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Translator’s Preface 

 Leonhard Euler (1707-1783) apparently worked on his Number 

Theory treatise (E792) sometime around 1750, but left it unfinished. It 

was published posthumously in 1849 in Commentationes arithmeticae 2, 

edited by P. H. Fuss and Nicolaus Fuss for the Imperial Academy of 

Sciences of St. Petersburg. It reappeared in Euler’s Opera omnia, (Series 

1, Volume 5) and in his Opera postuma, 1 (1862). The present translation 

is based on the original publication, as preserved on the Euler Archive, 

though where certain passages therein are illegible, the Opera postuma 

reprinting was consulted. I did not have access to the Opera omnia. Some 

obvious minor corrections were made, as noted in footnotes wherever this 

was done. 

 Any translation of Euler’s works will be a trade-off between doing 

justice to his mathematical accomplishment and representing his literary 

accomplishment. The present translation is no different, in this respect, 

from any other. The main goal is, of course, to present Euler´s 

mathematics in an intelligible form, but at the same time I wanted to 

preserve some of the “flavor” of Euler’s prose style. Thus, I have, for the 

most part, maintained the original’s use of extended sentences, 

encumbered by many relative clauses. This may take a bit of getting used 

to and require some more attention on the reader’s part, but it keeps the 

translation closer to the original. I have also often maintained the use of 

the subjunctive in certain “if” clauses, which gives the text a rather 

archaic feel, though this is perhaps not entirely inappropriate for an 

eighteenth-century text. I also tried, rather against the grain (!), to 

maintain the ambiguities and imprecisions of the original in the 

translation. Finally, I have avoided using standard mathematical 

terminology in the representation of concepts that had no such standard 



in the original text, even when that meant avoiding the use of obvious 

cognates. 

 The following concrete examples may elucidate these remarks: 

In the Theory of Congruences, “residue” is generally used 

instead of “remainder”. Nevertheless, I have consistently rendered 

residuum by “remainder” so as not to prejudice the reader’s 

judgement as to the extent of Euler’s anticipation of Gauss in 

regard to this theory. 

In the same context, the congruence relation is usually referred 

to as an “equivalence”. Euler, in addition to this term, also uses a 

variety of other terms. Many, like “agrees with” (convenit) or 

“corresponds to” (congruit) share connotations of agreeing with, 

fitting in with, harmonizing, being congenial and being consistent 

with. Others include “answers to” (respondet) and “gives” (dat), as 

well as related words. I have maintained Euler’s terminology. 

Even though “quantity” seems more amenable to the modern 

ear than “multitude”, I have consistently used the latter to 

translate multitudo because this is sanctioned by Heath’s 

translation of plêthos in Euclid’s definition of “number” and Euler 

is certainly harkening back to Euclid. 

It would perhaps be more euphonious to delete the verb when 

a formula follows est (erit), letting the = in the formula do the work 

of the verb. Since Euler almost never uses such a construction, I 

also have kept the verb, but in order to avoid such contorted 

phrases as “it is x = y” or “there is x = y”, I changed it to “we have” 

(“we will have”). In many places, however, I translated sit by the 

standard mathematical idiom “let … be”. 

I have, perhaps in an excess of caution, consistently translated 

denotare by “to indicate” since in a post-Fregean world the English 

cognate may be misleadingly specific. 

I have consistently used “sequence” for series, since in no case 

(in the present text) is the word used to indicate a sum. 



 Lastly, it should be observed that Euler’s notes, marked by (*), are 

given in the translation at the end of the paragraph in which they occur, 

whereas in the original they appear at the bottom of the page. My own 

notes, marked by the usual small raised numbers, are given at the bottom 

of the page. 
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Treatise on Number Theory in XVI Chapters1 

 

Chapter I 

On the Composition of Numbers 

 

 1. A number is a multitude of units. 

 

 2. Any number whatever, therefore, signifies as many units as are 

contained in it. 

 

 3. Beginning from the unit, the numbers are 1, 2, 3, 4, 5, 6, etc., 

each of which exceeds the previous one by a unit. 

 

 4. Because every number can be increased by a unit, the sequence 

of numbers proceeds to infinity. 

 

 5. Since the first, namely the unit, also exceeds the previous one 

by a unit, it is necessary that the previous one, 0, be nothing. 

 

 6. Herein the discussion is only about integers, to which the 

definition is restricted and from which fractions and, even more so, surds 

must be excluded. 

