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1. Every rational function has an antiderivative expressible as a combination of
rational, logarithmic and trigonometric functions. Unfortunately, in the multi-
variate case, these antiderivatives are often exceptionally complicated. However,
when one considers certain definite integrals of rational functions, it sometimes
occurs that these integrals, however complex they may be, reduce to simple
families of antiderivatives, some of which merit particular attention.

In addition, there are also certain integrands which, in general, surpass all
known analytic methods, and yet which nevertheless, in certain cases, have
antiderivatives expressible in terms of trigonometric functions alone. In this
paper I propose to consider several such integrals, as well as to examine those
results derivable from them, in service of the general advancement of analysis.

2. I will begin by considering the family of definite improper integrals∫ ∞
0

xm−1dx

1 + xn
. (1)

In preface, for this family of rational integrals, we will find that the logarithmic
portion of the integral vanishes, while the remaining part, that composed up
from trigonometric functions, will reduce to rather simple expressions.

Letting π denote the half-circumference length of the perimeter of a circle
of radius 1, so that π also denotes the measure of two right angles, we find that
the values of several members of this family of integrals reduce to the following:

∫ ∞
0

dx

1 + x2
=
π

2

∫ ∞
0

dx

1 + x3
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2π

3
√

3

∫ ∞
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√
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∫ ∞
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π

3
√
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∫ ∞
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=
π
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.



3. These particular examples given above seem already sufficient to reason
inductively toward a more general conclusion. Since, in those cases where the
denominator is 1 + x3, the radical

√
3 indicates that the antiderivative contains

sin π
3 , and for those integrands with denominator 1 + x4, the radical

√
2 almost

certainly comes from sin π
4 = 1√

2
, and a similar pattern is also confirmed in

those cases where the denominator is 1 + x6. These observations thus lead us
to the following equalities: ∫ ∞

0

dx

1 + xn
=

π

n sin π
n

and then more generally, provided that m ≤ n,∫ ∞
0

xm−1dx

1 + xn
=

π

n sin mπ
n

, (2)

On the other hand when m > n the above formulas require augmentation, since
in this case the antiderivatives retain an algebraic part.

4. Our conclusion in (2) is altogether confirmed if one further bothers to eval-
uate the integrals∫ ∞

0

dx

1 + x5
,

∫ ∞
0

xdx

1 + x5
,

∫ ∞
0

x2dx

1 + x5
, etc.,

which yield values that leave little doubt concerning the correctness of (2). We
also remark upon perfect agreement in those cases where m = n, since then
sin mπ

n = sinπ = 0, and thus the integral is quite clearly divergent; evident also
from the observation that∫

xn−1dx

1 + xn
=

1

n
log(1 + xn),

with the right hand side clearly diverging as x→∞. The equality in (2) is also
quite clearly true when n = 2m, since then sin mπ

n = sin π
2 = 1, and thus via

the substitution xm = y, we have∫ ∞
0

xm−1dx

1 + x2m
=

1

m

∫ ∞
0

dy

1 + y2
=

1

m
arctan y

∣∣∣∞
0

=
π

2m
.

This should be sufficient evidence to conclude that (2) is in fact true.

5. However in order to rigorously derive (2), we consider a summation formula
for the indefinite integral version of (1),∫

xm−1dx

1 + xn
=
∑

1≤i≤n
i odd

[
− 1

n
cos

imπ

n
log(1− 2x cos

iπ

n
+ x2) (3)

+
2

n
sin

imπ

n
arctan

x sin iπ
n

1− x cos iπn

]
,



provided of course that m ≤ n, and with the additional caveat that when n is
odd it is necessary to take only half the final term in the series, or alternatively
in the final term to replace log(1 + 2x+ x2) with log(1 + x).

6. Delving into several particular cases of (3):

I. For n = m = 1, we will have∫
dx

1 + x
= log(1 + x).

II. For n = 2, we will have:

if m = 1 :

∫
dx

1 + x2
=

2

2
sin

π

2
arctan

x sin π
2

1− x cos π2
,

if m = 2 :

∫
xdx

1 + x2
=

1

2
log(1 + x2).

III. For n = 3, we will have:

if m = 1 :

∫
dx

1 + x3
=− 1

3
cos

π

3
log(1− 2x cos

π

3
+ x2) +

2

3
sin

π

3
arctan

x sin π
3

1− x cos π3

− 1

3
cos

3π

3
log(1 + x),

if m = 2 :

∫
xdx

1 + x3
=− 1

3
cos

2π

3
log(1− 2x cos

π

3
+ x2) +

2

3
sin

2π

3
arctan

x sin π
3

1− x cos π3

− 1

3
cos

6π

3
log(1 + x),

if m = 3 :

∫
x2dx

1 + x3
=− 3

3
cos

π

3
log(1− 2x cos

π

3
+ x2) +

2

3
sin

3π

3
arctan

x sin π
3

1− x cos π3

− 1

3
cos

9π

3
log(1 + x),

or more simply, as a result of:

cos
3π

3
= −1; cos

2π

3
= −1 and sin

3π

3
= 0 and cos

π

3
=

1

2
,

we have

if m = 3 :

∫
x2dx

1 + x3
=

1

3
log(1− x+ x2) +

1

3
log(1 + x) =

1

3
log(1 + x3).

7. In all these cases it is easy to see that upon letting x → ∞, these inte-
grals are in perfect agreement with formula (2) given above. However in order
to demonstrate the correspondence in general, it is necessary to show that all



the logarithmic parts necessarily vanish, while those parts made up of trigono-
metric expressions reduce to π

n sin mπ
n

. For this purpose, it is necessary here to

distinguish cases based on the parity of n.
Therefore let us begin by setting n = 2k and letting x → ∞. Now since

the logarithmic terms all then behave asymptotically like log x2, it will only be
necessary to show that the sum of the following progression for m even is equal
to zero:

cos
mπ

2k
+ cos

3mπ

2k
+ cos

5mπ

2k
+ · · ·+ cos

(2k − 5)mπ

2k
+ cos

(2k − 3)mπ

2k

+ cos
(2k − 1)mπ

2k
.

In order to abridge notation, we set mπ
2k = ϕ, and thus it will be necessary to

show that
cosϕ+ cos 3ϕ+ cos 5ϕ+ · · ·+ cos(2k − 1)ϕ = 0.

8. In order to find the sum of this progression, we let

S = cosϕ+ cos 3ϕ+ cos 5ϕ+ · · ·+ cos(2k − 1)ϕ,

and multiplying by sinϕ, given the identity that sinϕ cosαϕ = − 1
2 sin(α−1)ϕ+

1
2 sin(α+ 1)ϕ, we will have

S sinϕ =
1

2
sin 2ϕ+

1

2
sin 4ϕ+

1

2
sin 6ϕ+ · · ·+ 1

2
sin(2k − 2)ϕ+

1

2
sin 2kϕ

− 1

2
sin 2ϕ− 1

2
sin 4ϕ− 1

2
sin 6ϕ− · · · − 1

2
sin(2k − 2)ϕ,

and since all terms with the exception of last vanish, we have that

S sinϕ =
1

2
sin 2kϕ therefore S =

sin 2kϕ

2 sinϕ
.

Now reversing our substitution ϕ = mπ
2k , we have that 2kϕ = mπ, and since m

is even
sin 2kϕ = sinmπ = 0,

and thus the above sum S = 0.

On the other hand when n is odd, we set n = 2k + 1, and thus letting
mπ
2k+1 = ϕ, it is necessary to show that:

cosϕ+ cos 3ϕ+ · · ·+ cos(2k − 1)ϕ+
1

2
cosmπ = 0.

Hence, by the proceeding sum, this sum becomes

sin 2kϕ

2 sinϕ
+

1

2
cosmπ =

sin 2kϕ

2 sinϕ
+

1

2
cos(2k + 1)ϕ,



and due to the fact that

sin 2kϕ = sin(2k + 1)ϕ cosϕ− cos(2k + 1)ϕ sinϕ

this sum will become
sin(2k + 1)ϕ cosϕ

2 sinϕ
.

But since (2k + 1)ϕ = mπ, it is evident that this sum is also equal to zero.

9. Having demonstrated that the logarithmic parts of our integral∫
xm−1dx

1 + xn

vanish when we let x→∞, it is now necessary to find the values of the remaining
trigonometric parts.

Furthermore, since each term in what remains of the sum in (3) contains the
factor tan x sinϕ

1−x cosϕ , we see that (3) vanishes entirely when x = 0, which can be

seen immediately from the left side of (3), since it corresponds to integration
over a null interval. Augmenting x just until it reaches the value x = 1

cosϕ then
results in arctan of a right angle which diverges, and if one increases x even
more, the angle will become obtuse. Therefore, letting x → ∞, we will have
tan x sinϕ

1−x cosϕ = arctan − sinϕ
cosϕ = π − ϕ; and hence taken together the remaining

parts of (3) become∑
1≤i≤n
i odd

2

n
(π − ϕ) sin

imπ

n
=

2π

n

∑
1≤i≤n
i odd

sin
imπ

n
− 2π

n2

∑
1≤i≤n
i odd

i sin
imπ

n
.

Our goal is thus to find the sum of the two series on the right hand side of this
equality.

10. First let n = 2k be even, then setting mπ
2k = ϕ, the first series will be:

sinϕ+ sin 3ϕ+ sin 5ϕ+ · · ·+ sin(2k − 1) = s,

that which, being mulitplied by sinϕ, gives:

1
2 −

1
2 cos 2ϕ− 1

2 cos 4ϕ− 1
2 cos 6ϕ− · · · − 1

2 cos 2kϕ

+ 1
2 cos 2ϕ+ 1

2 cos 4ϕ+ 1
2 cos 6ϕ · · · · · · · · · · · · · · ·

 = s sinϕ

from this we derive

s =
1− cos 2kϕ

2 sinϕ
=

1− cosmπ

2 sin mπ
2k

.

And thus, having already derived:

cosϕ+ cos 3ϕ+ cos 5ϕ+ · · ·+ cos(2k − 1)ϕ =
sin 2kϕ

2 sinϕ
,



differentiation gives:

sinϕ+ 3 sin 3ϕ+ 5 sin 5ϕ+ · · ·+ (2k− 1) sin(2k− 1)ϕ =
−2k cos 2kϕ

2 sinϕ
+

sin 2kϕ

2 sin2 ϕ
.

