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1. Euler begins by stating the problem to be considered in this paper: : Let x, y, z be 

positive integers such that the sum of any two minus the third is a perfect square. In other 

words we require that the following three equations be satisfied 

                                             

2 2 2 2

2 2 2 2

2 2 2 2

,
,
.

y z x p
x z y q
x y z r

+ − =

+ − =

+ − =

                                           (1) 

By adding these equations he finds that this problem is equivalent to the second problem:  

Find three square numbers such that half the sum of any two of them is also a square  

2 2 2 2
2 2,

2 2
p q p rz y+ +

= =  and 
2 2

2

2
q r x+

= . 

While he does not say it, Euler avoids trivial solutions in which two of the numbers  x, y, 

z are equal. 

2.  If we find a solution of (1) as x, y, z, then all their multiples nx, ny, nz  will also  

be a solution.  To avoid these trivial solutions, in the following we will search for three 
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numbers, having no common divisor. With this restriction, Euler shows  that all three 

numbers must be odd. 

3.   Euler digresses in this section , and explores a generalization of his main problem. 

He shows that if we want to determine four square numbers such that the sum of three 

less the fourth one is a perfect square, no solution is possible. 

4.  After giving extensive motivation, he finds that by taking 

2 2 ,x b ab a= + − 2 2y a ab b= + −  and  2 2 ,z a b= +

then the first two equations of (1) will be satisfied.  He must now determine values of  a 

and b which also satisfy the third equation which is 

2 2 2 4 4 2 24 .2x y z a b a b r+ − = + − =  

5.  Euler looks for a solution to 4 4 2 24a b a b r 2+ − = . He remarks that an easy 

solution is . To find another solution Euler tries 2a = b ,( 2)a b ζ= +  (Euler uses z rather 

than our ζ , which could be confusing) and after some calculation shows that  

 ,                                                          (2) 2 2 2 24 ( )y x ab a b− = −

and determines that 23
4

ζ −
= , which leads to 15

4
ba = − . Thus he has his first solution 

149,x =     269,y = 241,z =

which appears to be the smallest numbers possible.  From this, he finds  

329,p =   and 89,q = 191.r =   

6.   He now tries different methods of factoring the right side of (2). He first tries  
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2my x ab
n

+ =  and 2 22 (ny x a b
m

− = − ) , but, without showing calculations remarks that 

this fails. He then tries  and 2 ( ),y x a a b+ = + 2 ( )y x b a b− = − , and after some 

calculations shows that this fails also. 

7. He has tried other methods of this type, and reveals that after much long and 

difficult calculation he has had no success. He will now turn to four other “absolutely 

remarkable methods” which “without difficulty” yield general formulas for x, y, and z 

that produce an infinite number of solutions.  

Easy methods for finding more general solutions. 

First method. 

8.   Euler sets  and equations (1)  become 2 2 2 ,s x y z= + +

2 22 ,s x p− =  or  2 22 ,s p x= +

2 22 ,s y q− =  or                                            (3) 2 2s q y= + 2 ,

2

2

2

2 22 ,s z r− =  or  2 22 .s r z= +

Thus s has to be, in three different ways, the sum of a square plus twice a square. 

9. He shows that if s is a prime number that can be expressed in the form 

, then this form is unique. That is to say, there are no numbers c and d, 

different from a and b,  such that .  It follows immediately from (3) that s 

cannot be prime. 

2 2s a b= +

2 2s c d= +

10. He proposes to demonstrate that if s has the form and satisfies (3) then it 

must be the product of at least three prime factors.  

2 2a b+
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11.   Euler states without proof that all odd numbers of the form  are always of 

the form  or 8 , and that when the number is even and of the form , it is 

twice one or the other of the two formulas.  

2 2a b+ 2

1 3 2

1

8n + n + 2 2a b+

12. He gives a list of primes of the form 8n +  and 8 3n +  and shows that all of them 

can be expressed in the form . He calls this remarkable. 2 2a b+ 2

18n +   8 3n +  

2 217 3 2 2= + ⋅   2 23 1 2 1= + ⋅  

2 241 3 2 4= + ⋅   2 211 3 2 1= + ⋅  

2 273 1 2 6= + ⋅   2 219 1 2 3= + ⋅  

2 289 9 2 2= + ⋅   2 243 5 2 3= + ⋅  

2 297 5 2 6= + ⋅   2 259 3 2 5= + ⋅  

2 2113 9 2 4= + ⋅  2 267 7 2 3= + ⋅  

2 2137 3 2 8= + ⋅  2 283 9 2 1= + ⋅  

2 2107 3 2 7= + ⋅  

2 2131 9 2 5= + ⋅  

2 2139 11 2 3= + ⋅  

We used a computer to extend Euler’s list to all primes congruent to 1 or 3 mod 8 less 

than 800,000. In all cases these primes were of the form . Is Euler conjecturing 

that this is true for all such primes? 

