes over-reaches.  However, for his ground-breaking 
claims, as in Proposition 4, that 2V F E+ = + , Euler specifically states the condition that the 
polyhedron be enclosed by planes, a condition that is sufficient to make his claims true. 
 

2. Euler couldn’t provide a proof for his formula. 
Indeed, in E-230, Euler says that he cannot give a good proof.  Let’s wait for E-231, though. 
 

3. Euler gave a proof, but the proof was wrong. 
Let’s wait for E-231 for this, too. 



 
4. It shouldn’t be Euler’s Formula at all, since Descartes did it first. 

More on this later.  It is a remarkable story. 
 
 Now, let us turn to the sequel, and see how these half-truths stand up to the rest of the story. 
 
E-231 – Proof of some of the properties of solid bodies enclosed by planes 
 
 Euler tells us right in the title of E-231 that he has a proof of his formula, and that he is not 
considering general solid bodies, like tori or spheres, but only those “enclosed by planes.”  This 
condition is sufficient to make 2V F E+ = +  true. 
 
 Euler opens the paper by reviewing what he considers to be the two main results of E-230, that 

2V F E+ = +  and the one about the sums of the plane angles in a polyhedron.  Then he begins 
preparations for the proof his title promises.  He plans to prove 2V F E+ = +  by a kind of reduction 
argument.  Today we would structure the 
proof as a mathematical induction, but that 
was not yet a popular style of proof in 1751.  
To prepare his readers for his proof technique, 
he first demonstrates how it works in two 
dimensions, to show that the angles in a 
polygon with A angles sum to 2A – 4 right 
angles.  Suppose, for example, ABCDEFG is 
the polygon in Euler’s Fig. 1 at the right, 
implicitly assumed to be convex.  It is 
described by its vertices. Euler dissects the 
polygon into triangles by drawing diagonals 
GB, BF, FC, CE.   
 
 Euler goes into some detail to say that 
removing triangle CDE leaves a polygon with 
A–1 angles, and it degreases its angle sum by 
two right angles.  Eventually, after n steps, for 
some n, we get A–n=3 and are left only with triangle ABG, for which the angle sum is two right angles.  
Therefore, the number of right angles in the original polygon was 2n + 2, or, equivalently, 2A–4. 
 
 There are easier ways to do this, but Euler wanted to prepare us for his technique in three 
dimensions. 
 
 Next, Euler looks for a three dimensional analogy to the triangulation he used in two dimensions.  
He proposes choosing any point on the interior of the polyhedron, and extending edges to each vertex of 
the polyhedron.  This leads to a decomposition of the polyhedron into pyramids, with the faces of the 
original polyhedron as the bases of the pyramids.  He tells us that this technique does not work, but he 
does not tell us why he thinks that.  I think a modern mathematician could make it work in a way that 
Euler would find convincing 
 
 Thinking that this approach wouldn’t work, Euler turned to a different kind of reduction plan.  
He decided to remove vertices.  He makes some mistakes, and he makes them all in his lemma:  
 



Proposition 1:  Given any solid enclosed by planes, then a given solid angle 
being cut off, in the solid that remains, the number of solid angles will be one 
less. 

 
 His plan, illustrated in his Fig. 2 at the right, is to remove the vertex labeled O.  Vertex O is 
connected to vertices A, B, C, D, E and F, so when he removes O, he also takes a number of triangular 
pyramids, OABC, OACF, OCDF, and ODEF.  (Notice that points P and Q shown in Fig. 2 are not used 
in Proposition 1. Euler recycles Fig. 2 in Proposition 2, where he does use them.)  He then shows that 
the operation of removing vertex O along with all of these triangular pyramids preserves the relationship 
among V, E and F.  He concludes that if he keeps 
removing vertices like this, eventually he’ll have only 
four vertices left, that is, he’ll have a triangular 
pyramid.  Since V+F=E+2 for triangular pyramids, he 
concludes that V+F=E+2 in the original polyhedron as 
well. 
 
 Euler argues like this.  If we remove vertex O, 
then V decreases by 1.  Suppose that k is the number of 
faces that meet at O. Then k is also the number of edges 
that meet at O, as well as the number of sides to the 
(perhaps non-planar) polygon represented by ABCDEF 
in Fig. 2.  Thus, the polygon triangulates to give k – 2 
polygons, and that triangulation requires the 
introduction of k – 3 edges.  Hence, removing O takes away one vertex (O), k edges (OA, OB, etc.) and k 
faces (OAB, OBC, OCD, etc.).  However, it also adds the k – 2 faces of the triangulation and the k – 3 
edges that went into the triangulation.  So, in the new polyhedron, V is replaced with V – 1, E is replaced 
by E – k + (k – 3) = E – 3, and F is replaced by F – k + (k – 2) = F – 2. Thus V – E + F is replaced by V 
– 1 – (E – 3) + F – 2 = V – E + F, that is, V – E + F does not change.  So, of V – E + F = 2 after all the 
reductions, that is, for a triangular pyramid, then V – E + F = 2 for the 
original polygon. 
 