Now setting ϕ = mπ
n , and undoing the substitution 2k = n, our two series will

become:
2π

n

1− cosmπ

2 sin mπ
n

− 2π

n2
(−n cosmπ

2 sin mπ
n

+
sinmπ

2 sin2 mπ
n

)
,

of which a reduction then gives:

π

n sin mπ
n

(
1− sinmπ

n sin mπ
n

)
=

π

n sin mπ
n

,

due to the fact that sinmπ = 0. A similar derivation shows that the same value
is obtained when n is odd.

11. Now that we have rigorously demonstrated (2), then provided that m ≤ n,
we consider the substitution∫ ∞

0

xm−1dx

1 + xn
=

∫ 1

0

zm−1

n
√

(1− zn)m

x =
z

n
√

1− zn

dx =
dz

n
√

(1− zn)n+1
.

Hence we obtain the equality∫ 1

0

zm−1dz
n
√

(1− zn)m
=

π

n sin mπ
n

, (4)

for m ≤ n.

12. Upon computing a number of particular cases of (4):∫ 1

0

zdz
3
√

(1− z3)2
=

π

3 sin 2π
3

∫ 1

0

dz
3
√

1− z3
=

π

3 sin π
3

∫ 1

0

dz√
1− z2

=
π

2∫ 1

0

z2dz
4
√

(1− z3)3
=

π

4 sin 3π
4

∫ 1

0

dz
4
√

1− z4
=

π

4 sin π
4

∫ 1

0

z2dz
5
√

(1− z5)3
=

π

5 sin 3π
5∫ 1

0

zdz
5
√

(1− z5)2
=

π

5 sin 2π
5

∫ 1

0

dz
5
√

1− z5
=

π

5 sin π
5

∫ 1

0

z3dz
5
√

(1− z5)4
=

π

5 sin 4π
5∫ 1

0

z4dz
6
√

(1− z6)5
=

π

6 sin 5π
6

∫ 1

0

dz
6
√

1− z6
=

π

6 sin π
6

,

we observe that these integrals are quite remarkable, however we still lack ex-
pedient methods for their derivation.



13. Given the equality in (4), we search for a series expansion of the left hand
side, which, due to the fact that

(1− zn)
−m
n =

∞∑
i=0

(−1)i
(
−mn
i

)
zin,

for
(
α
i

)
the generalized binomial coefficients, we are able to derive as follows:∫ 1

0

zm−1dz
n
√

(1− zn)m
=

∫ 1

0

∞∑
i=0

(−1)i
(
−mn
i

)
zin+m−1dz =

∞∑
i=0

(−1)i
(
−mn
i

)∫ 1

0

zin+m−1dz

=

∞∑
i=0

(−1)i
(
−mn
i

)
1

in+m
.

We therefore obtain the following correspondence:∫ 1

0

zm−1dz
n
√

(1− zn)m
=

π

n sin mπ
n

=

∞∑
i=0

(−1)i
(
−mn
i

)
1

in+m
.

Moreover, we will see in Section 14 that this same integral can also be expressed
by the following infinite product:∫ 1

0

zm−1dz
n
√

(1− zn)m
=

π

n sin mπ
n

=
1

n−m

∞∏
i=1

i2n2

((i− 1)n+m)((i+ 1)n−m)
(5)

In the special case where m = 1 and n = 2, we have Wallis’ product for π:

π

2
=

2 · 2
1 · 3

· 4 · 4
3 · 5

· 6 · 6
5 · 7

· 8 · 8
7 · 9

· 10 · 10

9 · 11
· · · .

Next, setting m = 1 and n = 6, we have

π

3
=

1

5
· 62

1 · 14
· 122

7 · 17
· 182

13 · 23
· 242

19 · 29
· · · ,

or for π itself,

π =
18

5
· 6 · 12

7 · 11
· 12 · 18

13 · 17
· 18 · 24

19 · 23
· 24 · 30

25 · 29
· · · .

14. The previous section’s products, being the very as those I found in my
introduction (different paper), provide an alternative route to discovering the
family of integrals in (1). As such, we have the following product expansions
for sine and cosine:

sin
mπ

n
=
mπ

n

∞∏
i=1

(
1− m2

i2n2

)
=
mπ

n

∞∏
i=1

(in−m)(in+m)

i2n2
,

cos
mπ

n
=

∞∏
i=1

(
1− 4m2

(2i− 1)2n2

)
=

∞∏
i=1

((2i− 1)n− 2m)((2i− 1)n+ 2m)

(2i− 1)2n2

)
,



formulas of which the former leads to

π

n sin mπ
n

=
1

m

∞∏
i=1

i2n2

(in−m)(in+m)
, (6)

and which, upon replacing m with n−m, we can immediately see is equal to (5).

We would have thus also arrived at the very same integral in (5), if we had
instead begun with the product expansion in (6) and searched for an integral
whose value it equaled. However, given that I have already provided methods
of evaluation for the above integrals, and in certain cases by forming product
expansions, it is not necessary at this time to reverse this method and pass from
product expansions back to integrals.

15. Following the demonstration in (5), if we make the substitutions α =
µ− v = m, and µ = n, then we will have:∫ 1

0

xα−1(1−xµ)
v−µ
µ dx =

1

v
· µ(α+ v)

α(µ+ v)
· 2µ(α+ v + µ)

(α+ µ)(2µ+ v)
· 3µ(α+ v + 2µ)

(α+ 2µ)(3µ+ v)
· · · · ,

and thus considering the quotient of two such integrals, we obtain the integral
ratio:∫ 1

0
xα−1(1− xµ)

v−µ
µ dx∫ 1

0
xβ−1(1− xµ)

v−µ
µ dx

=
β(α+ v)

α(β + v)
· (β + µ)(α+ v + µ)

(α+ µ)(β + v + µ)
· (β + 2µ)(α+ v + 2µ)

(α+ 2µ)(β + v + 2µ)
·· · · ,

and then, more generally:∫ 1

0
xα−1(1− xµ)

v−µ
µ dx∫ 1

0
xβ−1(1− xµ)

λ−µ
µ dx

=
λ

v
· β(α+ v)(λ+ µ)

α(β + λ)(v + µ)
· (β + µ)(α+ v + µ)(λ+ 2µ)

(α+ µ)(β + λ+ µ)(v + 2)

· (β + 2µ)(α+ v + 2µ)(λ+ 3µ)

(α+ 2µ)(β + λ+ 2µ)(v + 3µ)
· · · · .

Therefore, given such a product, we could of course work backwards towards an
integral, or the quotient of two.

16. Now let us modify (5) slightly in order to compare the infinite product

(n−m)π

n sin mπ
n

=

∞∏
i=1

i2n2

((i− 1)n+m)((i+ 1)n−m)
,

with the infinite product of the integral:

v

∫ 1

0

xα−1(1− xµ)
v−µ
µ dx =

∞∏
i=1

iµ(α+ v + (i− 1)µ)

(α+ (i− 1)µ)(iµ+ v)
,



Since the growth of the former is O(n), while the latter is O(µ), we will begin
by setting µ = n. Therefore if we require that the integral take the form given
in (5), we must have α + v = n, and then we will either set α = m, implying
that µ+ v = 2n−m, or µ+ v = m which will imply that α = 2n−m. Thus the
first case can be summarized as α = m, µ = n, and v = n −m, and the latter
case summarized as α = 2n−m, µ = n, and v = m−n. Therefore we will have

either
(n−m)π

n sin mπ
n

= (n−m)

∫
xm−1dx

(1− xn)
m
n
,

or
(n−m)π

n sin mπ
n

= (m− n)

∫
x2n−m−1dx

(1− xn)
2n−m
n

,

where the latter integral will not converge whenever n > m.

17. Provided that m ≤ n, we have found two distinct routes for the rigorous
demonstration of (4): ∫ 1

0

xm−1dx
n
√

(1− xn)m
=

π

n sin mπ
n

.

First, by applying integration by substitution to the integral given in (1):∫ ∞
0

xm−1dx

1 + xn
,

whose value is derived from its series representation given at (3). Second, by
writing this integral as the infinite product in (5), and then finding its limit.

Now in (5) if we replace m with n−m, we will have∫
zn−m−1dz

(1− zn)
n−m
n

=
1

m

∞∏
i=1

i2n2

i2n2 −m2
,

and by consequence, given that sin (n−m)π
n = sin mπ

n , we obtain∫ 1

0

zm−1dz

(1− zn)
m
n

=

∫ 1

0

zn−m−1dz

(1− zn)
n−m
n

=
π

n sin mπ
n

.

Then reversing the substitution done in Section 11, we will have:∫ ∞
0

xm−1dx

1 + xn
=

∫ ∞
0

xn−m−1dx

1 + xn
=

π

n sin mπ
n

.

18. We see also how this same infinite product:

∞∏
i=1

i2n2

i2n2 −m2
=

mπ

n sin mπ
n

,



can be expressed as the quotient of two integrals. To this effect, it’s necessary

to set µ = n and β(α+v)
α(β+v) = n2

n2−m2 , therefore β = n; α+ v = n; α = n−m and

β + v = n+m; from here we let α = n−m; β = n; v = m and µ = n and thus
we have:

mπ

n sin mπ
n

=

∫ 1

0
xn−m−1(1− xn)

m−n
n dx∫ 1

0
xn−1(1− xn)

m−n
n dx

,

where the denominator integrates to 1
m . The more general integral does not lead

to other integrals; however there are other methods of making these integrals
more general.

19. Multiplying two integrals in general and in the case where, the value of
this product

vn

∫ 1

0

xα−1(1− xn)
v−n
n dx ·

∫ 1

0

xn−1(1− xn)
n−n
n dx

will be
n2(α+ v)(α+ n)

αn(v + n)(n + n)
· 4n2(α+ v + n)(α+ n + n)

(α+ n)(a + n)(v + 2n)(n + 2n)
· · · ·

that which is noted to be equal to the following:

n2

(n−m)(n+m)
· 4n2

(2n−m)(2n+m)
· · · · = mπ

n sin mπ
n

.