2 2a b+ 2

113. Euler states Fermat’s little theorem: If 2m +  is prime and not a divisor of c, then 

 divides . He uses it to show that if 82m +1 12 1mc − n + is prime, then it divides some 

numbers of the form . 2 22a b+
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14. He again uses Fermat’s little theorem to show that if 8 3n + is prime, then it also 

divides some numbers of the form . 2 22a b+

(It appears as though Euler suspects that all primes of the form 8n+1 and 8n+3 are of the 

form , but he is only able to show that these primes divide some number of the 

form .) 

2 2a b+ 2

2 )

2

2 22a b+

 Now he returns to solving equations (3). We have seen that s must have at least 

three factors and he tries 

 .  2 2 2 2 2( 2 ) ( 2 ) ( 2s a b c d f g= + + +

He then sets  from which it follows that 2 2 2 2 2( 2 )( 2 ) 2a b c d m n+ + = +

2 ,m ac bd= ±  .n bc ad= ∓                                                             (4) 

(It is an elementary exercise to show that numbers of the form are closed under 

multiplication.) Our sum s can be expressed as  

2 2a b+ 2

22 2 2 2 2( 2 )( 2 ) 2s m n f g ζ ν= + + = +  and 

we will have similarly  

            2mf ngζ = ±  and .v nf mg= ∓                                              (5) 

 

(Euler uses z rather than ζ  in the above which is a confusing choice of variable. Thus we 

use ζ  for clarity.) 

15.   Using (4) we eliminate  m and n from (5). This gives us four expressions for ζ  

and four for v.  For ζ  we get 

1)  ( 2 ) 2 ( ),f ac bd g bc ad+ + −  

2)  ( 2 ) 2 ( ),f ac bd g bc ad+ − −  

3)  ( 2 ) 2 ( ),f ac bd g bc ad− + +  
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4)  ( 2 ) 2 ( ),f ac bd g bc ad− − +  

and for v: 

1)  ( ) ( 2 ),f bc ad g ac bd− − +  

2)  ( ) ( 2 ),f bc ad g ac bd− + +  

3)  ( ) ( 2 ),f bc ad g ac bd+ − −  

4)  ( ) ( 2 ).f bc ad g ac bd+ + −  

16.   While we have four different values for  ζ  and v,  we require only three, because 

of the conditions   and .  Using the first three values 

of 

2 22 ,s p x= + 2 2s q y= + 2 2 2s r z= +

ζ  and v listed above we get 

( 2 ) 2 ( )
( 2 ) 2 ( )
( 2 ) 2 ( )
( ) ( 2 )
( ) ( 2 )
( ) ( 2 )

,
,
,

,
,
.

f ac bd g bc ad p
f ac bd g bc ad q
f ac bd g bc ad r
f bc ad g ac bd x
f bc ad g ac bd y
f bc ad g ac bd z

+ + − =
+ − − =
− + + =
− − + =
− + + =
+ − − =

 

17.   Using the above values for  x, y, z, Euler calculates 2 2s x y z2= + + and obtains the 

expression  where 2 2 2s Af Bg Cfg= + + ,

,
,

2 2 2 2

2 2 2 2

3 2 3
3 4 12

( )( 2 ).

A b c abcd a d
B a c abcd b d
C bc ad ac bd

= − +

= + +
= − + −

 

He now compares the above expression with 

  2 2 2 2 2 2( 2 )( 2 )( 2s a b c d f g= + + + )

) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2( 2 2 4 ) 2 ( 2 2 4ff a c b c a d b d g a c b c a d b d= + + + + + + + . 

To make these two expressions for s equal he sets 
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2 2 2Ff Gg Cfg+ + = 0,

,
,

                                                                  (6) 

where  

                                   

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 4
4 4 4 4

( )( 2 ).

