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1. Every rational function has an antiderivative expressible as a combination of
rational, logarithmic and trigonometric functions. Unfortunately, in the multi-
variate case, these antiderivatives are often exceptionally complicated. However,
when one considers certain definite integrals of rational functions, it sometimes
occurs that these integrals, however complex they may be, reduce to simple
families of antiderivatives, some of which merit particular attention.

In addition, there are also certain integrands which, in general, surpass all
known analytic methods, and yet which nevertheless, in certain cases, have
antiderivatives expressible in terms of trigonometric functions alone. In this
paper I propose to consider several such integrals, as well as to examine those
results derivable from them, in service of the general advancement of analysis.

2. I will begin by considering the family of definite improper integrals
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In preface, for this family of rational integrals, we will find that the logarithmic
portion of the integral vanishes, while the remaining part, that composed up
from trigonometric functions, will reduce to rather simple expressions.
Letting m denote the half-circumference length of the perimeter of a circle

of radius 1, so that 7 also denotes the measure of two right angles, we find that
the values of several members of this family of integrals reduce to the following:
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3. These particular examples given above seem already sufficient to reason
inductively toward a more general conclusion. Since, in those cases where the
denominator is 1+ 23, the radical v/3 indicates that the antiderivative contains
sin 7, and for those integrands with denominator 1+ z*, the radical v/2 almost
certainly comes from sin § = %, and a similar pattern is also confirmed in

those cases where the denominator is 1 + 2%. These observations thus lead us

to the following equalities:
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and then more generally, provided that m < n,
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On the other hand when m > n the above formulas require augmentation, since
in this case the antiderivatives retain an algebraic part.

4. Our conclusion in (2) is altogether confirmed if one further bothers to eval-
uate the integrals
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which yield values that leave little doubt concerning the correctness of (2). We
also remark upon perfect agreement in those cases where m = n, since then

sin =% = sinm = 0, and thus the integral is quite clearly divergent; evident also

from the observation that
" ldx 1
— = —log(1 "
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with the right hand side clearly diverging as  — co. The equality in (2) is also
quite clearly true when n = 2m, since then sin “** = sin § = 1, and thus via
the substitution ™ = y, we have
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This should be sufficient evidence to conclude that (2) is in fact true.

5. However in order to rigorously derive (2), we consider a summation formula
for the indefinite integral version of (1),
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provided of course that m < n, and with the additional caveat that when n is
odd it is necessary to take only half the final term in the series, or alternatively
in the final term to replace log(1 + 2z + z?) with log(1 + ).

6. Delving into several particular cases of (3):

I. For n =m =1, we will have

dx
—— =log(1 .

II. For n = 2, we will have:
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III. For n = 3, we will have:
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— %cos%rlog(l + ),

if m=2: /% :—:130052;Tlog(1—2xcos§—i—acZ)—i—gsianaurctaunlmzil(lx:gSg
- %cos%rlog(l + ),

if m=3: /lmjfl; =— gcosglog(l—Qxcosg+x2)+§sin?§rarctan%
- %cosgglog(l + ),

or more simply, as a result of:

cosgg =—-1; COS% =—1 and Sing)?7T =0 and cos% = %,

we have
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7. In all these cases it is easy to see that upon letting x — oo, these inte-
grals are in perfect agreement with formula (2) given above. However in order
to demonstrate the correspondence in general, it is necessary to show that all



the logarithmic parts necessarily vanish, while those parts made up of trigono-
metric expressions reduce to —"5=. For this purpose, it is necessary here to
distinguish cases based on the parigy of n.

Therefore let us begin by setting n = 2k and letting z — oco. Now since
the logarithmic terms all then behave asymptotically like log z2, it will only be
necessary to show that the sum of the following progression for m even is equal
to zero:

mn 3mm Smm (2k — 5)mm (2k — 3)mm
cosﬁ—&—cos % +COSW+-“+COST+COST
(2k — 1)mm
+ cos —or

In order to abridge notation, we set 5T = ¢, and thus it will be necessary to
show that
€os ¢ + cos 3¢ + cos 5y + - - - 4 cos(2k — 1) = 0.

8. In order to find the sum of this progression, we let
S = cosp + cos3p + cosbp + - - - + cos(2k — 1),

and multiplying by sin ¢, given the identity that sin ¢ cos ap = — 3 sin(a— 1)+
3 sin(a + 1), we will have
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and since all terms with the exception of last vanish, we have that

sin 2k

1
S'sinp = 3 sin2ky therefore S = g .
sin ¢

Now reversing our substitution ¢ = 7%, we have that 2k = mm, and since m

is even
sin 2k = sinmm = 0,

and thus the above sum S = 0.

On the other hand when n is odd, we set n = 2k + 1, and thus letting

3hi1 = ¥, it is necessary to show that:

1
cosp +cos3p+ -+ cos(2k — 1)p + §cosm7T:O.

Hence, by the proceeding sum, this sum becomes
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and due to the fact that
sin 2k = sin(2k + 1) cos p — cos(2k + 1)psing

this sum will become

sin(2k + 1)@ cos
2sinp '

But since (2k + 1) = mm, it is evident that this sum is also equal to zero.

9. Having demonstrated that the logarithmic parts of our integral

™ ldx
/ 1+4+zn
vanish when we let  — oo, it is now necessary to find the values of the remaining
trigonometric parts.

Furthermore, since each term in what remains of the sum in (3) contains the
factor tan %, we see that (3) vanishes entirely when z = 0, which can be
seen immediately from the left side of (3), since it corresponds to integration
over a null interval. Augmenting = just until it reaches the value z = Coiw then
results in arctan of a right angle which diverges, and if one increases x even
more, the angle will become obtuse. Therefore, letting x — 0o, we will have

tan 72— = arctan —-* = m — ¢; and hence taken together the remaining
—x Ccos ¢ cos ¢
parts of (3) become
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Our goal is thus to find the sum of the two series on the right hand side of this
equality.

10. First let n = 2k be even, then setting 57~ = ¢, the first series will be:
sinp +sin3p +sinbp + - +sin(2k — 1) = s,

that which, being mulitplied by sin ¢, gives:

% — %0032@ — %cos4<p— %0056@ — = %costgp
= ssingp
+% cos 2¢p + % cos 4y + % COSBQP -+ v
from this we derive
_ 1—cos2kp 1—cosmm
2sin 2sin 57
And thus, having already derived:
sin 2k

cos p + cos 3y + cosbp + + - - + cos(2k — 1) =
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differentiation gives:

—2k cos 2k sin 2k
sin g+ 3sin 3¢+ 5sin 5 + - - + (2k — 1) sin(2k — 1) = ket il
2sinp 2sin” ¢
Now setting ¢ = “*, and undoing the substitution 2k = n, our two series will
become: )
271 —cosmm 27r(fncosm7r n sin mm )
n  2sin 2T n?* 2sin 2sm2 mn /?

of which a reduction then gives:

sinmm s
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due to the fact that sinmm = 0. A similar derivation shows that the same value

is obtained when n is odd.