Let, for this purpose, α = n−m; α = n+m; and letting also the following:

α+ v = v + n−m = n + n; a + n = n + n+m = v + n;

from which we derive v − n = m. Thus let v = k + 1
2m and n = k − 1

2m; and
we will have, by taking k an arbitrary number:

(k2 − 1

4
m2)

∫ 1

0

xn−m−1(1− xn)
2k+m−2n

2n dx ·
∫ 1

0

xn+m−1(1− xn)
2k−m−2n

2n dx

(7)

=
mπ

n sin mπ
n

.

20. Therefore in (7) we have the product of two integrals which are equal to
mπ

n sin mπ
n

; and consequently assuming we take k in such a way that these integrals

are finite, then they will reduce to the expression mπ
n sin mπ

n
. For example, setting

2k = m + 2n, taking into account the fact that
∫ 1

0
xn+m−1dx = 1

n+m , and

k2 − 1
4m

2 = n(n+m) we will have:

n

∫ 1

0

xn−m−1(1− xn)
m
n dx =

mπ

n sin mπ
n

.



Another example, consider setting 2k = m+ 4n, then∫ 1

0

xn+m−1(1− xn)dx =
n

(n+m)(2n+m)
,

and k2 − 1
4m

2 = 2n(m+ 2n), we will have:

2n2

n+m

∫ 1

0

xn−m−1(1− xn)
m+n
n dx =

mπ

n sin mπ
n

.

Therefore, also putting n − m in place of m, we will have the following two
forms:

π

n sin mπ
n

=
n

m

∫ 1

0

xn−m−1(1− xn)
m
n dx =

n

n−m

∫ 1

0

xm−1(1− xn)
n−m
n dx

π

n sin mπ
n

=
2n2

m(n+m)

∫ 1

0

xn−m−1(1− xn)
m+n
n dx

=
2n2

(n−m)(2n−m)

∫ 1

0

xm−1(1− xn)
2n−m
n dx.

21. Now, since∫ 1

0

xn+m−1(1− xn)
2k−m−2n

2n dx =
2m

2k +m

∫
xm−1(1− xn)

2k−m−2n
2n dx,

if we substitute this value, we will have:

(k− 1

2
m)

∫
xn−m−1(1−xn)

2k+m−2n
2n dx ·

∫ 1

0

xm−1(1−xn)
2k−m−2n

2n dx =
π

n sin mπ
n

,

and this value remains the same, although we write n −m in place of m. Let
m = 1 and n = 2 and we will have:

(k − 1

2
)

∫ 1

0

(1− x2)
2k−3

4 dx ·
∫

(1− x2)
2k−5

4 dx =
π

2
,

where it is remarkable that this equality occurs, no matter what number we set
k equal to. As an example, let k = 1, or k = 2 and one will have:

1

2

∫ 1

0

dx
4
√

1− x2
·
∫ 1

0

dx
4
√

(1− x2)3
=
π

2
,

3

2

∫ 1

0

4
√

1− x2dx ·
∫ 1

0

dx
4
√

1− x2
=
π

2
,

and then setting k = 1
2 +
√

2∫ 1

0

(1− x2)
√

2−1
2 dx ·

∫ 1

0

(1− x2)
√

2−2
2 dx =

π

2
√

2
.

Taking note of the irrationality of the exponents, this equality is remarkable.



22. One can still transform in several ways the formulas that we have found,
since, setting 1 − x2n = y2n, in such a way that x = n

√
1− y2n and dx =

2y2n−1(1−y2n)dy the terms of the integral, which were beforehand set equal to
x = 0 and x = 1, are at present reversed, to know that y = 1 and y = 0 which
becomes the same. From here we conclude

(4k− 2m)

∫ 1

0

y2k+m−1(1− y2n)
−m
n dy ·

∫ 1

0

y2k−m−1(1− y2n)
m−n
n dy =

π

n sin mπ
n

,

when we will have set y = 1 after integration; or in other words

(4k2 −m2)

∫ 1

0

y2k−m−1(1− y2n)
−m
n ·

∫ 1

0

y2k−m−1(1− y2n)
m
n dy =

π

n sin mπ
n

,

by the reduction of these integrals. Therefore if m = 1 and n = 2, we will have:

(4k − 2)

∫ 1

0

y2kdy√
1− y4

·
∫ 1

0

y2k−2dy√
1− y4

=
π

2
,

and consequently, if k = 1,∫ 1

0

y2dy√
1− y4

·
∫ 1

0

dy√
1− y4

=
π

4
.

23. Now, since the angle mπ
n depends only on the numbers m and n, we will

have sin mπ
n = 1, if m = 1

2n, as long as we don’t need to determine n. Let
therefore m = 1

2n, and in order to avoid the fractions, 2k = m+ λ; from where
we will derive the following theorem:∫ 1

0

yλ+n−1dy√
1− y2n

·
∫ 1

0

yλ−1dy√
1− y2n

=
π

2λn
,∫ 1

0

yλ+n−1dy√
1− y2n

·
∫ 1

0

yλ−1(1− y2n)dy =
π

2λ(λ+ n)
.

In the same vein, setting more generally 2k = λ+m, we will have:∫ 1

0

yλ+2m−1(1− y2n)
−m
n dy ·

∫ 1

0

yλ−1(1− y2n)
m−n
n dy =

π

2λn sin mπ
n

, or∫ 1

0

yλ+2m−1(1− y2n)
−m
n dy ·

∫ 1

0

yλ−1(1− y2n)
m
n dy =

mπ

λn(λ+ 2m) sin mπ
n

,

where the number λ is arbitrary, in such a way that one can even give it an
irrational value. Let m = µk and n = vk, and one will have:∫ 1

0

yλ+2mµk−1(1− y2vk)
−µ
v dy ·

∫ 1

0

yλ−1(1− y2vk)
µ−v
v dy =

π

2λvk sin µπ
v

, or∫ 1

0

yλ+2mµk−1(1− y2vk)
−µ
v dy ·

∫ 1

0

yλ−1(1− y2vk)
µ
v dy =

µπ

λv(λ+ 2µk) sin µπ
v

.



24. Moreover, setting 2k = α in order to have this equality∫ 1

0

yλ+µα−1(1− yvα)
−µ
v dy ·

∫ 1

0

yλ−1(1− yvα)
µ−v
v dy =

π

λvα sin µπ
v

,

from this we have the following principal cases:∫ 1

0

yλ−α−1dy√
1− y2α

·
∫ 1

0

yλ−1dy√
1− y2α

=
π

2λα
,∫ 1

0

yλ−α−1dy
3
√

1− y3α
·
∫ 1

0

yλ−1dy
3
√

(1− y3α)2
=

2π

3λα
√

3
,∫ 1

0

yλ−α−1dy
4
√

1− y4α
·
∫ 1

0

yλ−1dy
4
√

(1− y3α)3
=

π

2λα
√

2
,∫ 1

0

yλ−2α−1dy
3
√

(1− y3α)2
·
∫ 1

0

yλ−1dy
3
√

1− y3α
=

2π

3λα
√

3
,∫ 1

0

yλ−3α−1dy
4
√

(1− y4α)3
·
∫ 1

0

yλ−1dy
4
√

1− y4α
=

π

2λα
√

2
.

25 Just as the infinite product expansion for sine has led us to the above
integrals, we treat in the same way the infinite product expansion found for
cosine, which can be written in the following form:

cos
mπ

n
=

∞∏
i=1

((2i− 1)n− 2m)((2i− 1)n+ 2m)

(2i− 1)2n2
,

where since the sequence of numbers in both the numerator and denominator
of this product are only odd numbers, we will not be able to express it with a
single integral. We therefore search for two integrals whose quotient expresses

this value, and one sees first that it’s necessary to set µ = 2n. Thus let β(α+v)
α(β+v) =

(n−2m)(n+2m)
n2 , and we will have α = n; β = n − v and v = 2m; in such a way

that β = n− 2m. As a consequence we will have:∫ 1

0
xn−1(1− x2n)

m−n
n dx∫ 1

0
xn−2m−1(1− x2n)

m−n
n dx

= cos
mπ

n
= sin

(n− 2m)π

2n
.

Therefore setting m = λµ and n = λv, we will have∫ 1

0
xλv−1(1− x2λv)

µ−v
v dx∫ 1

0
xλv−2λµ−1(1− x2λv)µ−vv dx

= cos
mπ

v
= sin

(v − 2µ)π

2v
.

26. We consider the most simple cases:

I. If m = 1, n = 2 :
∫ 1
0
x(1−x4)−

1
2 dx∫ 1

0
x−1(1−x4)

−1
2 dx

= cos π2 = 0.



II. If m = 1, n = 3 :
∫ 1
0
x2(1−x6)−

2
3 dx∫ 1

0
(1−x6)

−2
3 dx

= cos π3 = 1
2 .

III. If m = 1
2 , n = 2 :

∫ 1
0
x(1−x4)−

−3
4 dx∫ 1

0
(1−x4)

−3
4 dx

= cos π4 = 1√
2
.

IV. If m = 1
2 , n = 3 :

∫ 1
0
x(1−x6)−

5
6 dx∫ 1

0
(1−x6)

−5
6 dx

= cos π6 =
√
3
4 .

After performing the appropriate variable substitutions, from the second we
can derive the equality:∫ 1

0

dx
3
√

(1− x2)2
=

3

2

∫ 1

0

dx
3
√

(1− x6)2
,

the third reduces to ∫ 1

0

dx
4
√

(1− x2)2
=
√

2

∫ 1

0

dx
4
√

(1− x4)3
,

and the fourth to ∫ 1

0

dx
6
√

(1− x2)5
=

3
√

3

4

∫ 1

0

dx
6
√

(1− x3)5
.