F b c abcd a d a c b d
G a c abcd b d b c a d
C bc ad ac bd

= − + − −

= + + − −
= − + −

We must find values of the six numbers a, b, c, d, f, g, which satisfy (6) and from these 

we can find x, y, z  and also p, q, r. We note that (6) is an important quadratic equation for 

f
g

 

  
2

2f fF C G
g g

⎛ ⎞ 0+ + =⎜ ⎟
⎝ ⎠

.                                                          (7) 

Euler will use this equation several times in the remainder of the paper. 

18.   By taking , Euler simplifies the solution of (7) and gets 0F = .
2

f G
g C
= −   After 

reducing 
2
G
C

−  to smaller terms, Euler will take the numerator for f and the denominator 

for g, and all the expressions above will b rational numbers.   

19.   The value  factors as 2 2 2 2 2 2 2 22 4F b c abcd a d a c b d= − + − −

{( ) ( 2 ) }{( ) ( 2 ) }.F b a c a b d b a c a b d= + + + − + −  Since F = 0, This leads to the two 

solutions 

 2c a
d b a

− −
=

+
b  and 2 .c b a

d b a
−

=
−

 

20. In the same manner Euler tries making the value of G vanish. In this case he 

gets 2 2 ,
2

c b a
d a b

+
=

+
 or 2 2 ,

2
c b a
d a b

−
=

−
  but these values do not result in new solutions. 
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21. Having found a general solution to his original problem, Euler now reviews the 

details of his method for finding numerical values: 

Summary of Euler’s first method 

 1)  Begin with any two numbers a and b, then find  c and d by one or the other 

of the two formulas 
ab

ba
d
c

+
−−

=
2 , or 2c b

d b a
a−

=
−

. 

 

 2) Next we calculate 

2 2 2 2 2 2( 4 ) 4( ) 4
2( )( 2 )

a b c b a d abcd
bc ad ac bd

− + − +
+ −

. 

After reducing this fraction to lowest terms, we take f equal to the numerator, and g equal 

to the denominator. 

 3) Now we find of x, y, z by the formulas 

( ) ( 2
( ) ( 2
( ) ( 2

),
),
).

x f bc ad g ac bd
y f bc ad g ac bd
z f bc ad g ac bd

= − − +
= − + +
= + − −

 

 4) Finally the letters p, q, r are also found from 

( 2 ) 2 (
( 2 ) 2 ( )
( 2 ) 2 ( )

),
,
.

p f ac bd g bc ad
q f ac bd g bc ad
r f ac bd g bc ad

= + + −
= + − −
= − + +

 

Euler ends this section by showing the detailed calculations in three examples. 

Example 1.  Let  and  and get for x, y, z the numbers 241, 269 and 149, and for 

p, q, r he obtains –191, 89 and 329. Also s = 3 1

1a = 1,b =

7 41 73.⋅ ⋅ ⋅  
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Example 2.  Let  and  and get two cases. In the first case he obtains for x, y, z 

the values 397, 593 and 707. For p, q, r  he gets 833, 553 and 97. Also   

In the second case he obtains for x, y, z the values 3365, 6697 and 6755. For p, q, r  he 

gets -8897, 3479 and 3247. Also  

1a = 2,b =

9 11 10193.s = ⋅ ⋅

9 43 263057.s = ⋅ ⋅  

Example 3.  Let 3 and 1 and  obtain for x, y, z values 8405, 12913 and -11795. For p, q, r  

he gets 15337, -6559 and 9913. Also  11 57 600497.s = ⋅ ⋅  

22.   Euler lists a few additional results involving relatively small numbers. 

I   II  III  IV  V 

241x =    397  425  595  493 

269y =    593  373  769  797 

149z =    707  205  965  937 

191p =    833   23  1081  1127 

89q =    553  289  833  697 

329r =     97  527  119  289 

                                        

Second Method. 

23. In section 17, the solution of our problem was reduced to the quadratic equation 

(7) 

2

2 0f fF C G
g g

⎛ ⎞
+ + =⎜ ⎟

⎝ ⎠
 

where 

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 4
4 4 4 4

( )( 2 ).

F b c abcd a d a c b d
G a c abcd b d b c a d
C bc ad ac bd

= − + − −

= + + − −
= − + −

,
,  
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Rather than set , Euler now examines the general solution of the quadratic 0F =

2f C C FG
g F

− ± −
= . Let  so that 2 2V C FG= − .f C V

g F
− ±

=   By substituting the values 

of C, F, and G, and letting 2 2
abm

a b
=

− 2 we get the expression 

2
4 3 2 2 3

2 2 2 8 4 16 4
( 2 )

V c mc d c d mcd d
a b

= + − − +
−

4.  

