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One of thefirg thingswe learn in Caculus 111, multivariable caculus, isthat mixed partid
derivaivesareequd. That is, for mogt familiar functions of two variables, say f (x ,y), it doesn’'t matter

whether you take partid derivatives first with respect to x, then with respect to'y, or if you do it the other
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Almog the next thing we learn is that there are afew conditions of continuity that our function
f (x,y) must satisfy to assure thisequality. We learn anumber of specid counterexamples, which, | for
one, remembered for the test, but then forgot until | had to teach Caculus 111 mysdlf.

Two hundred and seventy years ago, the fact about partia derivatives was unknown. The very
idea functions was new. People used equations of two variables to describe curves, and of three
variables to describe surfaces, but they hadn’t made the transition from equations to functions. Surfaces
were additiondly difficult to deal with because three-dimensiond coordinate systems were new and
people were not yet comfortable with them.

Somehow, in the midst of this confusion, Euler was able to discover the fact that mixed partia
derivatives are equal. Since Euler did not know any of the functions that could have served as
counterexamples, we should not begrudge it that he did not aso discover the continuity conditions.

Wewill explore Euler’ s discovery by looking a three questions. Firgt, without the tools of
surfaces, functions and three-dimensiond coordinate systems, how could Euler make this discovery?
Second, exactly what did he discover, anyway? And finaly, what kind of proof or evidence did he offer
to make people believe it was true?

The answer to the first question is alittle surprising. Euler wasn't thinking about surfaces,
functions or three-dimensiona coordinate systems when he wrote this paper in 1734. The paper whose
tittein Englishis*“On an infinity of curves of agiven kind, or amethod of finding equetions for an
infinity of curves of agiven kind” is number 44 on Enestrém’sindex of Euler’ sworks. Thetitleisas
awkward initsorigind Latin asitisin English. Asthetitle suggests, the paper is about families of
curves. Thetitle does not suggest that Euler means to study the differentia equations satisfied by a
given family of curves.




Euler begins his paper with a discusson of what we would cal a parameter, but Euler cdlsa
modulus. Itisarddaivey rare example of aterm that Euler used that was not adopted by the rest of the
mathematical community. He uses an example, y? = ax, which he interprets as describing infinitely
many parabolic curves, one for each value of a, and al with the same axis and vertex. Heintendsto
examine how the curves change as the value of achanges. So we see that Euler was thinking about
curves, parameters and two-dimensond coordinate systems, not surfaces, functions and three-
dimensiona coordinate systems.

What was he thinking about? At the time, people didn't say they were “solving” a differentia
equation. Instead, they said they were “integrating” or “congtructing” it, o it was naturd for astudy of

differentia equations to begin with integration. Euler asks usto consider z = () Pdx , where P involves

a, zand x. Then dz= P dx, inwhich expresson a isto be considered as a constant. Euler works hard to
explanthat if aisconsgdered avariable, then thislast expresson could be differentiated with respect to
a, and dsothat if dz= P dx isintegrated, then the resulting expresson might involve afunction of a.
All this leads to a conclusion that seems paradoxical when wefird seeit, thet if a isacongant, then
dz= P dx
but if a is consdered as avariable, then
dz=Pdx+ Qda.

Euler moves on to sate atheorem:” If aquantity A composed of two varigblest and u is
differentiated first holding t congtant, and then that differentid is differentiated holding u constant and
letting t be avariable, then the same result will occur if the order is reversed and A isfirg differentiated
holding u congtant and then that differentid is differentiated holding t congtant and letting u be a
variable”

We recognize this as dlaiming that mixed partid derivatives are equd, regardless of the order of
the differentiation. Today, thisis the second thing we learn about partiad derivatives when we encounter
themin caculuscdass. There, we dso learn about some continuity conditions that Euler does not yet
know abouit.

The awkward wording and the lack of notation are dictated by Euler’ stimes. He writes about
differentials and not derivatives, so the very idea of partid derivatives and second order partia
derivaivesis more difficult to discuss. Our modern notations for partid derivatives have evolved over
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many years specifically so that it is easy to use them to write facts like this. Compare

fxy = fyx to the tools Euler had to make this same statement.

Our third question was about Euler’s proof. For this, we can trandate Euler himsdif:

Suppose A is a function of t and u. From A we get B if, in place of tin A
we substitute t + dt; and we get C if in place of u in A we substitute u + du. If we
simultaneously substitute t + dt and u + du, we change A into D. From a different
point of view, we could get D by substituting u + du for u in B or by substituting t
+dtfor tin C. This said, if the differential of A is taken, holding t constant, it will
produce C —A. Ifin C — A we put t + dt in place of t, it will produce D — B, the
differential of which will be

D-B-C+A.



Now, doing things in the other order, if t + dt is put into A in place of t,
then B is produced, and then the differential of A, taking t to be the variable, will
be B — A. Putting u + du in place of u in this differential will give
D-B-C+A,
which is equal to the differential found in the previous operations.
Q.E.D.

All of thisfills only three pages of Euler’s 20 page paper. The rest of the paper is concerned

with some now-forgotten questions of how an integral like z = ¢y Pdx dependson a, if P isafunction of

x and dso involves a parameter a. Hetakesthe differentid, dz = P dx+ Q da, and Euler wantsto
understand what Q is. Euler takes more differentids, dP = Adx + Bda and dQ = Cdx + Dda. Because of
Euler's result about mixed partid derivatives, he knowsthat C = B, so dQ = Bdx + Dda, and findly,

Q= pBdx. Thispart of the paper goes on and on, as Euler considers different forms for P and adds
more and more complications.

It isaclear case for which the tool is more important than the problem.

There are two other minor features of this paper. Thefird involves e, the base for naturd
logarithms. Euler pioneered the use of standard symbols for such congtants. He was dso responsible
for our universal use of the symbol p. Euler’sfirg “officd” use of e wasin histwo volume Mechanica,
published in 1736. This paper waswritten in 1734, but not published until 1740. Publication delay cost
it first place.

Second, some sharp-eyed readers may have noticed that this paper occupies pages 174-189 and
180-183 of its volume of the Commentarii. It'snot our typographica error. A typesetter in 1740 got
confused as he set the page numbers for this volume, and after page 189 he put another page 180.
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