27. We can also make the substitutions to find a slightly simpler form for the
left and right hand side of the second:∫ 1

0

dx
3
√

(1− x2)2
=

3

2

∫ 1

0

dx√
1− x3

, upon setting x3 in place of 1− x2,∫ 1

0

dx
3
√

(1− x6)2
=

1

2

∫ 1

0

dx
6
√

(1− x3)6
, upon setting x3 in place of 1− x6,

and from here we will have the following equalities:∫ 1

0

dx
3
√

(1− x2)2
=

3

2

∫ 1

0

dx√
1− x3

=
3

2

∫ 1

0

dx
3
√

(1− x6)2
=

3

4

∫ 1

0

dx
6
√

(1− x3)5
,∫ 1

0

dx
4
√

(1− x2)3
= 2

∫ 1

0

dx√
1− x4

=
√

2

∫ 1

0

dx
4
√

(1− x4)3
,∫ 1

0

dx
6
√

(1− x2)5
= 3

∫ 1

0

dx√
1− x6

=
3
√

3

4

∫ 1

0

dx
6
√

(1− x3)5
=

3
√

3

2

∫ 1

0

dx
3
√

(1− x6)2
.



28. Via the same transformation, we find in general:∫ 1

0

xn−1dx

(1− x2n)
n−m
m

=
1

2

∫ 1

0

xm−1dx

(1− xn)
1
2

= cos
mπ

n
·
∫ 1

0

xn−2m−1dx

(1− x2n)
n−m
n

=
1

2
cos

mπ

n
·
∫ 1

0

xm−1dx

(1− xn)
n+2m

2n

;

and in particular we obtain another version of (4):∫ 1

0

xm−1dx√
1− xn

= cos
mπ

n

∫ 1

0

xm−1dx
2n
√

(1− xn)n+2m
. (8)

Therefore, since the left side of (8) is the simplest version of those considered
at the beginning of this section, since its denominator contains only a second
root, we will have the following reductions:∫ 1

0

xn−1dx
n
√

(1− x2n)n−m
=

1

2

∫ 1

0

xm−1dx√
1− xn

,∫ 1

0

xn−2m−1dx
n
√

(1− x2n)n−m
=

1

2 cos mπn

∫ 1

0

xm−1dx√
1− xn

,∫ 1

0

xm−1dx
2n
√

(1− xn)n+2m
=

1

cos mπn

∫ 1

0

xm−1dx√
1− xn

,

of which the first immediately self-evident given the substitution u = x2 and
the equality n = 2m, on the other hand the two follow similar derivations to
that given above.

29. Recalling from Section 14 the product expansion for sine, and taking the
appropriate quotient, we obtain:

sin mπ
2n

sin kπ
2n

=

∞∏
i=0

(2in+m)(2(i+ 1)n−m)

(2in+ k)(2(i+ 1)n− k)
,

which we will show can be reduced to a ratio of of two integrals. First however
we must set µ = 2n and set

β(α+ v)

α(β + v)
=
m(2n−m)

k(2n− k)
,

which can be done in four ways:

I. α = k; β = m; v = 2n−m− k; v−µ
µ = −m−k

2n .

II. α = k; β = 2n−m; v = m− k; v−µ
µ = m−k−2n

2n .



III. α = 2n− k; β = m; v = k −m; v−µ
µ = k−m−2n

2n .

IV. α = 2n− k; β = 2n−m; v = m+ k − 2n; v−µ
µ = m+k−4n

2n .

And thus from Section 15 we can conclude:∫ 1

0
xα−1(1− xµ)

v−µ
µ dx∫ 1

0
xβ−1(1− xµ)

v−µ
µ dx

=
sin mπ

2n

sin kπ
2n

,

and then by the more general form given in Section 15:∫ 1

0
xv−1(1− xµ)

α−µ
µ dx∫ 1

0
xv−1(1− xµ)

β−µ
µ dx

=
sin mπ

2n

sin kπ
2n

. (9)

30. Equation (9) furnishes the following reformulations:

sin
kπ

2n
·
∫ 1

0

x2n−m−k−1dx
2n
√

(1− x2n)2n−k
= sin

mπ

2n
·
∫ 1

0

x2n−m−k−1dx
2n
√

(1− x2n)2n−m
,

sin
kπ

2n
·
∫ 1

0

xm−k−1dx
2n
√

(1− x2n)2n−k
= sin

mπ

2n
·
∫ 1

0

xm−k−1dx
2n
√

(1− x2n)m
,

sin
kπ

2n
·
∫ 1

0

xk−m−1dx
2n
√

(1− x2n)k
= sin

mπ

2n
·
∫ 1

0

xk−m−1dx
2n
√

(1− x2n)2n−m
,

sin
kπ

2n
·
∫ 1

0

xm+k−2n−1dx
2n
√

(1− x2n)k
= sin

mπ

2n
·
∫ 1

0

xm+k−2n−1dx
2n
√

(1− x2n)m
.

In addition I will provide several examples. In fact one can derive from them
above several quite remarkable reductions. Setting k = n−m, we have:∫ 1

0

xn−1dx
2n
√

(1− x2n)n+m
= tan

mπ

2n
·
∫ 1

0

xn−1dx
2n
√

(1− x2n)2n−m
.

31. Next we consider the product expansion I have found for tangent:

tan
mπ

2n
=

mπ

2(n−m)
· (2n−m)

2(n+m)
· 3(2n+m)

2(3n−m)
· 3(4n−m)

4(3n+m)
· · · .

so that we have

mπ

2(n−m) tan mπ
2n

=
4n2(n+m)(3n−m)

3n2(2n−m)(2n+m)
· 4n2(3n+m)(5n−m)

15n2(4n−m)(4n+m)
· · · · .

which may be reduced to the product of two integrals, given in general by the
formula

vn

∫ 1

0

xα−1(1− xµ)
v−µ
µ dx ·

∫ 1

0

xα−1(1− xm)
n−m
m dx

=
µm(α+ v)(a+ n)

αa(µ+ v)(m+ n)
· 4µm(α+ v + µ)(a+ n+m)

(α+ µ)(a+m)(2µ+ v)(2m+ n)
· · · · ,



where we set both µ = m = 2n, and:

(n+m)(3n−m)

3n2(2n−m)(2n+m)
=

(α+ v)(a+ n)

αa(µ+ v)(m+ n)
.

Where one is thus required to have α + v = n + m and a + n = 3n −m, with
following collections of relations which follow:

I. v = m; n = −m; α = n; a = 3n; µ = 2n; m = 2n.

II. v = m; n = n; α = n; a = 2n−m, µ = 2n; m = 2n.

III. v = −n; n = −m; α = 2n+m; a = 3n; µ = 2n; m = 2n.

IV. v = −n; n = n; α = 2n+m; a = 2n−m; µ = 2n; m = 2n.

32. Thus we have the reductions:∫ 1

0

xn−1dx
2n
√

(1− x2n)2n−m
·
∫ 1

0

x3n−1dx
2n
√

(1− x2n)2n+m
=

π

2m(m− n)
cot

mπ

2n
,∫ 1

0

xn−1dx
2n
√

(1− x2n)2n−m
·
∫ 1

0

x2n−m−1dx
2n
√

(1− x2n)n
=

π

2n(n−m)
cot

mπ

2n
,∫ 1

0

x2n+m−1dx
2n
√

(1− x2n)3n
·
∫ 1

0

x3n−1dx
2n
√

(1− x2n)2n+m
=

π

2n(n−m)
cot

mπ

2n
,∫ 1

0

x2n+m−1dx
2n
√

(1− x2n)3n
·
∫ 1

0

x2n−m−1dx
2n
√

(1− x2n)n
=

mπ

2n2(m− n)
cot

mπ

2n
,

where we make use of the equalities:∫ 1

0

x3n−1dx
2n
√

(1− x2n)2n+m
=
−n
m

∫ 1

0

xn−1dx
2n
√

(1− x2n)m
,∫ 1

0

x2n+m−1dx
2n
√

(1− x2n)3n
=
−m
n

∫ 1

0

xm−1dx
2n
√

1− x2n
.

33. These substitutions provide us with the following formulas:∫ 1

0

xn−1dx
2n
√

(1− x2n)2n−m
·
∫ 1

0

xn−1dx
2n
√

(1− x2n)m
=

π

2n(n−m)
cot

mπ

2n
,∫ 1

0

xn−1dx
2n
√

(1− x2n)2n−m
·
∫ 1

0

x2n+m−1dx
2n
√

1− x2n
=

π

2n(n−m)
cot

mπ

2n
,∫ 1

0

xm−1dx
2n
√

1− x2n
·
∫ 1

0

xn−1dx
2n
√

(1− x2n)m
=

π

2n(n−m)
cot

mπ

2n
,∫ 1

0

xm−1dx
2n
√

1− x2n
·
∫ 1

0

x2n−m−1dx
2n
√

1− x2n
=

π

2n(n−m)
cot

mπ

2n
,



which reduce to the following simpler formulas:∫ 1

0

dx
2n
√

(1− x2)2n−m
·
∫ 1

0

dx
2n
√

(1− x2)m
=

nπ

2(n−m)
cot

mπ

2n
,∫ 1

0

dx
2n
√

(1− x2)2n−m
·
∫ 1

0

x2n−m−1dx
2n
√

1− x2n
=

π

2(n−m)
cot

mπ

2n
,∫ 1

0

xm−1dx√
1− x2

·
∫ 1

0

dx
2n
√

(1− x2)m
=

π

2(n−m)
cot

mπ

2n
,∫ 1

0

xm−1dx√
1− x2

·
∫ 1

0

x2n−m−1dx√
1− x2n

=
π

2n(n−m)
cot

mπ

2n
.

34. And furthermore by the subsequent substitutions, one finds∫ 1

0

dx
2n
√

(1− x2)2n−m
= n

∫ 1

0

xm−1dx√
1− x2n

,∫ 1

0

dx
2n
√

(1− x2)m
= n

∫ 1

0

x2n−m−1dx√
1− x2n

.

Whereby all the formulas reduce to the last which is the most simple since it
is only contained in the square root sign, that which, if we set m = n − k, it
changes into this quite remarkable formula∫ 1

0

xn+k−1dx√
1− x2n

·
∫
xn−k−1dx√

1− x2n
=

π

2nk
tan

kπ

2n
,

From here, if k = 0, due to the fact that tan kπ
2n = kπ

2n , one obtains:∫ 1

0

xn−1dx√
1− x2n

·
∫

xn−1dx√
1− x2n

=
π2

4n2
.

35. We consider several particular cases:

I. If n = 1, k = 0:
∫

dx√
1−x2

·
∫ 1

0
dx√
1−x2

= π2

4 .