24.   Since this formula must be a square, let us assume its square root is equal to 

2 2
2 2 4 2

2
V c mcd d

a b
= − +

−
. 

To make this true Euler finds that he needs 
22 .

2
c m
d m

1+
=   Thus, he takes  and 

 and gets 

22c m= +1

2 ,d m=

2 4
2 2 4 1 12

2
V m m

a b
= + −

−
.

2

1 m

 

25. We now summarize Euler’s second method of solution in more detail than given 

in his paper. 

Summary of Euler’s second method 

1) Select arbitrary numbers a and b. Next calculate , and 

 and 

2/( 2 )m ab a b= −

22c m= + 2d = . Find  ( )( )2 2 2 42 4 1 12V a b m m= − + − . 

2)  Next find F and C from (same as first solution)  

  
2 2 2 2 2 2 2 22 4
( )( 2 ).

F b c abcd a d a c b d
C bc ad ac bd
= − + − −
= − + −

,

 3) Find f  and g from .f C V
g F

− ±
=   
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 4) Now we find  x, y, z by the formulas (same as first solution)  

( ) ( 2
( ) ( 2
( ) ( 2

),
),
).

x f bc ad g ac bd
y f bc ad g ac bd
z f bc ad g ac bd

= − − +
= − + +
= + − −

 

 5) Finally the numbers p, q, r are also found from (same as first solution)  

( 2 ) 2 (
( 2 ) 2 ( )
( 2 ) 2 ( )

),
,
.

p f ac bd g bc ad
q f ac bd g bc ad
r f ac bd g bc ad

= + + −
= + − −
= − + +

 

Euler gives two examples: 

 Example 1.  Let  and 2a = 1,b =  then 1,m =  3,c =  2,d =   and 

get  and 

28,f = 51,g =

482,x = 538,y = − 298,z = 382,p = 178,q = 658.r = −  

 Example 2.  Let  and 3a = 2,b =  then 6,m =  73,c =  12,d =   

and obtain  

7,f = −

17,g = 5309,x = 3769,y = 4181,z =  and 1871,p =  5609,q =   4991.r =

Third method 

26. Starting with , Euler assumes that the first 

factor can be expressed in two different ways as . Euler uses a and b 

to calculate  x, y, p, q, while α and β are used to find z and r. He gets 

2 2 2 2 2 2( 2 )( 2 )( 2s a b c d f g= + + + )

22

),

2 2 22 a bα β+ = +

( ) ( 2x f bc ad g ac bd= − − +   ( 2 ) 2 (p f ac bd g bc ad ),= + + −  

( ) ( 2y f bc ad g ac bd= − + + ), ),  ( 2 ) 2 (q f ac bd g bc ad= + − −  

( ) ( 2z f c d g c d ),β α α β= + − +   ( 2 ) 2 (r f c d g c d ).α β β α= − + +  

After more manipulation which we will skip in this summary he again gets the important 

quadratic (7)   

  
2

2 0f fF C G
g g

⎛ ⎞
+ + =⎜ ⎟

⎝ ⎠
, 



 12

now with 

 ( 2 )(C c d c d ),α β β α= − +  

 ( ) ( )( ) ( ) ( )( )2 2 ,F a c b d a c b dβ α β α= + + + − + −  

 ( ) ( )( ) ( ) ( )( )2 2 2 2G b c a d b cα β α β α= + − + − − − .d  

27.   To solve the above quadratic he selects the simple solution where  by 

setting 

0,F =

2c b
d a

α
β
− −

=
+

 or 2 .b
a

α
β
− +

=
−

 

Thus 
2

f G
g C
=  from which Euler gets ( )( )2 2f aa bb cc dd= + +  

and  ( )(2 2g c d cα β β α= − − + ).d

2 n

28. Euler states that he will simplify the calculations in a “rule” in the next section. 

Summary of Euler’s third method 

29.  Arbitrarily select two numbers m and n, in which m must be odd, and compute 

2 22 ,s m n= +   and 2 2t m n= − 2u m= . (Here Euler uses the letter s, but it is not the 

sum of the squares that he uses so often previously.) Now the solution is 

( ) ( )2( ) 3 4 2 2 ,x s s u s u t s u= + + − +   ( ) ( )( ,2443 usustusstp ++ )++=  

 ( ) ( )2( ) 3 4 2 2y s s u s u t s u= + + + + ,   ( ) ( )( ,2443 usustusstq ++ )−+=  

    ( ) ( ,2243 2ustusstz +++= ) ( )( ) ( )22 3 4 4 2r s s u s u t s u= + + − + .  