 That would be a beautiful proof, were it not for a subtle but serious 
flaw.  An example is illustrated in Fig. 3.  If the initial polyhedron is 
“bounded by planes,” then the polyhedron resulting after removing the 
vertex O ns not necessary still bounded by planes.  So, we might not be 
able to repeat the process of removing vertices.  In the Fig. 3, for example, 
removing the vertex O according to Euler’s recipe leaves two tetrahedra, 
AEBD and CFBD, joined along the common edge BD.  Euler would not 
accept this object as a polyhedron. 
 
 Polyhedra that result from removing a vertex can have other 
unexpected properties that can make repairing this proof more difficult than we might expect, and, even 
if the proof can be repaired, the fact remains that the proof given by Euler is flawed and incomplete.  
Still, the theorem is true. 
 
The End of the Story 
 
 Let’s review our list of half-truths. 
 

1. Euler got it wrong, because he thought his formula applies to all polyhedra. 
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Not true.  Euler may have thought it applied to all polyheda, but he only claimed that it applied 
to “polyhedra bounded by planes,” that is, convex polyhedra, and it does apply to them. 
 

2. Euler couldn’t provide a proof for his formula. 
Half true.  Euler couldn’t give a proof in his first paper, E-230, and he said so, but a year later, in 
E-231, he gives a convincing proof. 
 

3. Euler gave a proof, but the proof was wrong. 
True.  The proof Euler gives in E-231, though convincing, is incorrect. 
 

4. It shouldn’t be Euler’s Formula at all, since Descartes did it first. 
We think this is half-true, but it contains a grain of truth.  To know why, we have to tell a story.  
We rely mostly on Crowell [C, pp. 181-189] for our facts. 

 
 In 1649, the year before he died, Descartes went to Sweden to tutor Princess Christina in 
philosophy.  When he died, his possessions were sent back to France, but, just as they arrived in Paris, 
the box of his manuscripts fell into the river.  They were mostly rescued, and dried, and some were 
available to scholars at the time, including Leibniz.  Leibniz hand-copied several of the manuscripts, 
including one of sixteen-pages titled Progymnasmata de solidorum elementis, [D] or “Exercises in the 
elements of solids.”  The original subsequently vanished, and Leibniz’ copy disappeared into his papers 
until it was rediscovered in 1860. Thus, for over 200 years, only Leibniz knew of Descartes’ work on 
polyhedra, and he doesn’t seem to have told anybody.  Nobody in Euler’s time would have known of it. 
 
 The Progymnasmata is the first known study of general polyhedra.  Even though it is not well-
known, it is the first.  That distinction is often credited to Euler. 
 
 So, what did Descartes do?  He studied something closely related to Euler’s formula for the sum 
of the plane angles of a polyhedron.  In Descartes’ time, people had a concept of a solid angle called the 
deficiency.  The deficiency of a solid angle is the amount by which the sum of the plane angles at the 
solid angle fall short of four right angles.  In the case, for example, of a solid right angle, formed by 
three right angles, the deficiency will be one right angle.  For a cube, which contains eight solid right 
angles, the total deficiency is eight right angles.  Descartes’ main result is that this always happens: 
 
Theorem:  The sum of the deficiencies of the solid angles of a polyhedron is always eight right angles. 
 
 It is an almost trivial step from this to Euler’s theorem, that the sum of the plane angles is four 
times the number of solid angles, less eight right angles, that is 4V – 8 right angles. 
 
 Descartes’ other interesting result is more subtly related, but still remotely equivalent to V – E + 
F = 2. Descartes writes: 
 

Dato aggregato ex omnibus angulis planis et numero facierum, 
numerum angulorum planorum invenire:  Ducatur numerus 
facierum per 4, et productum addatur aggregato ex omnibus 
angulis planis, et totius media pars erit numeris angulorum 
planorum. 
 
Given the sum of all the plane angles and the number of faces, to 
find the number of plane angles:  The number of faces is multiplied 



by 4, and to the product is added the sum of all the plane angles, 
and the half part of this total will be the number of plane angles. 

 
 It is easy, but not obvious, to transform this rule into Euler’s V – E + F = 2, as follows. 
 

Let Σ denote the sum of all the plane angles in the solid, and let V be the number of vertices, 
what Descartes and Euler both call “solid angles.”  Then Descartes has just told us that 4 8V − Σ =  right 
angles.  Further, let F be the number of faces and P the number of plane angles. 
 It is easy for us to see that the number of plane angles is twice the number of edges, that is, 

2P E= . 
 Now, Descartes tells us that given Σ and F, we are to find P.  He uses words amounting to the 
formula 

4
2

F
P

+ Σ
=  

 Substituting 2P E=  and 4 8VΣ = − , we get 
 

4 4 8
2

2
F V

E
+ −

=  

which is easy to transform into 
2V E F− + = . 

 
 So, did Descartes find the Euler formula?  It would make a good debate.   
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