11. Now that we have rigorously demonstrated (2), then provided that m < n,

we consider the substitution
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Hence we obtain the equality
Looam=ldy m
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for m < n.

12. Upon computing a number of particular cases of (4):
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we observe that these integrals are quite remarkable, however we still lack ex-

pedient methods for their derivation.



13. Given the equality in (4), we search for a series expansion of the left hand
side, which, due to the fact that

=% =3 ()

for (‘j) the generalized binomial coefficients, we are able to derive as follows:
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We therefore obtain the following correspondence:
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Moreover, we will see in Section 14 that this same integral can also be expressed
by the following infinite product:

Looym=1g, _ .7'(' _ 1 ﬁ . i2n2. (5)
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In the special case where m = 1 and n = 2, we have Wallis’ product for 7:

m™_2-2 4-4 6-6 8-8 10-10

2 1.3 3.5 5.7 7-9 9-11

Next, setting m = 1 and n = 6, we have

T 1 6 122 18 24
3 5 1-14 7-17 13-23 19.29

or for 7 itself,

18 6-12 12-18 18-24 2430
5 7-11 13-17 19-23 25-29

14. The previous section’s products, being the very as those I found in my
introduction (different paper), provide an alternative route to discovering the
family of integrals in (1). As such, we have the following product expansions
for sine and cosine:
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formulas of which the former leads to
1 o0 .2 2

= (6)
nsin % m L (in — m)(in +m)’

and which, upon replacing m with n—m, we can immediately see is equal to (5).

We would have thus also arrived at the very same integral in (5), if we had
instead begun with the product expansion in (6) and searched for an integral
whose value it equaled. However, given that I have already provided methods
of evaluation for the above integrals, and in certain cases by forming product
expansions, it is not necessary at this time to reverse this method and pass from
product expansions back to integrals.

15. Following the demonstration in (5), if we make the substitutions o =
uw—v=m, and pu = n, then we will have:

/1;5&1(1_;6#)76195—1.“(“*”). 2u(at+vtp) Bplato+2p)
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and thus considering the quotient of two such integrals, we obtain the integral
ratio:
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and then, more generally:
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folxﬁfl(lfx#)%dx v oa(f+Nw+p) (at+p)(B+A+p)(v+2)
C(B42p)(a+v+2u) (A +3p)
(o +2p) (B + X+ 2p) (v + 3p)

Therefore, given such a product, we could of course work backwards towards an
integral, or the quotient of two.

16. Now let us modify (5) slightly in order to compare the infinite product

(n—m)W:H “n
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with the infinite product of the integral:
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Since the growth of the former is O(n), while the latter is O(u), we will begin
by setting y = n. Therefore if we require that the integral take the form given
in (5), we must have o + v = n, and then we will either set « = m, implying
that u+v = 2n—m, or u+v = m which will imply that « = 2n —m. Thus the
first case can be summarized as &« = m, p = n, and v = n — m, and the latter
case summarized as a = 2n —m, p = n, and v = m —n. Therefore we will have

_ m—1
either (LT IT _ (nm)/(ﬂfdﬂg,

nsin % 1—2a™)w
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where the latter integral will not converge whenever n > m.

17. Provided that m < n, we have found two distinct routes for the rigorous
demonstration of (4):

1 —
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First, by applying integration by substitution to the integral given in (1):

© gm=ldy
/0 14an’
whose value is derived from its series representation given at (3). Second, by

writing this integral as the infinite product in (5), and then finding its limit.
Now in (5) if we replace m with n — m, we will have

/ anldz 71_[
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(":Z") = sin % we obtain

and by consequence, given that sin
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Then reversing the substitution done in Section 11, we will have:
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/0 1+ an :/0 14z :nsmm'

18. We see also how this same infinite product:
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can be expressed as the quotient of two integrals. To this effect, it’s necessary
Blatv) 2

a(f+v) ﬁv
B+ v =mn-+m; from here we let « =n—m; § =n; v =m and u = n and thus

we have:

to set © = n and therefore 8 =n; a+v =n; a =n —m and

mir B fol ,’L‘n_m_l(l o :L‘n) 7n;n dx
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where the denominator integrates to % The more general integral does not lead
to other integrals; however there are other methods of making these integrals
more general.

19. Multiplying two integrals in general and in the case where, the value of
this product

1 1
vn/ xa_l(l—a?")v%dx~/ 21— 2 da
0 0

will be
n?(a+v)(a +n) 4n?(a+v+n)(a+n+n)

an(v+n)n+n) (a+n)(a+n)(v+2n)(n+2n)
that which is noted to be equal to the following:
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Let, for this purpose, « = n — m; a = n + m; and letting also the following:
atv=v+n—m=n+n; atn=n+n+m=0v-+n;

from which we derive v — n = m. Thus let v = k + %m and n =k — %m; and
we will have, by taking k an arbitrary number:

1 ! m_an ! I
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0 0
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20. Therefore in (7) we have the product of two integrals which are equal to

T —; and consequently assuming we take k in such a way that these integrals

n sin T
n

are finite, then they will reduce to the expression 7. For example, setting
2k = m + 2n, taking into account the fact that fol 2"t ldy = ﬁ7 and
k? — tm? = n(n+ m) we will have:
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1
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Another example, consider setting 2k = m + 4n, then

1
/ n+m— 1( )d(L'_ n
0

(n+m)(2n+m)’
and k? — 1m? = 2n(m + 2n), we will have:
n+m nsin ==

Therefore, also putting n — m in place of m, we will have the following two
forms:

™ n-m
= 2 [l e )
nsin 2% m n—m

s m+n

— = /xnml(l—x)n dx
nsin m(n+m) 0

2n? 2n—m

1
= 21— 2™ T da.
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21. Now, since

1
/ 2t — ) = 2k2T R (B e
0 m

if we substitute this value, we will have:

1 m—2n 1 c—m—2n
(k—im)/x"_m_l(l—x )MJr - / m_l(l—x”)% Sty = .L,
0

nsin 2%
n

and this value remains the same, although we write n — m in place of m. Let
m =1 and n = 2 and we will have:

(k—;)/ol(l—x)” g /(1—902)”4‘5 -7

where it is remarkable that this equality occurs, no matter what number we set
k equal to. As an example, let £ = 1, or £ = 2 and one will have:

L Y —
A o Ji-p 2

/mdx/ﬂ 3

and then setting k = 1 + /2

1 1
/ (1—x2)\/§271da:-/ (1—x2)\/§272dxzi
0 0

Taking note of the irrationality of the exponents, this equality is remarkable.