 

 7. If a be any number whatever, the ones following it will be a+1, 

a+2, a+3, a+4, etc., of which the first, a+1, exceeds the given number a 

by a unit, the second, a+2, by two units, the third, a+3, by three, etc. 

 

 8. Similarly, for a given number a, the preceding ones will be a–1, 

a–2, a–3, a–4, etc., of which the first, a–1, is less than the given number 

a by a unit, the second, a–2, by two units, the third, a–3, by three units, 

and so on. 

 

 
1 The phrase “some remains to be done” is appended to the title of this work, which was 
only published posthumously. This seems to indicate that the present text is unfinished. 



 9. If, to the number a, there be joined as many units as there are 

in the number b, a+b results; but if as many units as there are in b be 

taken away from a, a–b results. In the former case, the number b is said 

to be added to the number a; in the latter, it is said to be subtracted from 

it. 

 

 10. If the same number a be joined to itself, its double a+a results, 

which is written as 2a; if the same be adjoined once again, the triple 3a 

is produced; then, if another a be adjoined to that result, its quadruple 

4a results; and so on. In general, these are called its multiples. 

 

 11. The multiples of the number a, therefore, are 2a, 3a, 4a, 5a, 

etc., of which each exceeds the previous one by the number a itself; and, 

in this respect, the number a itself is called a simple number.2 

 

 12. If a be the unit, its multiples will clearly produce all the 

numbers; but if a is not the unit, but a multitude of units, its multiples 

will not produce all numbers and, in this case, there will be numbers that 

are not multiples of a. 

 

 13. Since the multiples of a are 2a, 3a, 4a, 5a, etc., there will not 

be found amongst them, first of all, all the numbers less than a itself, to 

wit, 1, 2, 3, …, (a–1); moreover, just as many non-multiples will occur 

from any multiple whatever up to the following multiple. 

 

 14. If, therefore, α be a number less than a, then neither α nor the 

numbers a+α, 2a+α, 3a+α, 4a+α, etc., will be found amongst the multiples 

of a. 

 

 15. Because 2a–α is less than 2a and at the same time greater than 

a (since α < a), the number 2a–α will not be a multiple of a; and neither 

will any of the following numbers be contained amongst the multiples of 

a: a–α, 2a–α, 3a–α, 4a–α, etc. 

 

 
2 Simplum, a single number, one taken only once, instead of multiple times. “Simple” is 
used for simplum, whereas “single” is used for simplex. See §31. 



 16. Given, therefore, any number b that is not a multiple of a, either 

it will be less than a, or it will exceed some multiple of a and yet be less 

than the next multiple. 

 

 17. Since the multiples of the dyad [binarii] (not excluding the 

simple number itself) are 2, 4, 6, 8, 10, etc., the remaining numbers differ 

from these by a unit. Likewise, because the multiples of the triad 

[ternarium] are 3, 6, 9, 12, 15, etc., the remaining numbers are separated 

from these either by a unit or by a dyad. 

 

 18. The double of any number a, namely 2a, is also a multiple of 

the dyad. For, since a is a multitude of units, 1+1+1+1 etc., its duplication 

is represented thusly: 

        a = 1+1+1+1+ etc. 

        a = 1+1+1+1+ etc. 

whence is produced by addition  2a = 2+2+2+2+ etc. 

 

 19. Indeed, since the number a is a multitude of units, the number 

a is doubled by taking each unit twice, whence there arises a multitude 

of dyads. From this, it is evident that the double 2a contains as many 

dyads as a contains units. 

 

 20. Likewise, the triple 3a will contain as many triads as a contains 

units and accordingly 3a will be a multiple of the triad. This should also 

be understood in regard to all multiples. 

 

 21. The number indicating how many times a multiple contains in 

itself a simple number is called the index of the multiple. Thus, the index 

of a double is the dyad, of a triple the triad, of a quadruple the tetrad, etc. 

 

 22. If the number a be taken as many times as the number n 

contains units, the index of the multiple derived therefrom is n; this 

multiple, moreover, is expressed by na, so that na indicates that multiple 

of a whose index is n. 

 



 23. Such a multiple na of a is, therefore, also a multiple of the index 

n, since it contains the index in itself as many times as the number a 

contains the unit. 

 

24. From this, it is therefore evident that the multiple of the number 

a whose index is n coincides with that multiple of n whose index is a. 