II. If n = 3
2 , k = 1

2 :
∫ 1

0
xdx√
1−x3

·
∫

dx√
1−x3

= 2π
3 tan π

6 = 2π
3
√
3
.

III. If n = 2, k = 1:
∫

x2dx√
1−x4

·
∫ 1

0
dx√
1−x4

= π
4 tan π

4 = π
4 .

IV. If n = 5
2 , k = 1

2 :
∫ 1

0
x2dx√
1−x5

·
∫ 1

0
xdx√
1−x5

= 2π
5 tan π

10 .

V. If n = 5
2 , k = 3

2 :
∫ 1

0
x3dx√
1−x5

·
∫ 1

0
dx√
1−x5

= 2π
15 tan 3π

10 .



VI. If n = 3, k = 1:
∫ 1

0
x3dx√
1−x6

·
∫

xdx√
1−x6

= π
6 tan π

6 .

VII. If n = 3, k = 2:
∫ 1

0
x4dx√
1−x6

·
∫

dx√
1−x6

= π
12 tan π

3 .

VIII. If n = 7
2 , k = 1

2 :
∫ 1

0
x3dx√
1−x7

·
∫ 1

0
x2dx√
1−x7

= 2π
7 tan π

14 .

IX. If n = 7
2 , k = 3

2 :
∫ 1

0
x4dx√
1−x7

·
∫ 1

0
xdx√
1−x7

= 2π
21 tan 3π

14 .

X. If n = 7
2 , k = 5

2 :
∫ 1

0
x5dx√
1−x7

·
∫

dx√
1−x7

= 2π
35 tan 5π

14 .

XI. If n = 4, k = 1:
∫

x4dx√
1−x8

·
∫

x2dx√
1−x8

= π
8 tan π

8 .

XII. If n = 4, k = 3:
∫

x6dx√
1−x8

·
∫

dx√
1−x8

= π
24 tan 3π

8 .

XIII. If n = 9
2 , k = 1

2 :
∫ 1

0
x4dx√
1−x9

·
∫

x3dx√
1−x9

= 2π
9 tan π

18 .

XIV. If n = 9
2 , k = 5

2 :
∫ 1

0
x8dx√
1−x9

·
∫

xdx√
1−x9

= 2π
45 tan 5π

18 .

XV. If n = 9
2 , k = 7

2 :
∫ 1

0
x7dx√
1−x9

·
∫ 1

0
dx√
1−x9

= 2π
63 tan 7π

18 .

XVI. If n = 5, k = 2:
∫ 1

0
x6dx√
1−x10

·
∫

x2dx√
1−x10

= π
20 tan π

5 .

XVII. If n = 5, k = 4:
∫ 1

0
x8dx√
1−x10

·
∫

dx√
1−x10

= π
40 tan 2π

5 .

XVIII. If n = 6, k = 1:
∫ 1

0
x6dx√
1−x12

·
∫

x4dx√
1−x12

= π
12 tan π

12 .

XIX. If n = 6, k = 5:
∫ 1

0
x10dx√
1−x12

·
∫

dx√
1−x12

= π
60 tan 5π

12 .

36. The formula ∫ 1

0

yλ+α−1dy√
1− y2α

·
∫ 1

0

yλ−1dy√
1− y2α

=
π

2λα
, (10)

is a special case of that found in Section 24. Replacing y with x, and then
setting α = n, we have:∫ 1

0

xλ+n−1dx√
1− x2n

·
∫ 1

0

xλ−1dx√
1− x2n

=
π

2λn
.



Furthermore, from Section 34 we have that∫ 1

0

xn+k−1dx√
1− x2n

·
∫ 1

0

xn−k−1dx√
1− x2n

=
π

2nk
tan

kπ

2n
,

and if we set λ = k:∫ 1

0

xn−k−1dx√
1− x2n

·
∫ 1

0

xk−1dx√
1− x2n

= tan
kπ

2n
,

and if we set λ = n− k:∫ 1

0

xn+k−1dx√
1− x2n

·
∫ 1

0

x2n−k−1dx√
1− x2n

=
n− k
k

tan
kπ

2n
.

37. Now, in order to put these equations in a more general setting, we set
v = 2, µ = 1 and make the substitution y = x

n
α in order to have the following

from section 24: ∫ 1

0

x
λn
α +n−1dx√
1− x2n

·
∫ 1

0

x
λn
α −1dx√
1− x2n

=
απ

2λn2
.

Let λn
α = k, and we will find the same formula that we found above, and the

position λn
α = n − k produces nothing new. Let’s look at several particular

cases:

1. Let n = 1, and k = 0:∫ 1

0

dx√
1− x2

÷
∫ 1

0

xdx√
1− x2

=
π

2
.

2. Let n = 3
2 , and k = 1

2 :∫ 1

0

dx√
1− x3

÷
∫ 1

0

dx

x
√
x(1− x3)

= tan
π

6
=

1√
3
.∫ 1

0

xdx√
1− x3

÷
∫ 1

0

x
3
2 dx√

1− x3
= 2 tan

π

6
=

2√
3
.

3. Let n = 2, and k = 1:∫ 1

0

dx√
1− x4

÷
∫ 1

0

dx

x
√

1− x4
= tan

π

4
= 1,∫ 1

0

√
xdx√

1− x4
÷
∫ 1

0

dx√
x(1− x4)

= tan
π

8
,∫ 1

0

x2dx√
1− x4

÷
∫ 1

0

x2dx√
1− x4

= tan
π

4
= 1,∫ 1

0

x
3
2 dx√

1− x4
÷
∫ 1

0

x
5
2 dx√

1− x4
= 3 tan

π

8
.



And still some others:∫ 1

0

xdx√
1− x5

÷
∫ 1

0

dx√
x(1− x5)

= tan
π

10
,∫ 1

0

√
xdx√

1− x5
÷
∫ 1

0

dx√
1− x5

= tan
π

5
,∫ 1

0

xdx√
1− x5

÷
∫ 1

0

dx√
x(1− x5)

= tan
π

10
,∫ 1

0

x
5
2 dx√

1− x5
÷
∫ 1

0

x3dx√
1− x5

=
3

2
tan

π

5
,∫ 1

0

xdx√
1− x6

÷
∫ 1

0

dx√
1− x6

= tan
π

6
,∫ 1

0

x3dx√
1− x6

÷
∫ 1

0

x4dx√
1− x6

= 2 tan
π

6
,∫ 1

0

x2dx√
1− x8

÷
∫ 1

0

dx√
1− x8

= tan
π

8
,∫ 1

0

x4dx√
1− x8

÷
∫ 1

0

x6dx√
1− x8

= 3 tan
π

8
,∫ 1

0

x3dx√
1− x10

÷
∫ 1

0

dx√
1− x10

= tan
π

10
,∫ 1

0

x5dx√
1− x10

÷
∫ 1

0

x8dx√
1− x10

= 4 tan
π

10
,∫ 1

0

x2dx√
1− x10

÷
∫ 1

0

xdx√
1− x10

= tan
π

5
,∫ 1

0

x6dx√
1− x10

÷
∫ 1

0

x7dx√
1− x10

=
3

2
tan

π

6
,∫ 1

0

x4dx√
1− x12

÷
∫ 1

0

xdx√
1− x12

= tan
π

12
,∫ 1

0

x6dx√
1− x12

÷
∫ 1

0

x10dx√
1− x12

= 5 tan
π

12
,

38. These formulas are similar in form to those found in Section 34. All being

members of the general family of integrals,
∫
xm−1dx√

1−xn . But those above were the

product of two such integrals whose values I have erstwhile found. While in
the immediate case we have instead the quotient, rather than the product, of
two integrals. However in both cases, it is evident that the integration of one
reduces to integration of the other. Since many of these reductions are entirely
new, it is worth the effort to consider them more carefully. To this effect, I will
list them in classes according to the exponent of the x which follows the radical
sign. Therefore m and n being integers, we have:



I. Reducing formulas
∫
xm−1dx√

1−x3
:∫ 1

0

xdx√
1− x3

·
∫ 1

0

dx√
1− x3

=
2π

3
tan

π

6
=

2π

3
√

3
.

II. Reducing formulas
∫ 1

0
xm−1dx√

1−x4
:∫ 1

0

x2dx√
1− x4

·
∫ 1

0

dx√
1− x4

=
π

4
tan

π

4
=
π

4
.

III. Reducing formulas
∫ 1

0
xm−1dx√

1−x5
:∫ 1

0

x2dx√
1− x5

·
∫ 1

0

xdx√
1− x5

=
2π

5
tan

π

10
,∫ 1

0

x3dx√
1− x5

·
∫ 1

0

dx√
1− x5

=
2π

15
tan

3π

10
.

IV. Reducing formulas
∫
xm−1dx√

1−x6
:∫ 1

0

x3dx√
1− x6

·
∫ 1

0

xdx√
1− x6

=
π

6
tan

π

6
,∫ 1

0

x4dx√
1− x6

·
∫ 1

0

dx√
1− x6

=
π

12
tan

π

3
,∫ 1

0

xdx√
1− x6

·
∫ 1

0

dx√
1− x6

= tan
π

6
,∫ 1

0

x3dx√
1− x6

·
∫ 1

0

x4dx√
1− x6

= 2 tan
π

6
.

V. Reduction of formulas
∫ 1

0
xm−1dx√

1−x7
:∫ 1

0

x3dx√
1− x7

·
∫ 1

0

x2dx√
1− x7

=
2π

7
tan

π

14
,∫ 1

0

x4dx√
1− x7

·
∫ 1

0

xdx√
1− x7

=
2π

21
tan

3π

14
,∫ 1

0

x5dx√
1− x7

·
∫ 1

0

dx√
1− x7

=
2π

35
tan

5π

14
.



VI. Reduction of formulas
∫
xm−1dx√

1−x8
:∫ 1

0

x4dx√
1− x8

·
∫ 1

0

x2dx√
1− x8

=
π

8
tan

π

8
,∫ 1

0

x5dx√
1− x8

·
∫ 1

0

xdx√
1− x8

=
π

16
tan

π

4
,∫ 1

0

x6dx√
1− x8

·
∫ 1

0

dx√
1− x8

=
π

24
tan

3π

8
,∫ 1

0

x2dx√
1− x8

·
∫ 1

0

dx√
1− x8

= tan
π

8
,∫ 1

0

x4dx√
1− x8

·
∫ 1

0

x6dx√
1− x8

= 3 tan
π

8
.