22. One can still transform in several ways the formulas that we have found,
since, setting 1 — 22" = 2", in such a way that + = /1 —92" and dx =
292"~ 1(1 — y2")dy the terms of the integral, which were beforehand set equal to
x =0 and x = 1, are at present reversed, to know that y = 1 and y = 0 which
becomes the same. From here we conclude

1 1
(4k — 2m)/ PRl (] 2 S gy / PR Py =
0 0 n sin ™%
when we will have set y = 1 after integration; or in other words
1 1
Ak2 — m2 2k—m—1(] _ ,2n) =2 Zh—m—1(] _ 20\ 2 5 _ 7T
el A i e A e (R e 1

by the reduction of these integrals. Therefore if m = 1 and n = 2, we will have:

2k 1, 2k—2
(4k — 2) dy y"rtdy _m

\/1— 0o V1—yt 2

and consequently, if £ =1,

/1y./1dy_7f
0o VI-y* Jo 1yt 4

23. Now, since the angle =% depends only on the numbers m and n, we will
have sin =% = 1, if m = %n, as long as we don’t need to determine n. Let
therefore m = %n, and in order to avoid the fractions, 2k = m + \; from where
we will derive the following theorem:

/\+n—1dy 1 y/\—ldy o
/17 2n 0 /17y2n 2An7
)\Jrn 1dy 1 N 2n)dy _ T

2X(A+n)’

/1 2n

In the same vein, setting more generally 2k = A 4+ m, we will have:
R 2 ' A 2 T
F2m—11 _ 20T g 1o dy = —
/Oy ( ™) 4 /0 v ) Y 2An sin 2T’ o
n
1 1
M2m—1q _ 20\ 0 A=L(] _ 202 oy = mm
/Oy (L—y™)™ dy /Oy (I—y™)ndy O+ 2m) sin 22

where the number A is arbitrary, in such a way that one can even give it an
irrational value. Let m = pk and n = vk, and one will have:

1 1
A2mpk—101 _ , 2vky £ g A=L(] = 20k 55 gy = il
/0 y (1—y**) > dy- /0 v ) v dy DoksmEE

1 1
A2mpk—101 _, 20ky=E g A1y _ 2vk S dy — HT '
/0 4 (1—y*") ™ dy- /0 v ) v= (A + 2pk) sin £X




24. Moreover, setting 2k = « in order to have this equality

1 1
/ y““a_l(l—ym)%‘dy-/ P -y Ty =

- in A7
0 0 Avasin £

from this we have the following principal cases:

1y>\—a—1dy 1 yA—ldy _ T
1 y)\fafldy 1 y)\fldy B o2
o VT=v o T BavE
ety b My
0o Vi—yle Jo YA =933  2xaV2’
1 y)\72a71dy 1 y)\fldy B 2
/o YA—y=R Jo A-—y  3%aVs
1 y)\—3o¢—1dy 1 y)\—ldy T
L= Ve e

25 Just as the infinite product expansion for sine has led us to the above
integrals, we treat in the same way the infinite product expansion found for
cosine, which can be written in the following form:

mrn  tp ((2i — 1)n —2m)((2i — 1)n + 2m)
H (20 — 1)2n? ’

where since the sequence of numbers in both the numerator and denominator
of this product are only odd numbers, we will not be able to express it with a
single integral. We therefore search for two integrals whose quotient expresses
this value, and one sees first that it’s necessary to set y = 2n. Thus let Blatv)

a(B+v)
Ww, and we will have o = n; 8 = n — v and v = 2m; in such a way

that 8 =n — 2m. As a consequence we will have:

fol 2" (1 — 2?5 de mn . (n—2m)m
—— I = 008 —— = sin .
Jo an72m (1 — 22n) T da n n

Therefore setting m = Ay and n = Av, we will have

fol 21— 2?5 de mr . (v—2u)w
fOl xkv—Qku—l(l _ ZC2/\U) ot dx v ! 2v ’

26. We consider the most simple cases:

1
fol z(1—2*)” 2dx

—1
fol z=1(1—2z4) 2 dx

I. Ifm=1n=2: =cos 5 = 0.



L Ifmeln=g: o= 8de - x_ 1
) f01(17z6) 3 da 3 2
_ -3
L If m=2dp—2; ool de_ om 1
22 01(1—14) 1 dx 4 V2
1S de
IV Ifm:%,n: 'M:COS%:§.

: =5
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After performing the appropriate variable substitutions, from the second we
can derive the equality:

the third reduces to

and the fourth to

/1 dx :3\/3/1 dz

27. We can also make the substitutions to find a slightly simpler form for the
left and right hand side of the second:

2

/1da:_3/1da: upon setting 2> in place of 1 — z
D A 2 i P g P :
/1(1510_1/1d:v upon setting z° in place of 1 — 2%
D Va2 v W g p :
and from here we will have the following equalities:
/1 dv 3/1 dr 3/1 v 3/1 dz
0o /(1 —x2)? 2 Jo V1—2a3 2 Jo ¥ (1 —x6)2 4 Jo § (1 —$3)5,
/1 dx _ /1 dx B \@/1 dx
0 v/ (1 —x2)3 o V1—azt 0 v/ (1 —CL‘4)3)




28. Via the same transformation, we find in general:

/1 " dx 1 /1 ™ dg mm /1 "2y
P 1 = C0S— - P
o (L—a2m)* =" 2Jo (1—2n)2 noJo (1—a?) =

1 mm /1 ™ lda
= — CcOS — - _—
n+2m 7
2 n 0 (1 — xn) 2n

and in particular we obtain another version of (4):

1 .’Em_ldl' mi 1 ZEm_ld.’E
cos — . (8)

0 \/1—x"_ n Jo 2‘"/(1_$n)n+2m

Therefore, since the left side of (8) is the simplest version of those considered
at the beginning of this section, since its denominator contains only a second
root, we will have the following reductions:

2" tdw 1 L agm=ldy
/17x2nnm 2 0 «/171:71’
an2m =ty 1 bam—ldx
n/ 1 _ xQn)n—m - 2 cos % 0o V1-— wn’
! ™ ldx 1 Laem—tdy

2n/(1 _ xn)n+2m o COS% 0 1— o

of which the first immediately self-evident given the substitution uv = 2% and
the equality n = 2m, on the other hand the two follow similar derivations to
that given above.