Since the former multiple is expressed by na and, indeed, the latter by 

an, it will be the case that na = an. 

 

25. Since, in any multiple na whatever, the number a, of which the 

multiple is taken, and n, the index of the multiple, can be exchanged for 

each other, these two numbers, a and n, are called, indiscriminately, 

factors, whereas, for the multiple na itself, it is usual to introduce the 

name product or result [facti]. 

 

26. Just as every number is a multiple of the unit, of which it itself 

is the index, so also it is its own simple, the index being the unit. In the 

following, therefore, we will remove both multiples of the unit and simple 

numbers from the denomination of multiples of any number a. 

 

27. For us, then, multiples will be any numbers that are multiples 

(excluding simple numbers) of any number beyond the unit and will, 

therefore, consist of two factors, of which either can, as it were, be 

considered to be the index with respect to the other. 

 

28. The result ab, whose factors are a and b, is, therefore, as much 

a multiple of a as it is of b. In so far as it is a multiple of a, the index is b 

but, on the contrary, in so far as it is a multiple of b, the index is a. 

 

29. Multiples of the result ab are at the same time multiples both 

of a and of b. Let nab be such a multiple, whose index is n. Because it is 

also a multiple of n, it will be a multiple of each of the numbers n, a and 

b. 

 

30. From this it is also clear that, in a result consisting of three 

factors, the three factors are permutable and that, moreover, the result 



abc is not only a multiple of the several numbers a, b, c, but also a 

multiple of the factors taken two by two: ab, ac, bc. 

 

31. If, in the sequence of numbers 1, 2, 3, 4, 5, 6, 7, etc., all the 

multiples are deleted, the remaining numbers will not be multiples of any 

number (seeing that we exclude [from the multiples] the simple [simpla] 

numbers) and these numbers are called single [simplices] or prime. 

 

32. After having deleted, for example, the multiples of the dyad, 4, 

6, 8, 10, 12, etc., there remains the sequence 1, 2, 3, 5, 7, 9, 11, 13, 15, 

17, 19, 21, etc; further, from these, those multiples of the triad, 6, 9, 12, 

15, 18, 21, etc., which are still present, are extinguished, which leaves 1, 

2, 3, 5, 7, 11, 13, 17, 19, 23, etc.; thus, in the end, there remain the 

prime numbers 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 

53, 59, etc. 

 

33. If p, therefore, be a prime number, it occurs neither amongst 

the multiples of the dyad, nor amongst the multiples of any other number 

and neither, therefore, can it be exhibited in any manner as a result of 

the type ab, unless either a = 1 or b = 1, which cases, however, we have 

excluded (26). 

 

34. All numbers that are not prime are called composite; from this, 

it is evident that all composite numbers are multiples of some other lesser 

numbers, which, once again, are either prime or multiples of other lesser 

numbers. Moreover, multiples of any product are at the same time 

multiples of their several factors. It follows that, in the end, all composite 

numbers are reduced to multiples of prime numbers. 

 

35. Every number is, therefore, either prime, or a multiple of some 

prime number; in the latter case, since the number is composite, every 

composite number can be exhibited as a product, whose several factors 

are prime. 

 

36. Amongst the composite numbers, there occur first those 

consisting of only two prime factors. If p an q, for example, indicate any 



two prime numbers, the product pq will exhibit the general form of 

composite numbers of the first kind, those which consist of only two 

prime factors. 

 

37. A composite number of the kind pq, therefore, will be both a 

multiple of the number q, the index being p, and a multiple of the number 

p, the index being q, and, moreover, it will not be a multiple of any other 

number. For, if it were a multiple of any other number a, the index being 

b, the numbers a and b would be factors, contrary to the hypothesis. 

 

38. A product of the kind pa, however, whose factor p is prime and 

the other, a, composite – having the factors α, β, γ, etc. –, will not only be 

a multiple of the numbers p and a, but also will occur amongst the 

multiples of the numbers α, β, γ, etc. 

 

39. After composite numbers consisting of two prime factors, those 

deserving to be considered as coming next are those that consist of three 

prime factors, those, therefore, whose general form is pqr, where p, q, r 

indicate any prime numbers. 

 

40. Then, certainly, the composite numbers that follow are the 

products of four prime numbers, whose form will be pqrs. The following 

types, moreover, will be products consisting of five, or of six or of seven, 

etc. prime factors. 

