|
59 | Theoremata circa reductionem formularum integralium ad quadraturam circuli |
| 60 | De inventione integralium, si post integrationem variabili quantitati determinatus valor tribuatur |
| 162 | Methodus integrandi formulas differentiales rationales unicam variabilem involventes |
| 163 | Methodus facilior atque expeditior integrandi formulas differentiales rationales |
| 168 | De la controverse entre Mrs. Leibniz et Bernoulli sur les logarithmes des nombres negatifs et imaginaires |
| 254 | De expressione integralium per factores |
| 321 | Observationes circa integralia formularum ∫ xp-1dx(1-xn)q/n-1 posito post integrationem x = 1 |
| 342 | Institutionum calculi integralis volumen primum |
| 366 | Institutionum calculi integralis volumen secundum |
| 385 | Institutionum calculi integralis volumen tertium |
|
391 | De formulis integralibus duplicatis |
| 421 | Evolutio formulae integralis ∫ x f-1 dx (lx)m/n integratione a valore x = 0 ad x = 1 extensa |
| 462 | De valore formulae integralis ∫ (xm-1 ± zm-n-1)/(1 ± zn) dz casu quo post integrationem ponitur z = 1 |
| 463 | De valore formulae integralis ∫ (zλ-ω ± zλ+ω)/(1 ± z2λ)(dz/z)(lz)μ casu quo post integrationem ponitur z = 1 |
| 464 | Nova methodus quantitates integrales determinandi |
| 475 | Speculationes analyticae |
| 499 | De integratione formulae ∫ (dx lx)/√(1-xx) ab x = 0 ad x = 1 extensa |
| 500 | De valore formulae integralis ∫ ((xa-1 dx)/lx)(1-xb)(1-xe)/(1-xn) a termino x = 0 usque ad x = 1 extensae |
| 521 | Theoremes analytiques. Extraits de differents lettres de M. Euler a M. le Marquis de Condorcet |
| 539 | Supplementum calculi integralis pro integratione formularum irrationalium |
|
572 | Nova methodus integrandi formulas differentiales rationales sine subsidio quantitatum imaginariarum |
| 587 | Observation in aliquot theoremata illustrissimi de la Grange |
| 588 | Investigatio formulae integralis ∫ (xm-1 dx)/(1+xk)n casu, quo post intagrationem statuitur x = ¥ |
| 589 | Investigatio valoris integralis ∫ (xm-1 dx)/(1-2xkcosθ+x2k) a termino x = 0 ad x = ¥ extensi |
| 594 | Methodus inveniendi formulas integrales, quae certis casibus datam inter se teneant rationem, ubi sumul methodus traditur fractiones continuas summandi |
| 606 | Speculationes super formula integrali ∫ (xndx)/√(aa-2bx+cxx), ubi simul egregiae observationes circa fractiones continuas occurrunt |
| 620 | Methodus facilis inveniendi integrali huius formulae ∫ (dx/x)(xn+p - 2xncosζ + xn-p)/(x2n - 2xncosθ + 1) casu quo post integrationem ponitur vel x = 1 vel x = ¥ |
| 621 | De summo usu calculi imaginariorum in analysi |
| 629 | Evolutio formulae integralis ∫ dx(1/(1-x) + 1/(lx)) a termino x = 0 ad x = 1 extensae |
| 630 | Uberior explicatio methodi singularis nuper expositae integralia alias maxime abscondita investigandi |
|
635 | Innumera theoremata circa formulas integrales, quorum demonstratio vires analyseos superare videatur |
| 640 | Comparatio valorum formulae integralis ∫ (xp-1 dx)/(n√((1-xn)n-q)) a termino x = 0 usque ad x = 1 extensae |
| 651 | Quatuor theoremata maxime notatu digna in calculo integrali |
| 653 | De iterata integratione formularum integralium, dum aliquis exponens pro variabili assumitur |
| 656 | De integrationibus maxime memorabilibus ex calculo imaginariorum oriundis |
| 657 | Supplementum ad dissertationem praecedentem circa integrationem vormulae ∫ (zm-1 dz)/(1-zn) casu quo ponitur z = v(cos(φ) + √(-1) sin(φ)) |
| 662 | De vero valore formulae integralis ∫ dx(l(1/x))n a termino x = 0 usque ad terminum x = 1 extensae |
| 668 | De integratione formulae (dx √(1+x4))/(1-x4) aliarumque eiusdem generis per logarithmos et arcus circulares |
| 669 | Memorabile genus formularum differentialium maxime irrationalium quas tamen ad rationalitatem perducere licet |
|
670 | De resolutione formulae integralis ∫ (xm-1 dx)(Δ + xn)λ in seriem semper convergentem, ubi simul plura insignia artificia circa serierum summationem explicantur |
| 671 | De formulis differentialibus angularibus maxime irrationalibus, quas tamen per logarithmos et arcus circulares integrare licet |
| 672 | Theorema maxime memoragile circa formulam integralem ∫ (dφ cos(λφ))/(1+aa-2acos(φ))n+1 |
| 673 | Disquitio coniecturalis super formula integrali ∫ (dφcos(iφ))/(α+βcos(φ))n |
| 674 | Demonstratio theorematis insignis per coniecturam eruti circa intagrationem formulae ∫ (dφ cos(iφ))/(1+aa-2acos(φ))n+1 |
| 675 | De valoribus integralium a termino variabilis x = 0 usque ad x = ¥ extensorum |
| 688 | Specimen integrationis abstrusissimae hac formula ∫ dx/((1+x)*4√(2xx-1)) contentae |
| 689 | Integratio formulae differentialis maxime irrationalis, quam tamen per logarithmos et arcus circulares expedire licet |
| 690 | Evolutio formulae integralis ∫ dz(3+zz)/((1+zz)*4√(1+6zz+z4)) per logarithmos et arcus circulares |
| 694 | Ulterior disquisitio de formulis integralibus imaginariis |
|
695 | Integratio succincta formulae integralis maxime memorabilis ∫ dz/((3±zz)*3√(1±3zz)) |
| 701 | Formae generales differentialium, quae, etsi nulla substitutione rationales reddi possunt. tamen integrationem per logarithmos et arcus circulares admittunt |
| 707 | De insigni usu calculi imaginariorum in calculo integrali |
| 721 | De integrationibus difficillimis, quarum integralia tamen aliunde exhiberi possunt |
| 752 | De integralibus quibusdam inventu difficillimis |
| 807 | Sur les logarithmes des nombres negativs et imaginaires |
| 816 | Considerations sur quelques formules integrales dont les valeurs peuvent etre exprimees, en certains cas, par la quadrature du cercle |
| 819 | Continuatio fragmentorum ex Adversariis mathematicis depromptorum |