29. Recalling from Section 1/ the product expansion for sine, and taking the
appropriate quotient, we obtain:

sin 5T _H (2in +m)(2(i + 1)n — m)

Sln% (2in+k)(2(i + 1)n — k)’

which we will show can be reduced to a ratio of of two integrals. First however
we must set ;¢ = 2n and set

Bla+v) m(2n—m)

a(B+v)  k(2n—k)’

which can be done in four ways:

— I.. _ . _ .ov—p _ —m—k
I. a=k, f=m; v=2n—m—k; = o

— I — . — .ov—p . m—k-=2
II. a=k B=2n—-m; v=m—k; “‘ = M=g==n,



III. a=2n—k B=m; v=Fk—my ”;“27’“%—2“.

IV. a=2n—-k; B=2n—m; v=m+k—2n; %:W.

And thus from Section 15 we can conclude:

fol 211 = ) da _ sin ¢
— - . )
Jo @11 —an) T de sing;

and then by the more general form given in Section 15:

fl (1 —2t) T dr sin 2=

0 — — 2n . (9)
Jav1a —an) T dr singh

30. Equation (9) furnishes the following reformulations:

Ckm 1 .’L‘Qn_m_k_ldm omm 1 $2n—m—k—1dx
sin — - =sin — - ,
n 0o % (1 _ x2n)2n—k n 0 2n/(1 _ x2n)2nfm
Ckr b amtRlgg Comm (Y xRl
sin — - — sin — - 7
on 0 = (1 _ 1.2n)2n7k 2n 0 2n/(1 _ x2n)m
. km Lo gh=m=1g, .omT 1 gk—m=1dy
Sy — - _—— = SINn — - ,
2n 0 217./(1 _ xQn)k n 0 2n/(1 _ x2n)2n7m
Ckm flamtkenclge o ogp b gmtbke2n-1gy
Sin

— ————— =sin— - _—.
on 0 2n/(1 _ x2n)k on 0 271/(1 _ xQn)m

In addition I will provide several examples. In fact one can derive from them
above several quite remarkable reductions. Setting k = n — m, we have:

! 2" ldx mm ! " ldx
= tan

0 2<f(1 — g2n)n+m o o /(11— x2n)2n7m.
31. Next we consider the product expansion I have found for tangent:
mm (2n—m) 3(2n+m) 3(4n—m)

tan%: 20n—m) 2(n+m) 2Bn—m) 4Bn+m)

so that we have
mm an?(n+m)(3n—m)  4n*(3n +m)(5n —m)

2(n —m) tan HT - 3n2(2n —m)(2n+m) 15n2(4n —m)(dn +m)

which may be reduced to the product of two integrals, given in general by the
formula

n—

1 1
vn/ 2 N1 —a") 7 da - / 271 — ™) = dx
0 0

_pm(etv)atn) Apmletv+tp)latntm)
caluro)m+n) (@t miatmuto)@mtn)

)



where we set both 4 = m = 2n, and:
(n+m)3n—m)  (a+v)(a+n)
3n2(2n —m)(2n+m)  aa(p+v)(m+n)
Where one is thus required to have o +v = n + m and a +n = 3n — m, with
following collections of relations which follow:

I. v=m;n=—m;a=n;a=3n; u=2n; m=2n.

II. v=m;n=n;a=n;a=2n—m, u=2n; m = 2n.

III. v=-—"m;n=—m;a=2n+m;a=3n; u=2n; m=2n.
IV. v=—mn=na=2n+m;a=2n—m; u=2n; m = 2n.

32. Thus we have the reductions:

1 n—=1 1 3n—17. .
. = CO
0 (1 _ x2n)2n—'m 0o (1 _ x?n)2n+m Qm(m — n) o’
! " ldx bog2nom—lgy mm
ot —
0

™
. _ cot ™7
RA— e Jo ®R/a—am)r  2n(n—m) " 2n

/1 g2ntm=lgy ! 23"y ; mm
0

™
2n/(1 _ xZn)Bn ' 0 = (1 _ x2n)2n+m B 2n(n — m) co on’

/1 Z’2n+m_1d$ 1 xQn—m—ldx m T
. = cot —,
e Y (e T T AT

where we make use of the equalities:

1 237 =1dx =0 1 21y
2n/(1 — g2n)2ntm m Jo %/(1— xzn)m’
Lo g2ndm—1g, —m ™ 1da:
0 2n/(1 _ $2n)3n 2,"/

33. These substitutions provide us with the following formulas:

/1 n ldx 1 n 1dx T mT
. = cot —,
o R/(L—a2n)2n=m Jo 2/(1—z2)m  2n(n—m) 2n
! " ldx L g2ntm—1g, ™ mm
w/I—z2nznm Jo RT—22 2n(n—m) o
™ dg 1 2" ldx -
o Jo 0 ym
Logm=1gy Lgpn=m—1g, T mm
= cot —,

RT—z2n Jo XT—z20  2n(n—m) 2n

[N}
=
3
|
2
Q
=}
=
[\~
3



which reduce to the following simpler formulas:

/1 dx /1 T nw ‘ mm
. = cot —
zVTfpﬁﬁﬁ R/(A—zZ)m  2n—m)  2n’
/ / 2n m— 1d(E T " mi
= cot —,
2W Z(n — m) 2n
™ ldx 1 dr T ¢ mm
= cot —,
T— 2 o /(A —a2)m  2(n—m) 2n
™ lda Lg2n—m=1q,. T mm

= cot —

Vizz Jo Vvi—z 2n(n—m) 2n

34. And furthermore by the subsequent substitutions, one finds

/ / rm— 1d.13
2n / 1—{E2 2n—m 1/]__:E2n

2n m— ldx

Whereby all the formulas reduce to the last which is the most simple since it
is only contained in the square root sign, that which, if we set m = n — k, it
changes into this quite remarkable formula

”+k_1dx an—k=1lgy ™ km
= —— tan

\/17£E2" V1—z2n  2nk n’

From here, if kK = 0, due to the fact that tan g—:{ = ’2“—77;, one obtains:

" ldx 2" ldx 72

Vi—z2n \/1—x2”:4n2'

35. We consider several particular cases:

2
Lo Ifn=1k=0 [l [l d —x

_ 3 zdx _ 2m T _ 27
II1. Itn=35k fo Ti—o7 IW tang—g\/g.

— _ 1. z2dz A _
III. Ifn=2k=1: I = Ztan

jus
1—x4 1—a4 4 4

I

IV. Ifn=

l\’)\Cﬂ

_ xdxr 1 zdz _ 27 rd
= fo = Jo e = 3 tan .

