Integration

Original Titles
     
English Titles

59Theoremata circa reductionem formularum integralium ad quadraturam circuli
60De inventione integralium, si post integrationem variabili quantitati determinatus valor tribuatur
162Methodus integrandi formulas differentiales rationales unicam variabilem involventes
163Methodus facilior atque expeditior integrandi formulas differentiales rationales
168De la controverse entre Mrs. Leibniz et Bernoulli sur les logarithmes des nombres negatifs et imaginaires
254De expressione integralium per factores
321Observationes circa integralia formularum ∫ xp-1dx(1-xn)q/n-1 posito post integrationem x = 1
342Institutionum calculi integralis volumen primum
366Institutionum calculi integralis volumen secundum
385Institutionum calculi integralis volumen tertium
391De formulis integralibus duplicatis
421Evolutio formulae integralis ∫ x f-1 dx (lx)m/n integratione a valore x = 0 ad x = 1 extensa
462De valore formulae integralis ∫ (xm-1 ± zm-n-1)/(1 ± zn) dz casu quo post integrationem ponitur z = 1
463De valore formulae integralis ∫ (zλ-ω ± zλ+ω)/(1 ± z)(dz/z)(lz)μ casu quo post integrationem ponitur z = 1
464Nova methodus quantitates integrales determinandi
475Speculationes analyticae
499De integratione formulae ∫ (dx lx)/√(1-xx) ab x = 0 ad x = 1 extensa
500De valore formulae integralis ∫ ((xa-1 dx)/lx)(1-xb)(1-xe)/(1-xn) a termino x = 0 usque ad x = 1 extensae
521Theoremes analytiques. Extraits de differents lettres de M. Euler a M. le Marquis de Condorcet
539Supplementum calculi integralis pro integratione formularum irrationalium
572Nova methodus integrandi formulas differentiales rationales sine subsidio quantitatum imaginariarum
587Observation in aliquot theoremata illustrissimi de la Grange
588Investigatio formulae integralis ∫ (xm-1 dx)/(1+xk)n casu, quo post intagrationem statuitur x = ¥
589Investigatio valoris integralis ∫ (xm-1 dx)/(1-2xkcosθ+x2k) a termino x = 0 ad x = ¥ extensi
594Methodus inveniendi formulas integrales, quae certis casibus datam inter se teneant rationem, ubi sumul methodus traditur fractiones continuas summandi
606Speculationes super formula integrali ∫ (xndx)/√(aa-2bx+cxx), ubi simul egregiae observationes circa fractiones continuas occurrunt
620Methodus facilis inveniendi integrali huius formulae ∫ (dx/x)(xn+p - 2xncosζ + xn-p)/(x2n - 2xncosθ + 1) casu quo post integrationem ponitur vel x = 1 vel x = ¥
621De summo usu calculi imaginariorum in analysi
629Evolutio formulae integralis ∫ dx(1/(1-x) + 1/(lx)) a termino x = 0 ad x = 1 extensae
630Uberior explicatio methodi singularis nuper expositae integralia alias maxime abscondita investigandi
635Innumera theoremata circa formulas integrales, quorum demonstratio vires analyseos superare videatur
640Comparatio valorum formulae integralis ∫ (xp-1 dx)/(n√((1-xn)n-q)) a termino x = 0 usque ad x = 1 extensae
651Quatuor theoremata maxime notatu digna in calculo integrali
653De iterata integratione formularum integralium, dum aliquis exponens pro variabili assumitur
656De integrationibus maxime memorabilibus ex calculo imaginariorum oriundis
657Supplementum ad dissertationem praecedentem circa integrationem vormulae ∫ (zm-1 dz)/(1-zn) casu quo ponitur z = v(cos(φ) + √(-1) sin(φ))
662De vero valore formulae integralis ∫ dx(l(1/x))n a termino x = 0 usque ad terminum x = 1 extensae
668De integratione formulae (dx √(1+x4))/(1-x4) aliarumque eiusdem generis per logarithmos et arcus circulares
669Memorabile genus formularum differentialium maxime irrationalium quas tamen ad rationalitatem perducere licet
670De resolutione formulae integralis ∫ (xm-1 dx)(Δ + xn)λ in seriem semper convergentem, ubi simul plura insignia artificia circa serierum summationem explicantur
671De formulis differentialibus angularibus maxime irrationalibus, quas tamen per logarithmos et arcus circulares integrare licet
672Theorema maxime memoragile circa formulam integralem ∫ (dφ cos(λφ))/(1+aa-2acos(φ))n+1
673Disquitio coniecturalis super formula integrali ∫ (dφcos(iφ))/(α+βcos(φ))n
674Demonstratio theorematis insignis per coniecturam eruti circa intagrationem formulae ∫ (dφ cos(iφ))/(1+aa-2acos(φ))n+1
675De valoribus integralium a termino variabilis x = 0 usque ad x = ¥ extensorum
688Specimen integrationis abstrusissimae hac formula ∫ dx/((1+x)*4√(2xx-1)) contentae
689Integratio formulae differentialis maxime irrationalis, quam tamen per logarithmos et arcus circulares expedire licet
690Evolutio formulae integralis ∫ dz(3+zz)/((1+zz)*4√(1+6zz+z4)) per logarithmos et arcus circulares
694Ulterior disquisitio de formulis integralibus imaginariis
695Integratio succincta formulae integralis maxime memorabilis ∫ dz/((3±zz)*3√(1±3zz))
701Formae generales differentialium, quae, etsi nulla substitutione rationales reddi possunt. tamen integrationem per logarithmos et arcus circulares admittunt
707De insigni usu calculi imaginariorum in calculo integrali
721De integrationibus difficillimis, quarum integralia tamen aliunde exhiberi possunt
752De integralibus quibusdam inventu difficillimis
807Sur les logarithmes des nombres negativs et imaginaires
816Considerations sur quelques formules integrales dont les valeurs peuvent etre exprimees, en certains cas, par la quadrature du cercle
819Continuatio fragmentorum ex Adversariis mathematicis depromptorum