VII. Reduction of formulas
∫
xm−1dx√

1−x9
:∫ 1

0

x4dx√
1− x9

·
∫ 1

0

x3dx√
1− x9

=
2π

9
tan

π

18
,∫ 1

0

x5dx√
1− x9

·
∫ 1

0

x2dx√
1− x9

=
2π

27
tan

π

6
,∫ 1

0

x6dx√
1− x9

·
∫ 1

0

xdx√
1− x9

=
2π

45
tan

5π

18
,∫ 1

0

x7dx√
1− x9

·
∫ 1

0

dx√
1− x9

=
2π

63
tan

7π

18
.



VIII. Reduction of formulas
∫ 1

0
xm−1dx√
1−x10

:∫ 1

0

x5dx√
1− x10

·
∫ 1

0

x3dx√
1− x10

=
π

10
tan

π

10
,∫ 1

0

x6dx√
1− x10

·
∫ 1

0

x2dx√
1− x10

=
π

20
tan

π

5
,∫ 1

0

x7dx√
1− x10

·
∫ 1

0

dx√
1− x10

=
π

30
tan

3π

10
,∫ 1

0

x8dx√
1− x10

·
∫ 1

0

dx√
1− x10

=
π

40
tan

2π

5
,∫ 1

0

x3dx√
1− x10

·
∫ 1

0

dx√
1− x10

= tan
π

10
,∫ 1

0

x2dx√
1− x10

·
∫ 1

0

xdx√
1− x10

= tan
π

5
,∫ 1

0

x5dx√
1− x10

·
∫ 1

0

x8dx√
1− x10

= 4 tan
π

10
,∫ 1

0

x8dx√
1− x10

·
∫ 1

0

x7dx√
1− x10

=
3

2
tan

π

5
.

39. Upon combining the quotients with the products from each class, one can
form from them new products, which I will in general show. Given the product:∫ 1

0

xn+k−1dx√
1− x2n

·
∫ 1

0

xn−k−1dx√
1− x2n

=
π

2nk
tan

kπ

2n
,

as well as the two quotients:

I.
∫ 1

0
xn−α−1dx√

1−x2n
÷
∫ 1

0
xα−1dx√
1−x2n

= tan απ
2n .

II.
∫ 1

0
xn+β−1dx√

1−x2n
÷
∫ 1

0
x2n−β−1dx√

1−x2n
= n−β

β tan βπ
2n .

Then upon setting α = n − k and multiplying the first quotient against the
product product, we will have:∫ 1

0

xn+k−1dx√
1− x2n

·
∫ 1

0

xk−1dx√
1− x2n

=
π

2nk
.

Then, for the second quotient, setting β = n− k, and multiplying similarly, we
obtain: ∫ 1

0

x2n−k−1dx√
1− x2n

·
∫ 1

0

xn−k−1dx√
1− x2n

=
π

2n(n− k)
,

which does not differ from the preceding one. And so, for each class we have
two products:



I.
∫ 1

0
xn+k−1dx√

1−x2n
·
∫ 1

0
xn−k−1dx√

1−x2n
= π

2nk tan kπ
2n ,

II.
∫ 1

0
xn+k−1dx√

1−x2n
·
∫ 1

0
xk−1dx√
1−x2n

= π
2nk ,

of which the final one fits with those which I have already formerly demon-
strated.

40. We develop these products for a few cases, where n and k are even integers,
and we will have the following reductions for the case where x = 1:

I. Products of the form
∫ 1

0
xm−1dx√

1−x4
:∫ 1

0

x2dx√
1− x4

·
∫ 1

0

dx√
1− x4

=
π

4
tan

π

4
=
π

4
.

II. Products of the form
∫
xm−1dx√

1−x6
:∫ 1

0

x3dx√
1− x6

·
∫ 1

0

xdx√
1− x6

=
π

6
tan

π

6
=

π

6
√

3
,∫ 1

0

x4dx√
1− x6

·
∫ 1

0

dx√
1− x6

=
π

12
tan

π

3
=

π

4
√

3
,∫ 1

0

x3dx√
1− x6

·
∫ 1

0

dx√
1− x6

=
π

6
,∫ 1

0

x4dx√
1− x6

·
∫ 1

0

xdx√
1− x6

=
π

12
.

III. Products of the form
∫ 1

0
xm−1dx√

1−x8
:∫ 1

0

x4dx√
1− x8

·
∫ 1

0

x2dx√
1− x8

=
π

8
tan

π

8
,∫ 1

0

x5dx√
1− x8

·
∫ 1

0

xdx√
1− x8

=
π

16
tan

π

4
=

π

16
,∫ 1

0

x6dx√
1− x8

·
∫ 1

0

dx√
1− x8

=
π

24
tan

3π

8
,∫ 1

0

x4dx√
1− x8

·
∫ 1

0

dx√
1− x8

=
π

8
,∫ 1

0

x5dx√
1− x8

·
∫ 1

0

xdx√
1− x8

=
π

16
,∫ 1

0

x6dx√
1− x8

·
∫ 1

0

x2dx√
1− x8

=
π

24
.



IV. Products of the form
∫ 1

0
xm−1dx√
1−x10

:∫ 1

0

x5dx√
1− x10

·
∫ 1

0

x3dx√
1− x10

=
π

10
tan

π

10
,∫ 1

0

x6dx√
1− x10

·
∫ 1

0

x2dx√
1− x10

=
π

20
tan

π

5
,∫ 1

0

x7dx√
1− x10

·
∫ 1

0

xdx√
1− x10

=
π

30
tan

3π

10
,∫ 1

0

x8dx√
1− x10

·
∫ 1

0

dx√
1− x10

=
π

40
tan

2π

5
,∫ 1

0

x5dx√
1− x10

·
∫ 1

0

dx√
1− x10

=
π

10
,∫ 1

0

x6dx√
1− x10

·
∫ 1

0

xdx√
1− x10

=
π

20
,∫ 1

0

x7dx√
1− x10

·
∫ 1

0

x2dx√
1− x10

=
π

30
,∫ 1

0

x8dx√
1− x10

·
∫ 1

0

x3dx√
1− x10

=
π

40
.

41. After integrating these expressions, which are all specific realizations of
the general formula ∫

xm−1(1− xn)kdx,

and which one could call algebraic, since dx is multiplied by an algebraic func-
tion of x, I pass, as I set to myself, to consider still several integrals where the
differential dx is multiplied by a transcendent function of x, and of which the
integral, in a certain way, can be expressed algebraically, or by the quadrature
of the circle. These cases are even more remarkable, which shows us methods
for evaluating them, and from the following observations will serve to be able
to discover such methods.

42. I will not dwell upon the well known integral∫ 1

0

(log
1

x
)ndx = n!,

which holds provided that n is a nonnegative integer. But when n is a fraction,
the value of this integral is more difficult to find. As such, if n = 1

2 , I have
demonstrated that the value of this integral is equal to 1

2

√
π. From here, one



easily derives these integrations which depend on them:∫ 1

0

(log
1

x
)

1
2 dx =

1

2

√
π,∫ 1

0

(log
1

x
)

3
2 dx =

1

2

2

2

√
π,∫ 1

0

(log
1

x
)

5
2 dx =

1

2

3

2

5

2

√
π,∫ 1

0

(log
1

x
)

7
2 dx =

1

2

3

2

5

2

7

2

√
π,

Since employing integration by parts, we have in general:∫
(log

1

x
)mdx = x(log

1

x
)m +m

∫ 1

0

(log
1

x
)m−1dx;

therefore setting the bounds of the integral to be 0 and 1, we obtain:∫ 1

0

(log
1

x
)mdx = m

∫ 1

0

(log
1

x
)m−1dx.

43. This integration of the case n = 1
2 can be expressed in this way:

∫ 1

0

(log
1

x
)

1
2 dx =

√
1

2

∫
dx√

1− x2



setting x = 1, and for the others, setting n to be a fraction, I have found the
following reductions:∫ 1

0

(log
1

x
)

1
3 dx = 3

√
1

3

∫ 1

0

dx
3
√

(1− x3)2
·
∫ 1

0

xdx
3
√

(1− x3)2
,

∫ 1

0

(log
1

x
)

2
3 dx = 2

3

√
1

3

∫ 1

0

xdx
3
√

1− x3
·
∫ 1

0

x3dx
3
√

1− x3
,

∫ 1

0

(log
1

x
)

1
4 dx = 4

√
1

4

∫ 1

0

dx
4
√

(1− x4)3
·
∫ 1

0

xdx
4
√

(1− x4)3
·
∫ 1

0

x2dx
4
√

(1− x4)3
,

∫ 1

0

(log
1

x
)

2
4 dx = 2 4

√
1

4

∫ 1

0

xdx
4
√

(1− x4)2
·
∫ 1

0

x3dx
4
√

(1− x4)2
·
∫ 1

0

x5dx
4
√

(1− x4)2
,

∫ 1

0

(log
1

x
)

3
4 dx = 3

4

√
1

4

∫ 1

0

x2dx
4
√

1− x4
·
∫ 1

0

x5dx
4
√

1− x4
·
∫ 1

0

x8dx
4
√

1− x4
,

∫ 1

0

(log
1

x
)

1
5 dx = 2 5

√
1

5

∫ 1

0

dx
5
√

(1− x5)4
·
∫ 1

0

xdx
5
√

(1− x5)4
·
∫ 1

0

x2dx
5
√

(1− x5)4
·
∫ 1

0

x3dx
5
√

(1− x5)4
,

∫ 1

0

(log
1

x
)

2
5 dx = 2 5

√
1

5

∫ 1

0

xdx
5
√

(1− x5)3
·
∫ 1

0

x3dx
5
√

(1− x5)3
·
∫ 1

0

x5dx
5
√

(1− x5)3
·
∫ 1

0

x7dx
5
√

(1− x5)3
,

∫ 1

0

(log
1

x
)

3
5 dx = 3 5

√
2

5

∫ 1

0

x2dx
5
√

(1− x5)2
·
∫ 1

0

x5dx
5
√

(1− x5)2
·
∫ 1

0

x8dx
5
√

(1− x5)2
·
∫ 1

0

x11dx
5
√

(1− x5)2
,

∫ 1

0

(log
1

x
)

4
5 dx = 4

5

√
6

5

∫ 1

0

x3dx
5
√

1− x5
·
∫ 1

0

x7dx
5
√

1− x5
·
∫ 1

0

x11dx
5
√

1− x5
·
∫ 1

0

x15dx
5
√

1− x5
.