V. Ifn=

N|ot

fo \/1 ms fo \/1 ms = 27T tan 35 10'



VI Ifn=3 k=1 [

xdr __ w s
ﬁ Lo [ A = ftan g

VII. Ifn=3 k=2 f 1m6 fm 75 tan §.

VIIL  Tfn=F k=14 [ 5% ) 5% = 2 tan .
IX.  Tn=71 k=3 [§ 5[] A, = Ztan 37,
X. n=7k=3: [y 5% [y = 2 tan 7.
XL Tfn=4, k=1 [ [ 2de — ngan T

XIL.  Ifn=4k=3 [2d_.

de__ — T an 3T,
Vet ) Jiees T 1 8

z3de 27

_ _ 1. 1 z%dz
XIII. Ifn—g,k—é.f0m~fm— T tan ¢

XIV. Ifn=292 k=

1 28dx wda: 27r
IN o f tan 3%.

ot

XV. Ifn=

=
Il
~

fo \/1 wg fo \/1 = = 27r tan 7§ 15

l\')\lD
l\')

XVL  Ifn=5 k=2 [ £de_. [ alde__ x oy

1—z10 T—z0 20 5°

XVIL Ifn=5k=4 [ \/ﬂid;w A = ftan 22

XVIIL Ifn=6,k=1: [j 2. [—2d, — & tan 7.

1 xloz ™
XIX. Ifn=6k=5 [ % 112-f\/17x12=@tanﬁ.

36. The formula

>\+a—1dy 1 y/\—ldy T
=_— 10
o VI—ye Jo T2 2Xa’ (10

is a special case of that found in Section 24. Replacing y with x, and then
setting o = n, we have:

>‘+"_1dx e A ™

1/]__x2n 0 ,/1_$2n:m.




Furthermore, from Section 34 we have that

/1 v th=lgy Lgn—k=14y ™ km
0

V1 — xp2n 0 V1 — 2 2nk an 2n’

and if we set A\ = k:

/1 "k 1dy Lok =1dy ; km
. = tan —
o V1I—x2r Jo V1—2x2n 2n’

and if we set A =n — k:

/1 2" TRy Lg2n—k=lgr n_k .
= an
0

T
ﬂ/l_xZn. 0 V1 — g2n o k %

37. Now, in order to put these equations in a more general setting, we set
v =2, = 1 and make the substitution y = & in order to have the following
from section 24:

An An
/1 xa =gy R _arm
o Vi—z2m  Jo V1—x2n  2\n?’

Let %l = k, and we will find the same formula that we found above, and the

position % = n — k produces nothing new. Let’s look at several particular

cases:

1. Letn=1and k=0:

/1cm ;/1xw T
o V1i—22 " Jo V1—22 2°

2. Letn:%,andk:

N

s
=tan — =

Al¢f:@+élmﬁgifﬁ 6_55

/1 xdx ;/1 r3dx —Qtanz—l
o Vi—z3 " Jo V1—13 6 V3
3. Letn=2,and k=1:

/1 dx /1 dx w
SR (A
o V1—xt 0o V1 — a4 4
1 1
/ Vrdr dx B tanz,
0 8

Vi—zt o Vil —az%)

=tan— =1,

/1 z2dx ;/1 x2dz
o Vi—z% " Jo V1—2* 4

/1 z2dr ot x3dx 3tan T
—— = ———— = Jtan <.
0o V1—az4 0o V1—azt 8



And still some others:

/1 xdx ! dx T
—_ ————— = tan —,
0o V1—uab 0 x(1 — x°) 10
Vorde (Y da -
—_— —— = tan —,
o V1—2ab o V1—2ab 5
/1 A dz tan
—_ — — tan —,
o V1i—=a5 Jo Jx(l—ad) 10
U 2Sdr . L p3de 3t T
—_— ——— = —tan —,
0o V1—2b o V1—a2° 2 5
/1 xdr [P dx tan T
_— ——— =tan —,
0o V1—2ab o V1—26 6
/1 z3dx bogtde T
1 ——= = 2tan —,
0o V1—2ab o V1—x6 6
/1 wde [t dx tan T
—_ ——— = tan —,
o V1—2x8 o V1—2x8 8
/1 z4dx b 28dy T
—_— ———— = 3tan —,
o V1—2x8 o V1—2x8 8
/1 widr /1 da o
- = tan —,
o V1—2z10 o V1—2z10 10

1 Sd
e :4tan£7

/1 xodx .
o V1—2x10 ' o V1—2z10 10

/1 z2dx ;/1 xdx :tanz
o VI—210 " Jo v1I—210 5’
/1 28dx ;/1 z7dx :ftanz
o VI—210 " Jo vI—20 2 6
/1 xtdx ;/1 xdx :tanl
o VI—212 " Jo V1212 12

219dz s
= Stan —,

/1 deCE ‘ /1
o V1—z12 ' o V1—z12 12

38. These formulas are similar in form to those found in Section 34. All being
a:";:;z: But those above were the
product of two such integrals whose values I have erstwhile found. While in
the immediate case we have instead the quotient, rather than the product, of
two integrals. However in both cases, it is evident that the integration of one
reduces to integration of the other. Since many of these reductions are entirely
new, it is worth the effort to consider them more carefully. To this effect, I will
list them in classes according to the exponent of the x which follows the radical
sign. Therefore m and n being integers, we have:

members of the general family of integrals, [



z™ Yda .

I. Reducing formulas [ e &

2 T 21

/1 zdx /1 de _om m
o V1—23 Jo vV1—2a3 3 6 3\@.

$WL71dz .

II. Reducing formulas fol e

/1 z?dx /1 de  wm w m
o Vi—at Jo V1-—2? 4 4 4’

ITII. Reducing formulas fol 20 dz.

V1—xb5
/1 z2dz /1 xdr 21 .. ks
o V1—25 Jo v1—2ab 5 10’

/1 zidx /1 de __2r 31
o VIi—2% Jo VI—2% 15 10

IV. Reducing formulas [ zml_\/%i::

/1 z3dx ./1 xdx :Etanz
0o V1—25 Jo V1—26 6 6’
/1 xtda _/1 de 7 7
o V1—a® Jo V1—a® 12 3’
/1 ade /1 e 7
o V1I—25 Jo v1—2Fb 6’
/1 23dx ./1 ztdx :Ztanz.
o VI—26 Jo V1—2f 6

V. Reduction of formulas fol 2" ld.

V1—27 "
/1 z3dx /1 x2dx 2w ¢ T
. = — tan —,
o V1—27 Jo vV1—27 7 14
/1 z4dx /1 zdx 21 ¢ 3T
. = — tan —,
o V1—27 Jo vV1—27 21 14