 

41. Hence, all the numbers are assigned to classes such that the 

first contains all of the several prime numbers; the second, products of 

two primes; the third, products of three primes; the fourth, of four; the 

fifth, of five; and so forth. 

 

42. After the unit, therefore, the numbers not greater than one 

hundred in the first class, that is, primes, are: 2, 3, 5, 7, 11, 13, 17, 19, 

23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97. 

 

43. The numbers less than one hundred in the second class are 

clearly 

 



2.  2 =   4,      3.  3 =   9,      5.  5 = 25,      7.  7 = 49, 

2.  3 =   6,      3.  5 = 15,      5.  7 = 35,      7.11 = 77, 
2.  5 = 10,      3.  7 = 21,      5.11 = 55,      7.13 = 91. 

2.  7 = 14,      3.11 = 33,      5.13 = 65, 

2.11 = 22,      3.13 = 39,      5.17 = 85, 
2.13 = 26,      3.17 = 51,      5.19 = 95, 

2.17 = 34,      3.19 = 57, 

2.19 = 38,      3.23 = 69, 
2.23 = 46,      3.29 = 87, 

2.29 = 58,      3.31 = 93, 

2.31 = 62, 

2.37 = 74, 
2.41 = 82, 

2.43 = 86, 

2.47 = 94, 
 

 44. Next, the numbers less than one hundred in the third class are 

clearly 

2.2.  2 =   8,           2.3.  3 = 18,           3.3.  3 = 27, 

2.2.  3 = 12,           2.3.  5 = 30,           3.3.  5 = 45, 
2.2.  5 = 20,           2.3.  7 = 42,           3.3.  7 = 63, 

2.2.  7 = 28,           2.3.11 = 66,           3.3.11 = 99, 

2.2.11 = 44,           2.3.13 = 78, 
2.2.13 = 52, 

2.2.17 = 68,           2.5.  5 = 50,           3.5.  5 = 75. 

2.2.19 = 76,           2.5.  7 = 70, 

2.2.23 = 92,           2.7.  7 = 98, 
 

 45. Furthermore, the numbers of the fourth class, below 100, are3 

2.2.2.  2 = 16,         2.2.3.3 = 36,         2.3.3.3 = 54, 

2.2.2.  3 = 24,         2.2.3.5 = 60,         2.3.3.5 = 90, 
2.2.2.  5 = 40,         2.2.3.7 = 84, 

2.2.2.  7 = 56,                                     3.3.3.3 = 81. 

2.2.2 11 = 88,      2.2.5.5 = 100, 
 

 46. The numbers of the fifth class not greater than one hundred 

are 

2.2.2.2.2 = 32,          2.2.2.2.5 = 80, 

2.2.2.2.3 = 48,          2.2.2.3.3 = 72. 

 

 47. Two numbers of this kind occur in the sixth class 

2.2.2.2.2.2 = 64,       2.2.2.2.2.3 = 96. 

The following classes, however, contain no numbers less than a hundred. 

 
3 Reading 2.2.3.3 = 36 for 2.2.3.3 = 63. Also 2.2.5.5 is not less than 100. Compare with 
paragraphs 42 and 46, where Euler uses the phrase “not greater than one hundred”. 



 

 48. The numbers of each class are distinguished from the numbers 

of the other classes by their specific character and, thus, any number 

whatever belongs to a certain class and cannot also be assigned to any 

other class. 

 

 49. And if, therefore, p, q, r, s, etc. indicate prime numbers, the 

forms of these classes can be exhibited thusly: 

Form of class       I . . . p, 

         «                II . . . pq, 

         «               III . . . pqr, 
         «               IV . . . pqrs, 
         «                V . . . pqrst, 

         «               VI . . . pqrstu, 

                          etc. 

 

 50. Since all the numbers are contained in these classes, if we 

extend the natural sequence of numbers 1, 2, 3, 4, etc. up to n, so that 

the multitude of numbers is = n, and also the multitude of prime numbers 

contained in this sequence is = α, the multitude of numbers of the second 

class = β, of the third class = γ, of the fourth = δ, and so forth, it is 

necessary that α+β+γ+δ+ etc. = n. Thus, we saw that, if n is taken = 100, 

we will have α = 26 (the unit included amongst the prime numbers), β = 

34, γ = 22, δ = 12, ε = 4, ζ = 2, η = 0 and, indeed, 26+34+22+12+4+2 = 

100. 