44. Simplifying those integrals for which the numerator contains variables to
higher or equal powers to that of the denominator, with the help of the reduction:∫

xm−1(1− xn)kdx =
m− n
m+ nk

∫
xm−n−1(1− xn)kdx,



we will find the following simplified forms:

∫ 1

0

(log
1

x
)

1
2 dx =

√
1

2

∫ 1

0

dx√
1− x2

,

∫ 1

0

(log
1

x
)

1
3 dx = 3

√
1

3

∫ 1

0

dx
3
√

(1− x3)2
·
∫ 1

0

xdx
3
√

(1− x3)2
,

∫ 1

0

(log
1

x
)

2
3 dx = 2

3

√
1

9

∫ 1

0

dx
3
√

1− x3
·
∫ 1

0

xdx
3
√

1− x3
,

∫ 1

0

(log
1

x
)

1
4 dx = 4

√
1

4

∫ 1

0

dx
4
√

(1− x4)3
·
∫ 1

0

xdx
4
√

(1− x4)3
·
∫

x2dx
4
√

(1− x4)3
,

∫ 1

0

(log
1

x
)

2
4 dx = 2 4

√
1

16

∫ 1

0

dx
4
√

(1− x4)2
·
∫ 1

0

xdx
4
√

(1− x4)2
·
∫ 1

0

x2dx
4
√

(1− x4)2
,

∫ 1

0

(log
1

x
)

5
4 dx = 3

4

√
2

64

∫ 1

0

dx
4
√

1− x4
·
∫ 1

0

xdx
4
√

1− x4
·
∫ 1

0

x2dx
4
√

1− x4
,

∫ 1

0

(log
1

x
)

1
5 dx = 5

√
1

5

∫ 1

0

dx
5
√

(1− x5)4
·
∫ 1

0

xdx
5
√

(1− x5)4
·
∫ 1

0

x2dx
5
√

(1− x5)4
·
∫ 1

0

x3dx
5
√

(1− x5)4
,

∫ 1

0

(log
1

x
)

2
5 dx = 2 5

√
1

25

∫ 1

0

dx
5
√

(1− x5)3
·
∫ 1

0

xdx
5
√

(1− x5)3
·
∫ 1

0

x2dx
5
√

(1− x5)3
·
∫ 1

0

x3dx
5
√

(1− x5)3
,

∫ 1

0

(log
1

x
)

3
5 dx = 3 5

√
2

125

∫ 1

0

dx
5
√

(1− x5)2
·
∫ 1

0

xdx
5
√

(1− x5)2
·
∫ 1

0

x2dx
5
√

(1− x5)2
·
∫ 1

0

x3dx
5
√

(1− x5)2
,

∫ 1

0

(log
1

x
)

4
5 dx = 4

5

√
6

625

∫ 1

0

dx
5
√

1− x5
·
∫ 1

0

xdx
5
√

1− x5
·
∫ 1

0

x2dx
5
√

1− x5
·
∫ 1

0

x3dx
5
√

1− x5
.

45. Therefore the values of the transcendent integral
∫ 1

0
(log 1

x )ndx, when n
is a reduced fraction to values of the integrals, where dx is multiplied by an
algebraic function of x. And yet, among these last formulas, there will remain
a trigonometric part, since∫

xm−1dx
n
√

(1− xn)m
=

π

n sin mπ
n

.

Then, in order to be better compose the other sets, setting in the formulas of
Section 21: 2k = 2n+m− 2λ in order to have:∫ 1

0

xn−m−1dx
n
√

(1− xn)λ−m
·
∫ 1

0

xm−1dx
n
√

(1− xn)λ
=

π

n(n− λ) sin mπ
n

,

from here we will have:



I. If n = 3: ∫ 1

0

xdx
3
√

1− x3
·
∫ 1

0

dx
3
√

(1− x3)2
=

π

3 sin π
3

.

II. If n = 4: ∫ 1

0

x2dx
4
√

1− x4
·
∫ 1

0

dx
4
√

(1− x4)2
=

π

8 sin π
4

,∫ 1

0

x2dx
4
√

(1− x4)2
·
∫ 1

0

dx
4
√

(1− x4)3
=

π

4 sin π
4

,∫ 1

0

xdx
4
√

1− x4
·
∫ 1

0

xdx
4
√

(1− x4)3
=

π

4 sin π
2

.

III. If n = 5: ∫ 1

0

x3dx
5
√

1− x5
·
∫ 1

0

dx
5
√

(1− x5)2
=

π

15 sin π
5

,∫ 1

0

x3dx
5
√

(1− x5)2
·
∫ 1

0

dx
5
√

(1− x5)3
=

π

10 sin π
5

,∫ 1

0

x3dx
5
√

(1− x5)3
·
∫ 1

0

dx
5
√

(1− x5)4
=

π

5 sin π
5

,∫ 1

0

x2dx
5
√

1− x5
·
∫ 1

0

xdx
5
√

(1− x5)3
=

π

10 sin 2π
5

,∫ 1

0

x2dx
5
√

(1− x5)2
·
∫ 1

0

xdx
5
√

(1− x5)4
=

π

5 sin 2π
5

,∫ 1

0

xdx
5
√

1− x5
·
∫ 1

0

x2dx
5
√

(1− x5)4
=

π

5 sin 3π
5

.

46. From here we see that multiplying all the formulas of the same order
together, the product reduces to trigonometric expressions; as such we will
have:∫ 1

0

(log
1

x
)

1
2 dx =

1

2

√
π,∫ 1

0

(log
1

x
)

1
3 dx ·

∫ 1

0

(log
1

x
)

2
3 dx =

2

9 sin π
3

· π =
2

9

√
4π2

3
,∫ 1

0

(log
1

x
)

1
4 dx ·

∫ 1

0

(log
1

x
)

2
4 dx ·

∫ 1

0

(log
1

x
)

3
4 dx =

6π
√
π

43 sin π
4

=
6

43

√
8π3

4
,∫ 1

0

(log
1

x
)

1
5 dx ·

∫ 1

0

(log
1

x
)

2
5 dx ·

∫ 1

0

(log
1

x
)

3
5 dx ·

∫ 1

0

(log
1

x
)

4
5 dx =

24π2

54 sin π
5 sin 2π

5

=
24

54

√
16π4

5
,



∫ 1

0

(log
1

x
)

1
6 dx ·

∫ 1

0

(log
1

x
)

2
6 dx ·

∫ 1

0

(log
1

x
)

3
6 dx ·

∫ 1

0

(log
1

x
)

4
6 dx ·

∫ 1

0

(log
1

x
)

5
6 dx =

120π2
√
π

65 sin π
6 sin 2π

6

=
120

65

√
32π5

6
.

From here we conclude that where will be in general:

n−1∏
i=1

∫ 1

0

(log
1

x
)
i
n dx =

1 · 2 · 3 · · · (n− 1)

nn−1

√
2n−1πn−1

n
, (11)

a theorem which is quite worthy of attention.

47. The comparison of these formulas can be pushed even further, by consid-
ering this general theorem:∫

xα−1dx
n
√

(1− xn)β
=

∫
xn−β−1dx

n
√

(1− xn)n−α
,

therefore the proceeding theorem is derived from Section 21. changes also into
other forms. Then, the formulas of Section 29. furnishes the following compar-
isons: ∫ 1

0

xk−1dx
n
√

(1− xn)m+k
÷
∫ 1

0

xm−1dx
n
√

(1− xn)m+k
=

sin mπ
n

sin kπ
n

,∫ 1

0

xk−1dx
n
√

(1− xn)n+k−m
÷
∫ 1

0

xn−m−1dx
n
√

(1− xn)n+k−m
=

sin mπ
n

sin kπ
n

,∫ 1

0

xn−k−1dx
n
√

(1− xn)n+m−k
÷
∫ 1

0

xm−1dx
n
√

(1− xn)n+k−m
=

sin mπ
n

sin kπ
n

,∫ 1

0

xn−k−1dx
n
√

(1− xn)2n−m−k
÷
∫ 1

0

xn−m−1dx
n
√

(1− xn)n+k−m
=

sin mπ
n

sin kπ
n

.

of which the last reduces to the first, since in place of m and k one can put
n−m and n− k.

48. Now, since∫
xm−1dx

n
√

(1− xn)m+k
=
n− k
m

∫
xm+n−1dx

n
√

(1− xn)m+k
,

one will then have this comparison:∫
xk−1dx

n
√

(1− xn)m+k
:

∫
xm+n−1dx

n
√

(1− xn)m+k
=
n− k
m

sin
mπ

n
: sin

kπ

n



upon taking m for a negative number:∫
xk−1dx

n
√

(1− xn)k−m
:

∫
xn−m−1dx

n
√

(1− xn)k−m
=
n− k
m

sin
mπ

n
: sin

kπ

n
,

from here we draw the particular following comparisons:∫ 1

0

xdx
4
√

(1− x4)3
÷
∫ 1

0

dx
4
√

(1− x4)3
=

sin π
4

sin π
2

=
1√
2
,∫ 1

0

x2dx
5
√

(1− x5)4
÷
∫ 1

0

dx
5
√

(1− x5)4
=

sin π
5

sin 2π
5

,∫ 1

0

xdx
5
√

(1− x5)3
÷
∫ 1

0

dx
5
√

(1− x5)3
=

sin π
5

sin 2π
5

,∫ 1

0

x2dx
5
√

(1− x5)2
÷
∫ 1

0

x3dx
5
√

(1− x5)2
=

2 sin π
5

sin 2π
5

,∫ 1

0

xdx
5
√

1− x5
÷
∫ 1

0

x3dx
5
√

1− x5
=

3 sin π
5

sin 2π
5

.