/1 zodz ! dzx 21 . 51
. = — tan —.
o V1—27 Jo vV1—2" 35 14




VI. Reduction of formulas [ l\/;gzl;

/1 xidx /1 x2dx
o V1—28 Jo V1—28

/1 zodx /1 xdx
o V1—28 Jo vV1—28

/1 28dx ./1 dx
0 \/1—x8 0 \/1—%8_

/1 r2dx /1 dx
0 \/17$8 0 \/17558

/1 zidx /1 28dx
o V1I—28 Jo vV1—28

VII. Reduction of formulas [ ﬂ"{\/%d::

/1 ztdx /1 x3dx
0 \/1—1’9 0 \/1—%9_

/1 z5dx /1 x2dx
o V1—29 Jo V1—29

/1 28dx /1 zdx
o V1—29 o V1—29

/1 27dx /1 dx
o V1—29 Jo V1—29

s
= —tan

T
= — tan



VIII. Reduction of formulas fol f;%

™ T
tan

/1 z5dz /1 z3dz _ T K
o VI—210 Jo VTI—z0 10 10’

/1 28dx /1 z2dx T ¢ s
. = — tan —,

o V1—210 Jq 1 —210 20 5
/1 2 dx /1 dx T 8T
. = — tan —
o V1—210 Jy 1 —210 30 10’
L a8dx 1 dx T 2w

0 \/1—2010. 0 \/1—3010_E 5

/1 z3dx /1 dx _ ks
o V1—210 Jo 1 —210 10’

/1 z2dz /1 xdx T
0 /1 — 210 0 «/1_‘%10 5

/1 z5dz /1 28dx
o V1—210 Jy 1 —210 10

/1 28dx /1 zdx § ™
o V1—z10 Jo v1—2g10 2 5

39. Upon combining the quotients with the products from each class, one can
form from them new products, which I will in general show. Given the product:

/1 anth=1lgy Lgn—k=1gy T km
. = —— ta ,
o VvV 1— x2n 0 \/1 — ,1}2n 271]{: 2n

as well as the two quotients:

1 gn—a—lgy 1 go—lge am

1. fo . T Jo = = tangp.
1 gntB—1gqe 1 g2n=B-1gy  pn—p Br
II. 0 1—:82" ~ 0 \/1—:62" — T tan %

Then upon setting & = n — k and multiplying the first quotient against the
product product, we will have:

Vi—z2 J, \/l—xQ”ZQTLk'

Then, for the second quotient, setting S = n — k, and multiplying similarly, we
obtain:

/1 " tE=ldy bogk=1dy T
0

/1 x2n—k=1lgy Lgn—k=1qy B T
0 1/1_‘13217, 0 4/1_33271 Qn(n_k)’

which does not differ from the preceding one. And so, for each class we have
two products:



2"t 1, k- 1lge _ x km
I f 1—z2n fO 1—x2n  2nk tan%,

1 gntk—1g, 1 gh—lqy _ n
II. fo V1—g2n fO V1—z2n — 2nk’

of which the final one fits with those which I have already formerly demon-
strated.

40. We develop these products for a few cases, where n and k are even integers,
and we will have the following reductions for the case where x = 1:

I. Products of the form fo \/n%c

s
tan —

1
Vi
/0 \/1—9;4'/0 Vit 44 4

II. Products of the form f 2" ldz,

V1—z26

/o m/ Vi 66 63

i
/0 m/o Vi—z0 1273 43
1

T
/0 \/1—1‘6./0 \/1—1‘6767
1

xdx
/0 Vl—xﬁ.A \/1—3;'6_12.

III. Products of the form fol ‘”\/:ng”

T T
/o \/1—328./0 \/1—x878 8’
1 1

/ / T T T T
o V1I—2a8 Jo vV1—28 16 4 16’
1 1

XL
/0\/1—:58'/0 Ji_28 24 8
1 1

T
/0 vl—xS./O \/1—x8_§’
1 1
T
/0 Vv1—2a8 -/O V1—2a8 16’
1 1

./om/o VI 24



IV. Products of the form fol %;

/1 xodx /1 ?dde 7 T
o VI—z10 Jo VI—z10 10 10’

/1 28dx /1 x2dx s ™
o Vi—z0 Jo VI—z0 20 5’

/1 x'dx /1 zdx ks 3m
o Vi—20 Jo 1—210 30 10’

/1 28dx /1 dx T, 2
0 \/173510 0 \/179310 40 5’

/1 2o dx /1 dx L
0o Vi—z0 J5 y1—210 10

/1 28dx /1 xdx
o Vi—z0 J5 y1—210 20

/1 xdx /1 x2dx
0o V1—2x10 Jy \/1—3310_30’

/ boa8da / Uo2dda ks
0 \/1—.%‘10 0 \/1—.%'10 40.
41. After integrating these expressions, which are all specific realizations of

the general formula
/Jim_l(l — z™)*dz,

and which one could call algebraic, since dx is multiplied by an algebraic func-
tion of x, I pass, as I set to myself, to consider still several integrals where the
differential dz is multiplied by a transcendent function of z, and of which the
integral, in a certain way, can be expressed algebraically, or by the quadrature
of the circle. These cases are even more remarkable, which shows us methods
for evaluating them, and from the following observations will serve to be able
to discover such methods.

42. I will not dwell upon the well known integral

1 1
log =)"dz = n!
/0(ogx) dx =n!,

which holds provided that n is a nonnegative integer. But when n is a fraction,
the value of this integral is more difficult to find. As such, if n = %, I have
demonstrated that the value of this integral is equal to %ﬁ From here, one



easily derives these integrations which depend on them:

1

1
/ (logl)%da: = /T,
0

T 2
1
1.3 12
log ~)ide = ==
/0<ogx>2 NG
1
1 135
log ~)3de =22
/0<ng> NG

1
1.7 1357
log —)ide = 22 L
| oe piae = 3550 vm

[N

Since employing integration by parts, we have in general:

1 1 ! 1
log =)"dx = x(log =)™ 1 7m—1d,
/(ng) T w(ogl,) +m/0(0gz) ;

therefore setting the bounds of the integral to be 0 and 1, we obtain:
| |
/ (log —)"dx = m/ (log =)™ da.
0 z 0 z

43. This integration of the case n = % can be expressed in this way:

L 1 1 dx
log =)2de = 4|~ | ———
/0( gz) 2/\/17x2

=



setting x = 1, and for the others, setting n to be a fraction, I have found the
following reductions:

! 1.1 1t dx ! xdx
(log =)sdx = ¢/ = . ,
0 r 3Jo (A —a3)? Jo (1 —ua3)?
1 1 1
1 51 d 3d
/ (log 1)3dz = 27 f/ &/ _wide
0 x 3Jo V1—2a3 Jo v1—23
1 1.1 ! ! dx ! xdx ! z2dx
(log —)3dx = ¢/~ ' = - =,
0 x 4)o /(A —2%3 Jo YA —-243 Jo (1 —a2t)3
x3dx ! zodx