 

 51. If n indicates a power of the dyad, the multitude of numbers 

that each class will have, all the way up to n, is:  

  



 

number 

n 

multitude of numbers 

α β γ δ ε ζ η θ ι κ 

2 

4 

8 

16 

32 

64 

128 

256 

512 

1024 

2 

3 

5 

7 

12 

19 

32 

55 

98 

173 

 

1 

2 

6 

10 

22 

42 

82 

157 

304 

 

 

1 

2 

7 

13 

30 

60 

125 

256 

 

 

 

1 

2 

7 

14 

34 

71 

152 

 

 

 

 

1 

2 

7 

15 

36 

77 

 

 

 

 

 

1 

2 

7 

15 

37 
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2 

7 

15 
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2 
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1 

 

 52. If we observe carefully the arrangement [indolem] of the 

numbers, we will easily perceive that at first the prime numbers occur 

frequently, while the composite numbers are bound to be thinly 

interspersed. The farther we proceed, however, the more composite 

numbers and, conversely, fewer primes will be found. 

 

 53. Next, it is also incumbent to observe that, in the progression of 

the prime numbers 1, 2, 3, 5, 7, 11, 13, 17, 19, etc., no order clearly 

appears from which a law of this progression could be laid down, 

although it is certain in general that, the farther we proceed, the less 

frequent they should be. 

 

 54. There are tables in which the prime numbers are set out 

according to the hundreds. Thus, in the first hundred, from 1 to 100, 

there are 26 prime numbers, in the second 21, in the following fewer, to 

be sure. Nevertheless, their multitude does not diminish continuously, 



but is extremely irregular, at times increasing and at others decreasing. 

Thus, from 200 to 300 there occur 16 prime numbers, but from 400 to 

500 there are 17, and still the same amount from 1400 to 1500. Further 

on, from 79700 to 79800, only three prime numbers are to be found; not 

withstanding this, in the hundred from 90000 to 90100 there are still 13 

prime numbers to be found. 

 

 

 

Chapter II 

On the Divisors of Numbers 

 

 55. In so far as a number is a multiple of another number, to that 

extent it is said to be a divisor of the latter and the index of the 

multiplication is usually called the quotient arising from the division. 

 

 56. Thus, if the number N be a multiple of a, with the index being 

n, so that N = na, the number a will be a divisor of the number N and the 

index n will furnish the quotient. If the number N = na be divided by a, 

then, of course, the quotient will be n. 

 

 57. Since the numbers n and a are interchangeable and, in this 

respect, are called factors, the number N = na will also have the divisor n 

and then the quotient will be a. In general, therefore, the divisor 

multiplied by the quotient reproduces the very number that was divided. 

 

 58. Since any number is its own simple, the unit is a divisor of that 

number and the number itself is the quotient. Also, any number is indeed 

its own divisor, the quotient being the unit. 

 

 59. Any number N whatever, therefore, has, first of all, the unit for 

a divisor and the number itself will then be the quotient. Next, any 

number N whatever also has itself for a divisor, the quotient being the 

unit.  

 



 60. No number has any other divisors except for those [numbers] 

of which it is a multiple (the simple not being here excluded from the idea 

of a multiple); for, if it were to have another divisor, it would be, by this 

very fact, a multiple of it, with the index of the multiplication furnishing 

the quotient. 

 

 61. Therefore, since a prime number is not a multiple of any other 

number except the unit, a prime number does not have any divisors 

except for the unit and itself. Clearly, if p indicates a prime number, its 

divisors will be 1 and p, nor does it have any others beyond these. 

 

 62. Prime numbers, or numbers of the first class, have only two 

divisors, excepting the unit, which of course has but one; for this reason, 

the unit is usually not included amongst the prime numbers. 

 

 63. Numbers of the second class, which consist of two prime factors 

pq, because they are multiples of each separately, also have, beyond the 

divisors 1 and pq, the divisors p and q, so that all of their divisors are 1, 

p, q, and pq. 

 

 64. The case, however, in which both factors p and q are equal to 

each other, should be considered separately, since the same number 

shouldn’t be counted twice amongst the divisors. Hence, the numbers pp, 

which are squares of prime numbers, have only the three divisors 1, p, 

and pp. 

 

 65. For this reason, it is convenient for the numbers of the second 

class to be subdivided into two types, of which the first contains numbers 

of the form pp and has the three divisors 1, p, pp; the other type clearly 

contains numbers of the form pq, where the letters p and q indicate 

distinct prime numbers. Numbers of this type will have the four divisors 

1, p, q, pq. 

