59 | Theoremata circa reductionem formularum integralium ad quadraturam circuli |
60 | De inventione integralium, si post integrationem variabili quantitati determinatus valor tribuatur |
162 | Methodus integrandi formulas differentiales rationales unicam variabilem involventes |
163 | Methodus facilior atque expeditior integrandi formulas differentiales rationales |
168 | De la controverse entre Mrs. Leibniz et Bernoulli sur les logarithmes des nombres negatifs et imaginaires |
254 | De expressione integralium per factores |
321 | Observationes circa integralia formularum ∫ xp-1dx(1-xn)q/n-1 posito post integrationem x = 1 |
342 | Institutionum calculi integralis volumen primum |
366 | Institutionum calculi integralis volumen secundum |
385 | Institutionum calculi integralis volumen tertium |
391 | De formulis integralibus duplicatis |
421 | Evolutio formulae integralis ∫ x f-1 dx (lx)m/n integratione a valore x = 0 ad x = 1 extensa |
462 | De valore formulae integralis ∫ (xm-1 ± zm-n-1)/(1 ± zn) dz casu quo post integrationem ponitur z = 1 |
463 | De valore formulae integralis ∫ (zλ-ω ± zλ+ω)/(1 ± z2λ)(dz/z)(lz)μ casu quo post integrationem ponitur z = 1 |
464 | Nova methodus quantitates integrales determinandi |
475 | Speculationes analyticae |
499 | De integratione formulae ∫ (dx lx)/√(1-xx) ab x = 0 ad x = 1 extensa |
500 | De valore formulae integralis ∫ ((xa-1 dx)/lx)(1-xb)(1-xe)/(1-xn) a termino x = 0 usque ad x = 1 extensae |
521 | Theoremes analytiques. Extraits de differents lettres de M. Euler a M. le Marquis de Condorcet |
539 | Supplementum calculi integralis pro integratione formularum irrationalium |
572 | Nova methodus integrandi formulas differentiales rationales sine subsidio quantitatum imaginariarum |
587 | Observation in aliquot theoremata illustrissimi de la Grange |
588 | Investigatio formulae integralis ∫ (xm-1 dx)/(1+xk)n casu, quo post intagrationem statuitur x = ¥ |
589 | Investigatio valoris integralis ∫ (xm-1 dx)/(1-2xkcosθ+x2k) a termino x = 0 ad x = ¥ extensi |
594 | Methodus inveniendi formulas integrales, quae certis casibus datam inter se teneant rationem, ubi sumul methodus traditur fractiones continuas summandi |
606 | Speculationes super formula integrali ∫ (xndx)/√(aa-2bx+cxx), ubi simul egregiae observationes circa fractiones continuas occurrunt |
620 | Methodus facilis inveniendi integrali huius formulae ∫ (dx/x)(xn+p - 2xncosζ + xn-p)/(x2n - 2xncosθ + 1) casu quo post integrationem ponitur vel x = 1 vel x = ¥ |
621 | De summo usu calculi imaginariorum in analysi |
629 | Evolutio formulae integralis ∫ dx(1/(1-x) + 1/(lx)) a termino x = 0 ad x = 1 extensae |
630 | Uberior explicatio methodi singularis nuper expositae integralia alias maxime abscondita investigandi |
635 | Innumera theoremata circa formulas integrales, quorum demonstratio vires analyseos superare videatur |
640 | Comparatio valorum formulae integralis ∫ (xp-1 dx)/(n√((1-xn)n-q)) a termino x = 0 usque ad x = 1 extensae |
651 | Quatuor theoremata maxime notatu digna in calculo integrali |
653 | De iterata integratione formularum integralium, dum aliquis exponens pro variabili assumitur |
656 | De integrationibus maxime memorabilibus ex calculo imaginariorum oriundis |
657 | Supplementum ad dissertationem praecedentem circa integrationem vormulae ∫ (zm-1 dz)/(1-zn) casu quo ponitur z = v(cos(φ) + √(-1) sin(φ)) |
662 | De vero valore formulae integralis ∫ dx(l(1/x))n a termino x = 0 usque ad terminum x = 1 extensae |
668 | De integratione formulae (dx √(1+x4))/(1-x4) aliarumque eiusdem generis per logarithmos et arcus circulares |
669 | Memorabile genus formularum differentialium maxime irrationalium quas tamen ad rationalitatem perducere licet |
670 | De resolutione formulae integralis ∫ (xm-1 dx)(Δ + xn)λ in seriem semper convergentem, ubi simul plura insignia artificia circa serierum summationem explicantur |
671 | De formulis differentialibus angularibus maxime irrationalibus, quas tamen per logarithmos et arcus circulares integrare licet |
672 | Theorema maxime memoragile circa formulam integralem ∫ (dφ cos(λφ))/(1+aa-2acos(φ))n+1 |
673 | Disquitio coniecturalis super formula integrali ∫ (dφcos(iφ))/(α+βcos(φ))n |
674 | Demonstratio theorematis insignis per coniecturam eruti circa intagrationem formulae ∫ (dφ cos(iφ))/(1+aa-2acos(φ))n+1 |
675 | De valoribus integralium a termino variabilis x = 0 usque ad x = ¥ extensorum |
688 | Specimen integrationis abstrusissimae hac formula ∫ dx/((1+x)*4√(2xx-1)) contentae |
689 | Integratio formulae differentialis maxime irrationalis, quam tamen per logarithmos et arcus circulares expedire licet |
690 | Evolutio formulae integralis ∫ dz(3+zz)/((1+zz)*4√(1+6zz+z4)) per logarithmos et arcus circulares |
694 | Ulterior disquisitio de formulis integralibus imaginariis |
695 | Integratio succincta formulae integralis maxime memorabilis ∫ dz/((3±zz)*3√(1±3zz)) |
701 | Formae generales differentialium, quae, etsi nulla substitutione rationales reddi possunt. tamen integrationem per logarithmos et arcus circulares admittunt |
707 | De insigni usu calculi imaginariorum in calculo integrali |
721 | De integrationibus difficillimis, quarum integralia tamen aliunde exhiberi possunt |
752 | De integralibus quibusdam inventu difficillimis |
807 | Sur les logarithmes des nombres negativs et imaginaires |
816 | Considerations sur quelques formules integrales dont les valeurs peuvent etre exprimees, en certains cas, par la quadrature du cercle |
819 | Continuatio fragmentorum ex Adversariis mathematicis depromptorum |