/1(10g1)idx=2</1/1 xdx ./1 |
0 x 4o YA Jo YA-a2 Jo YA-ap2

/1(10 l)idaj—?)“l/l a?dx /1 zodr boadda
o 8y 4o V-2t Jo V12t Jo VT—a2

/1(10 1)%d . 1/1 dzx /1 xdx /1 z2dx L 23de
— xr = — . . . ,
A 5 YA—2 Jo YA o Y=o Jo SA-a)
/1(10 1)%dw—25 1/1 xdx /1 x3dz /1 x®dx L aTde
o a S Y= o TP o JA—0P o YT-oF

/1(10 l)gdx—gs 2/1 a?dx /1 adx /1 r8dzx boglldy
R Sy YA o JT—2F S YA o ST-oP

/1(10 l)éd$_45 6/1 x3dx boaTdr boaldg boal5dg
0o P 5o V1ows Jo Vioad Jo V1o Jo Ao

44. Simplifying those integrals for which the numerator contains variables to
higher or equal powers to that of the denominator, with the help of the reduction:

/xmfl(l — x")kd:c _m-n /xmfnfl(l - :v")kdx,




we will find the following simplified forms:
Lo 1. 1/t de
log —)2dx =4/ = e
| ee ) 5| =
1
/(log Sd:v* / /
0 I 1—1‘3 I 1—3:3
1
1.2 5/ 1 dx xdx
log =)#d :2%/ 7/ _wdr
/0( gl‘) v \/ V1—a3 V1—a3
fooppas= i3 [ v s
(log —=)*dx =
0 x 1— a2t \/1—x4 V(A =a2%3’

/HJ/ e e =

/Ol(logi)idx=3§/él/lm./lm./ %)

! 1 z2dzx ! x3dx
/o(logS\//W/W/m'om’
! 1.2 1 T zdx z2dx b 23de
/o“‘)gx)sdw:?\/%/o = . v |, v |, v

! x3dx

/1(1 1)§d g5 2 /1 T /1 rdx / 2dx
O — )5 x e N — B —— . . s
o &7 125 Jo 3/ 0—252 Jo /(T—22 Jo /(T—2°)2 Jo /(1—ad)?2
! 1.4 s/ 6 Lode L rde Vog2de U a8da
(log —=)sde =44 — _ . _ . _ . _ .
0 x 625 0 \‘/lfx‘r) 0 \‘717:55 0 V1 — x5 0 V1 — x5

45. Therefore the values of the transcendent integral fol (log %)"dz, when n
is a reduced fraction to values of the integrals, where dx is multiplied by an
algebraic function of . And yet, among these last formulas, there will remain
a trigonometric part, since

e e ow
Y=o  nsnZE
Then, in order to be better compose the other sets, setting in the formulas of
Section 21: 2k = 2n + m — 2\ in order to have:

g Loogm—ldy B ﬂ'
\/W o Y/(A—zm)>  n(n—\)sin 25’

from here we will have:




I. If n=3:

/1 zdz /1 dv 7
o Vi—® Jo TP Bsing

II. Ifn=4:
U 22dx ! dx T
| == V=2 Ssing
! z2dx ! dx T
/0 (1 —a3)? '/0 (1 — a3 = IsnT’
U zde ! xdx T
/0 m/o JA—atp  4sing’
III. Ifn=>5:
Uoadde ! dx i
/0 m/o 0252 15sinZ’
1 23dx ! dx T
/0 S0 —25) /0 0257 10sinZ’
! 23dx ! dx T
/0 /(1 —29)3 /o S —25)1 5sint’
/1 22dx ./1 xdx B T
o V1—a% Jg ¥ (1715)3_105‘111%”’
/1 x2dx . /1 zdx o
o SA-F Jo YA-w) ssmZ
b xde 1 22dx T
0 VI /0 O _25)1 bsinE
46. From here we see that multiplying all the formulas of the same order

together, the product reduces to trigonometric expressions; as such we will
have:

[ tosdyiar=2ym
o ng .'17—2 ™,

! 1.2
log = )3 dz -
JRCRRE

! 1.2 ! 1.2 ! 1.
/(logf)zdm/ (logf)de/ (log =) % dx
0 T 0 T 0

LN I
/(logf)gdm
0

6ry/T 6

43sinf 43

Ex
4 b

2472

S

dx

27

/1(1 1)t /la 1) /Ia S
og —)5adx - og — €T - og — = — =
0 &2 o &2 0 &2 5% sin T sin %

24

54

/1674
5 )



T B5qin T qin 27
681n651n6

_ 120 /32n°
6oV 6
From here we conclude that where will be in general:

n—1 1 _ _
1. 1-2:3.--(n—1) [2n—1gn-1
log =) ndr = 11
”/O(ng) x ) V0 (11)

i=1

! 1.1 ! 1.2 ! 1.a ! 1.4 ! 1.s 12072
/ (logf)ﬁd%/ (logf)ﬁdx-/ (logf)gdx-/ (1ogf)5dx-/ (logf)gdar:—Owi\/??%r
0 €z 0 € 0 € 0 €z 0 €z

a theorem which is quite worthy of attention.

47. The comparison of these formulas can be pushed even further, by consid-
ering this general theorem:

¢ dx B " P ldx
"/(1 _ zn)ﬁ n/(l _ xn)n—oz7
therefore the proceeding theorem is derived from Section 21. changes also into

other forms. Then, the formulas of Section 29. furnishes the following compar-
isons:

/1 ahldz Yooamldy sin 2%
0

(1 — gr)ymthk N 0o /(1 —gn)mtk - sin %’T ’
! 2k ldx . ! "My sin =%
0o V(1 —gr)ntk-—m N o V(1 —gn)ntk-—m ~ sin %’r ’

/1 ek dy /1 ™ dz sin 2%
n /(1 — & n /(1 — F—m  qip kT

0 (]_ xn)n+m 0 (1 xn)n+ m sin o
. "My sin =%

/1 l‘"_k’_ld.f ‘ -

o YA _gnzmt  Jo 0 _gryrrhom sinkz

of which the last reduces to the first, since in place of m and k one can put
n—m and n — k.