 

 66. Similarly, the third class should be subdivided into three types, 

whose forms are p3, p2q, pqr, if indeed p, q, r indicate distinct prime 



numbers, for either all the factors are equal, or only two, or all three are 

unequal.  

  



 

 67. For the third class of numbers, moreover,  

of the first type p3, there will be the four divisors 1, p, p2, p3, 

          second   p2q                           six                1, p, q, p2, pq, p2q, 

          third      pqr                           eight              1 p, q, r, pq, pr, qr, pqr, 

and neither can there be, in addition, other divisors in this class [locum]. 

 

 68. The fourth class, which contains numbers consisting of four 

prime factors, should be subdivided into five types, as either two, or three, 

or all four of these factors may be equal; their forms are I. p4, II. p3q, III. 

p2q2, IV. p2qr, V. pqrs. 

 

 69. Now it will be easy to specify all the divisors of these types in 

the fourth class: 

Of type              the divisors will be 

I. p4,      five:      1, p, p2, p3, p4, 

II. p3q,   eight:    1, p, q, p2, pq, p3, p2q, p3q, 

III. p2q2, nine:     1, p, q, p2, pq, q2, p2q, pq2, p2q2, 

IV. p2qr  twelve:  1, p, q, r, p2, pq, pr, qr, p2q, p2r, pqr, p2qr, 

V. pqrs  sixteen:  1, p, q, r, s, pq, pr, ps, qr, qs, rs, pqr, pqs, prs, qrs, pqrs. 

 

 70. In the fifth class, which encompasses numbers composed out 

of five prime factors, on account of the equality of several factors, it will 

be necessary to establish the following types: 

I. p5, II. p4q, III. p3q2, IV. p3qr, V. p2q2r, VI. p2qrs, VII. pqrst. 

 

 71. Then, indeed, the divisors of the several types will be specified 

thusly: 

I. p5,           six:  1, p, p2, p3, p4, p5, 

II. p4q,        ten:  1, p, q, p2, pq, p3, p2q, p4, p3q, p4q, 

III. p3q2,     twelve: 1, p, q, p2, pq, q2, p3, p2q, pq2, p3q, p2q2, p3q2, 

IV. p3qr,    sixteen: 1, p, q, r, p2, pq, pr, qr, p3, p2q, p2r, pqr, p3q, p3r, 

p2qr, p3qr, 

V. p2q2r,   eighteen: 1, p, q, r, p2, pq, pr, q2, qr, p2q, p2r, pq2, pqr, q2r, 

p2q2, p2qr, pq2r, p2q2r, 

VI. p2qrs, twenty-four: 1, p, q, r, s, p2, pq, pr, ps, qr, qs, rs, p2q, p2r, p2s, 



pqr, pqs, prs, qrs, p2qr, p2qs, p2rs, pqrs, p2qrs, 

VII. pqrst thirty-two: 1, p, q, r, s, t, pq, pr, ps, pt, qr, qs, qt, rs, rt, st,  

pqr, pqs, pqt, prs, prt, pst, qrs, qrt, qst, rst, pqrs, 

pqrt, pqst, prst, qrst, pqrst. 

 

 72. The types of the remaining classes will be established similarly 

and all the divisors of the several types will be allotted. At the same time, 

the form [natura] of the several divisors will also be evident by this 

reasoning, as well as both the class and type to which each should be 

assigned. 

 

 73. If the divisors of the number N be 1, α, β, γ, δ, …, N, and if it be 

multiplied by the prime number p, which is not contained in it, then the 

product Np will have for divisors, beyond the above 1, α, β, γ, δ, …, N, 

those same multiplied by p: p, αp, βp, γp, δp, …, Np; and, for that reason, 

the number of divisors will be twice as big.  

 

 74. But if that number N be multiplied by the square of the prime 

number p, which is not in it as a factor, the number of divisors will be 

tripled. For the product Np2 will have, firstly, the same divisors as the 

number N, then, to be sure, those same multiplied by p and also, thirdly, 

those same multiplied by p2. 

 

 75. Likewise, if p be a prime number not contained in N and if the 

number N be multiplied by p3, the product Np3 will have firstly all the 

divisors of the number N, next those same multiplied by p, further those 

same multiplied by p2 and, finally, those same multiplied by p3, whereby 

the multitude of divisors of the product Np3 is four times larger than that 

of the number N. 