30. Each pair of numbers m and n gives, two different solutions, depending on 

whether we take m and n positive or negative.  Here are some examples. 
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 Example 1.  Let  and 1=m ;1±=n  then ,3=s  ,1=t  .2±=u   First let  

and get   

,2−=u

,1=+ us ,12 −=+ us 143 =+ us  and, consequently,   

  5, 1, 5, 1, 7, 1x y z p q r= = = = − = = .        

Since x z=  this solution is rejected. Next Euler selects 2u =  and gets 

  . 241, 269, 149, 191, 89, 329x y z p q r= = = = = − =

 Example 2.  Let, in this example, 1=m  and 2;n =  then 9,s =    

First he takes  and get  

7,t = − 4.u = ±

4;u = − 5,s u+ = 2 1,s u = 11s u 3 4 =  . So ++

 . 397, 593, 707, 833, 553, 97x y z p q r= = = − = − = − = −

For the second case, he uses  then 4;u = 13,s u+ =  2 17,s u+ =  3 4 4s u 3+ =  and, 

consequently, 

 . 3365, 6697, 6755, 8897, 3479, 3247x y z p q r= = = − = − = =

31 and 32.  Here Euler demonstrates the reasons why the rule just described is valid. 

33. The three numbers s, t, u are only required to satisfy , and Euler lists 

the simplest such numbers. 

2 2 2s t u= + 2

2

s 3 9 17 19 27 33 33 41 43 

t 1 7  1 17 23 17 31 23  7 

u 2 4 12  6 10 20  8 24 30. 

Fourth method 

34. Euler returns to the considerations in section 4. Here he showed that the first two 

equations of the system (1)  

2 2 2 2 ,y z x p+ − =  2 2 2z x y q+ − =  

are satisfied if  
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2 2 ,z a b= +   ( )2 2 2 24 ,y x ab a b− = − 2 22 ,p a ab b= + −  . 2 22q a ab b= − −

He notes that these are satisfied if we take 

( )2 2 ,z mn a b= +  ( )2 2 2 2 2 24y x m n a b− = −  

and     ( )2 22 ,p mn a ab b= + − ( )2 22 .q mn a ab b= − −  

Therefore it  remains to fulfill the third condition 2 2 2 2.x y z r+ − =  

35, 36 and 37. Euler continues to derive a final method of solving (1) described in detail 

in the final sections. 

Summary of Euler’s fourth method 

38. Arbitrarily select numbers a and b, then calculate  2 ,A a ab= +  2 2 ,B a b= −  then 

2 2f A B= −  and  From these we get 2g A= − .B ,m f g= +  .n f g= −  Finally we have 

 2 2 ,x m A n B= −   2 2( 2p mn a ab b= + − ),

),

, ).

2 2 ,y m A n B= +   2 2( 2q mn a ab b= − −

( )z mn A B= −   2 2( ) ( )(r mn A B m n A B= + + − −

 Example 1.  Let  1,a = 2;b =  we have 3,A =  2;B = −  From these we have 5,f =  

   and finally the desired numbers are: 12,g = 17,m = 7,n = −

 . 965, 769, 595, 119, 833, 1081x y z p q r= = = − = − = =

This solution was found in section 22. 

 Example 2.  Let  2,a = 1;b =  and get 6,A =  1,B =  35,f =  12.g = −  Finally we 

have   and consequently, 23,m = 47,n =

 . 965, 5383, 5405, 7567, 1081, 833x y z p q r= = = = = − = −
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39. Euler notes we should not take both  the numbers a and b odd. He gives a final 

example and remarks that “all the solutions found with this method, are essentially 

different from all those calculated from the preceding methods.” 

Example 3.  Let   we have 2,a = 3;b = 10,A =  3,B = −  91,f =  60,g =   

 from he gets 

151,m =

31;n =

 . 230893, 225127, 60853, 32767, 79577, 316687x y z p q r= = = = = − =


	Third method
	Fourth method