48. Now, since
™ ldx _n— k xmtn—ldy
n/(lixn)erk; m n (1—xn)m+k7

one will then have this comparison:

/ b ldx ™ty n—k . mrm . krm
: = sin — : sin —
n/(l _ xn)m—&-k n/(l _ xn)m—&-k’ m n n



upon taking m for a negative number:

/ b ldx "My n—k . mrm | kmw
: = sin — : sin —,
n/(l _ xn)k—m n/(l _ xn)k—m m n n

from here we draw the particular following comparisons:

/1 zdz ;/1 da si
o VA=aP " Jo YA -2t)P i

1

2?dz . /1 dz _ sing
YA o YO-w) sz
zdr /1 dv sin%
V=25 " Jo Y(1—a%)3  sinZ
Vooa?de /1 ?de 2sing
"o YA =252 sinZ’

0 5/(1 _ 115)2 2
/1 xde /1 a®dr  3sin ¥
o Vi—a® " Jo V1—25 sinZE’

5

1

S— — —

49. In order to make obvious the usage of these reductions, we will consider
the particular formulas which enter in the expressions of the formulas

/1(10 1)%d /1(10 1)%d /1(10 1)%d /1(10 l)id
— €T: — €T, - € —)5ax
) ggc A ga: A g:z: A gm )

and first the number of all the said formulas being 16, there will be 4 which
depend on the quadrature of the circle.

/1 dv o«
=
0o V1—25 5sing

/ xdx o

o /(A—2%2% 5sinZ’

/1 r3dx 7

o {/(1—25)% bHsinZ’

/1 2?dx _om T

o Y/(1—253 5sin2E  5sinZt’



For the other 12 of the general furnished reduction:

xdx _/1 dx
/(1 —ad)4 0 3 (1—;105)3’

Then we come to find:
/1 z’dz  sin i /1 dx
0 Ao sninly YA—a)"
/1 xdx _ sin i /1 dx
o (=2 sinirfo {1—aP)
/1 x%dx 2sin %ﬂ ! r3dx
0

Ao singn Jo YA-a7p
/1 zdr  2sinim /1 zidx
0o V1—2a° Sin%w o V1—2°
those which one can add to the products of two such formulas quotients in
Section 45. for the case where n = 5.

50. If we examine the integral equalities in the previous section, we find that
all twelve reduce to only two. In the interest of abbreviation, set

then we can write these integrals purely as a combination trigonometric func-
tions and the two simple integrals [ y*dz and [ y3da:



1 3 1 1 1 1
/ yrde = —/dea: / ryde z/ yidx / ytdx _/ y*dz,
0 « 0 0 0

/Oly?’dx:g; /01m3yd$:15af7ry?da: / 3dx_55f e
/01 ydr = g/ol yida /01 ryide = % / 5B f: o’
/01 2?y3de = % /01 22yde = W / Sy2dx = T0a }Ty3dx
/01m3y4dx:57; /leydx:EMWyde

Therefore let [ y?dx = A and [ y3dz = B, and the values of our transcendent

formulas will be:
1
1 1 5 Bﬂ'A2B
log —)5de = \| ———
A(ng) €L 5242
1
1.2 0471'232
log —)5dx =20 ———
JACBRIE e

1
1.s 5] mA
| o b =33/ 557
4

1
1.4 ™

log =)5dz = 4¢| 05—

/0 (Ogos) v 58a35A2B

51. From here we see that not only the product of all these four formulas
depend uniquely on the quadrature of the circle, but also the product of two, of
which the exponents make together unity, to know:

! 1.1 ! 1.4 47
log —)5dx - log —)3dx =
| os tar- [ ton 1)t T

1 1
1.2 1.2 6m

log —)5dx - log —)sdr = ———.
/O(ogx) z /O(Ogl,) T P I

Besides this, we can deduce from them the following equalities:

[/Ol(log;)édx} +/(1og bdo = - /m %

1 1
1 1 ]. 2 2 47TB
log —)5dx - log —)35d
/O(ng)5 = [/0 (ng>5 x} o 22 / %1—335




52. If we join these previous determinations, we can draw from them the
following general conclusions:

and in general:

therefore since

n

1 1
1 n—m n—m —m
log =) n dx = log =)™ d
}ﬁ (log ) z /C (log —) ™" da,
we will have:

1 1 1 m—1
1. m 1. -m d
[ og)F e [ og ) F e = T —
0 £ 0 T

=m —_—
nsin 2% o V(1 —axm)m

53. This last equality can easily be immediately demonstrated by developing
the most simple case, where the exponent is an even number:

1
1

/ (log =)dx=1-2-3---\.
0 €T

And yet, this finite expression can be expressed by an infinite product, as:
1 1 3 2 4 3
log =)V de = (2o ——— (S 2 (DY
/k%x)‘” SR RS s e Yy

Now letting A = * to have:

1. m 2. m n 3. m 2n 4. m 3n
log —)n =(=)n - (=)7n - (=)7n -
/(Og:r) dx (1) n+m <2) 2n +m (3) 3n+m ’
and also for m negative:
1 —m 2 —m n 3 —m 2TL 4 —m 3n
log =)™ =(=)" . (=) - [
/(ng) de (1) n—m (2) 2n —m (3) 3n—m



The product of these two formulas evidently give:

n2 4n? 9n? mm

n2—m2 4n2 —m?2 9n2 —m?2 " psin T

54. We could set farther these researches, since

1
1 2.p n 3.p 2n
1 — nd = (—)n c(=)n . PR
| o ptar = Q) o (F
1
1 2 n 3.4 2n
log —)nder = (=)n + —— . (=)n .
[ o ptar = @)t I (DF g
1
1 ptq ZM n 3 p+gq 27’L
/(bgf) Hdr = (5)5 . ——— ()R
0 x 1 n+p+q 2 2n—|—p+q

The product of the two first divided by the last, gives:

[(log )7 da - f(logl)%dx: nn+p+q)  2n2n+p+q)
[(log 1) dz (n+p)n+tq @n+pnt+q

of which the value is
a" Pz pg 2P~ ldx g 297l dx
YA —azr)y—a ptql) A —azr)n—a ptqg) /A —an)np’

or in other words, it equals:

/quy"/ YPdx = /xpl\/l ™dx,

formula which conduces to the proceeding one, when one sets p = m and ¢ =
—m. In the same way, one will find the value of
JQog L)ynda - [(logL)ida- [(logL)ide 2P~z P ldy

J(log 1) da prats V= ) ey

55. Finally, in order to finish this paper, the summation of the reciprocal series
of powers we furnish still the value of the following transcendent formulas, when
one sets after integration z = 1:

2

1 s 1 us
/ log dx—F, /Elog(l—ﬁ—x)dx— 13’

2
and /71 ”1+x :W—,
1—x 8

and these others, more composed:
de [dxr [1 1 4 de [dr [1 7t
el Bied L. 22 2 oe(1 -7
/ x / x /a: © 1— du 90’ / / /CE og(1 + z)dz 720’
/dw/dm /dx/dac/ [1+2z n*
— | —arctanx = — — log = —
T T 1—x




And now, there does not seem any direct rout which we can travel along to
these determinations, which merits itself, even more attention.