49. In order to make obvious the usage of these reductions, we will consider
the particular formulas which enter in the expressions of the formulas∫ 1

0

(log
1

x
)

1
5 dx;

∫ 1

0

(log
1

x
)

2
5 dx;

∫ 1

0

(log
1

x
)

3
5 dx;

∫ 1

0

(log
1

x
)

4
5 dx,

and first the number of all the said formulas being 16, there will be 4 which
depend on the quadrature of the circle.∫ 1

0

dx
5
√

1− x5
=

π

5 sin π
5

,∫ 1

0

xdx
5
√

(1− x5)2
=

π

5 sin 2π
5

,∫ 1

0

x3dx
5
√

(1− x5)4
=

π

5 sin π
5

.∫ 1

0

x2dx
5
√

(1− x5)3
=

π

5 sin 3π
5

=
π

5 sin 2π
5

,



For the other 12 of the general furnished reduction:∫ 1

0

xdx
5
√

(1− x5)4
=

∫ 1

0

dx
5
√

(1− x5)3
,∫ 1

0

x2dx
5
√

(1− x5)4
=

∫ 1

0

dx
5
√

(1− x5)2
,∫ 1

0

x3dx
5
√

(1− x5)3
=

∫ 1

0

xdx
5
√

1− x5
,∫ 1

0

x3dx
5
√

(1− x5)2
=

∫ 1

0

x2dx
5
√

1− x5
.

Then we come to find:∫ 1

0

x2dx
5
√

(1− x5)4
=

sin 1
5π

sin 2
5π

∫ 1

0

dx
5
√

(1− x5)4
,∫ 1

0

xdx
5
√

(1− x5)3
=

sin 1
5π

sin 2
5π

∫ 1

0

dx
5
√

(1− x5)3
,∫ 1

0

x2dx
5
√

(1− x5)2
=

2 sin 1
5π

sin 2
5π

∫ 1

0

x3dx
5
√

(1− x5)2
,∫ 1

0

xdx
5
√

1− x5
=

2 sin 1
5π

sin 2
5π

∫ 1

0

x3dx
5
√

1− x5
,

those which one can add to the products of two such formulas quotients in
Section 45. for the case where n = 5.

50. If we examine the integral equalities in the previous section, we find that
all twelve reduce to only two. In the interest of abbreviation, set

y =
1

5
√

1− x5
, α = sin

π

5
, β = sin

2π

5
,

then we can write these integrals purely as a combination trigonometric func-
tions and the two simple integrals

∫
y2dx and

∫
y3dx:



∫ 1

0

y4dx =
β

α

∫
y2dx

∫ 1

0

xy4dx =

∫ 1

0

y3dx

∫ 1

0

x2y4dx =

∫ 1

0

y2dx,∫ 1

0

y3dx =
π

5α

∫ 1

0

x3ydx =
π

15α
∫
y2dx

∫ 1

0

x2y3dx =
π

5β
∫
y3dx

,∫ 1

0

ydx =
α

β

∫ 1

0

y3dx

∫ 1

0

xy2dx =
π

5β

∫ 1

0

x3y3dx =
π

5β
∫ 1

0
y2dx

,∫ 1

0

x2y3dx =
π

5β

∫ 1

0

x2ydx =
π

10α
∫
y3dx

∫ 1

0

x3y2dx =
π

10α
∫
y3dx

,∫ 1

0

x3y4dx =
π

5α

∫ 1

0

xydx =
π

5β
∫
y2dx

Therefore let
∫
y2dx = A and

∫
y3dx = B, and the values of our transcendent

formulas will be: ∫ 1

0

(log
1

x
)

1
5 dx =

5

√
βπA2B

52α2
,∫ 1

0

(log
1

x
)

2
5 dx = 2 5

√
απ2B2

54β3A
,

∫ 1

0

(log
1

x
)

3
5 dx = 3 5

√
π3A

56αβ2B2
,

∫ 1

0

(log
1

x
)

4
5 dx = 4 5

√
π4

58α3βA2B
.

51. From here we see that not only the product of all these four formulas
depend uniquely on the quadrature of the circle, but also the product of two, of
which the exponents make together unity, to know:∫ 1

0

(log
1

x
)

1
5 dx ·

∫ 1

0

(log
1

x
)

4
5 dx =

4π

52 sin π
5

,∫ 1

0

(log
1

x
)

2
5 dx ·

∫ 1

0

(log
1

x
)

2
5 dx =

6π

52 sin 2π
5

.

Besides this, we can deduce from them the following equalities:[ ∫ 1

0

(log
1

x
)

1
5 dx

]2
÷
∫ 1

0

(log
1

x
)

2
5 dx =

1

2

∫ 1

0

dx
5
√

(1− x5)4
=
βA

2α
,∫ 1

0

(log
1

x
)

1
5 dx ·

[ ∫ 1

0

(log
1

x
)

2
5 dx

]2
=

4πB

52 sin 2π
5

∫ 1

0

dx
5
√

(1− x5)3
.



52. If we join these previous determinations, we can draw from them the
following general conclusions:∫ 1

0

(log
1

x
)

1
2 dx ·

∫ 1

0

(log
1

x
)

1
2 dx =

π

22 sin π
2

,∫ 1

0

(log
1

x
)

1
3 dx ·

∫ 1

0

(log
1

x
)

2
3 dx =

2π

32 sin π
3

,∫ 1

0

(log
1

x
)

1
4 dx ·

∫ 1

0

(log
1

x
)

3
4 dx =

3π

42 sin π
4

,∫ 1

0

(log
1

x
)

1
5 dx ·

∫ 1

0

(log
1

x
)

4
5 dx =

4π

52 sin π
5

,∫ 1

0

(log
1

x
)

2
5 dx ·

∫ 1

0

(log
1

x
)

3
5 dx =

6π

52 sin 2π
5

,

and in general:∫ 1

0

(log
1

x
)
m
n dx ·

∫ 1

0

(log
1

x
)
n−m
n dx =

m(n−m)π

n2 sin mπ
n

,

therefore since ∫ 1

0

(log
1

x
)
n−m
n dx =

n−m
n

∫ 1

0

(log
1

x
)
−m
n dx,

we will have:∫ 1

0

(log
1

x
)
m
n dx ·

∫ 1

0

(log
1

x
)
−m
n dx =

mπ

n sin mπ
n

= m

∫ 1

0

xm−1dx
n
√

(1− xn)m
.

53. This last equality can easily be immediately demonstrated by developing
the most simple case, where the exponent is an even number:∫ 1

0

(log
1

x
)λdx = 1 · 2 · 3 · · ·λ.

And yet, this finite expression can be expressed by an infinite product, as:∫
(log

1

x
)λdx = (

2

1
)λ · 1

1 + λ
· (3

2
)λ · 2

2 + λ
· (4

3
)λ · 3

3 + λ
· · · · .

Now letting λ = m
n to have:∫

(log
1

x
)
m
n dx = (

2

1
)
m
n · n

n+m
· (3

2
)
m
n · 2n

2n+m
· (4

3
)
m
n · 3n

3n+m
· · · · ,

and also for m negative:∫
(log

1

x
)
−m
n dx = (

2

1
)
−m
n · n

n−m
· (3

2
)
−m
n · 2n

2n−m
· (4

3
)
−m
n · 3n

3n−m
· · · · .



The product of these two formulas evidently give:

n2

n2 −m2
· 4n2

4n2 −m2
· 9n2

9n2 −m2
etc. =

mπ

n sin mπ
n

.

54. We could set farther these researches, since∫ 1

0

(log
1

x
)
p
n dx = (

2

1
)
p
n · n

n+ p
· (3

2
)
p
n · 2n

2n+ p
· · · · ,∫ 1

0

(log
1

x
)
q
n dx = (

2

1
)
q
n · n

n+ q
· (3

2
)
q
n · 2n

2n+ q
· · · · ,∫ 1

0

(log
1

x
)
p+q
n dx = (

2

1
)
p+q
n · n

n+ p+ q
· (3

2
)
p+q
n · 2n

2n+ p+ q
· · · · .

The product of the two first divided by the last, gives:∫
(log 1

x )
p
n dx ·

∫
(log 1

x )
q
n dx∫

(log 1
x )

p+q
n dx

=
n(n+ p+ q)

(n+ p)(n+ q)
· 2n(2n+ p+ q)

(2n+ p)(2n+ q)
· · · · ,

of which the value is

q

∫
xn+p−1dx

n
√

(1− xn)n−q
=

pq

p+ q

∫
xp−1dx

n
√

(1− xn)n−q
=

pq

p+ q

∫
xq−1dx

n
√

(1− xn)n−p
,

or in other words, it equals:

q

∫
xq−1 n

√
(1− xn)pdx = p

∫
xp−1 n

√
(1− xn)qdx,

formula which conduces to the proceeding one, when one sets p = m and q =
−m. In the same way, one will find the value of∫

(log 1
x )

p
n dx ·

∫
(log 1

x )
q
n dx ·

∫
(log 1

x )
r
n dx∫

(log 1
x )

p+q+r
n dx

=
pqr

p+ q + r

∫
xp−1dx

n
√

(1− xn)n−q
·
∫

xp+q−1dx
n
√

(1− xn)n−r
.

55. Finally, in order to finish this paper, the summation of the reciprocal series
of powers we furnish still the value of the following transcendent formulas, when
one sets after integration x = 1:∫

1

x
log

1

1− x
dx =

π2

6
;

∫
1

x
log(1 + x)dx =

π2

12
,

and

∫
1

x
log

√
1 + x

1− x
dx =

π2

8
,

and these others, more composed:∫
dx

x

∫
dx

x

∫
1

x
log

1

1− x
dx =

π4

90
;

∫
dx

x

∫
dx

x

∫
1

x
log(1 + x)dx =

7π4

720
,∫

dx

x

∫
dx

x
arctanx =

π3

32
;

∫
dx

x

∫
dx

x

∫
dx

x
log

√
1 + x

1− x
=
π4

96
.



And now, there does not seem any direct rout which we can travel along to
these determinations, which merits itself, even more attention.