 

 76. And so, in general, if the multitude of divisors of the number N 

be = m and if it be multiplied by power pλ of the prime number p, the 

multitude of divisors of the product Npλ will be (λ+1)m; whence it will be 

useful to observe that the multitude of divisors of the power pλ itself is 

λ+1. 

 



 77. From this, a convenient rule for determining the multitude of 

divisors of any number is apparent: that is, let pλqμrνsξ be the form of the 

proposed number; and because the multitude of divisors of the number 

pλ is λ+1, the multitude of divisors of the number pλqμ will be (λ+1)(μ+1); 

for the number pλqμrν, there will clearly be (λ+1)(μ+1)(ν+1), and, further, 

for the number pλqμrνsξ, there will be (λ+1)(μ+1)(ν+1)(ξ+1). Moreover, the 

class to which this number should be assigned is indicated by the 

number λ+μ+ν+ξ, which is the sum of the exponents. 

 

 78. Infinitely many numbers, therefore, can be produced, whose 

multitude of divisors be given. For if the multitude of divisors be = a, a 

being a prime number, the number sought is contained in the formula 

pa–1, where p indicates any prime number whatever. 

 

 79. If a, b, c, d, etc. indicate prime numbers, as also the letters p, 

q, r, s, etc., the numbers, for which the multitude of divisors is ab, are 

either pab–1, or pa–1 pb–1; but those, for which the multitude of divisors is 

abc, are either pabc–1, or pab–1qc–1, or pac–1qb–1, or pbc–1qa–1, or pa–1qb–1rc–1, 

where any of the letters a, b, c, etc. can signify the same prime number, 

provided that the letters p, q, r, etc. signify distinct ones. 

 

 80. Hence, if the multitude of divisors be = 2, only prime numbers 

are satisfactory, that is, numbers contained in the form p. But if it is to 

be that 

the multitude of divisors is      the form of the numbers will be 

  3    p2 

  4    p3, pq 

  5    p4 

  6    p5, p2q 

  7    p6 

  8    p7, p3q, pqr 

  9    p8, p2q2 

10    p9, p4q 

11    p10 

12    p11, p5q, p3q2, p2qr. 



 81. Once, therefore, the form of any number whatever, that is the 

class and type to which it is to be assigned, is known, not only the 

multitude of divisors, but also the very divisors themselves can be 

determined by recourse to the rules. 

 

 

 

Chapter III 

On the Sum of the Divisors of Any Number 

 

 82. Any number n having been proposed, we designate the sum of 

its divisors by ∫n, so that the characters ∫n indicate the sum of the divisors 

of the number n. 

 

 83. Therefore, since the unit does not have other divisors beyond 

itself, we will have ∫1 = 1; the sum of the divisors of any other number 

will, however, be greater than itself; clearly, we will have ∫n > n, unless n 

= 1. 

 

 84. For prime numbers p, because they do not admit other divisors 

beyond themselves and the unit, we will have ∫p = p+1. Moreover, for 

powers of prime numbers we will have 

∫ 𝑝1 = 𝑝 + 1 =
𝑝𝑝−1

𝑝−1
, 

∫ 𝑝2 = 𝑝𝑝 + 𝑝 + 1 =
𝑝3−1

𝑝−1
, 

∫ 𝑝3 = 𝑝3 + 𝑝2 + 𝑝 + 1 =
𝑝4−1

𝑝−1
, 

        and in general 

∫ 𝑝𝑛 = 𝑝𝑛 + 𝑝𝑛−1 + 𝑝𝑛−2 + ⋯ + 1 =
𝑝𝑛+1−1

𝑝−1
. 

 

 85. Since the divisors of numbers contained in the form pq are 1, 

p, q, pq, their sum will be 

1+p+q+pq = (1+p)(1+q), and, therefore, ∫pq = (p+1)(q+1). 

Similarly, we will have from the third class 



∫p2q = (pp+p+1)(q+1) and ∫pqr = (p+1)(q+1)(r+1). 

 

 86. One could, in the same way, collect the divisors from [each of] 

the remaining classes into a single sum; but, in order to examine the 

character of these sums more clearly, we should investigate, in general, 

the number N, whose divisors are 1, α, β, γ, δ, …, N, the sum of which is 

∫N. Let this be multiplied by a prime number p, not contained in it, and 

the product Np will have, besides the above divisors, the same multiplied 

by p, whose sum will, therefore, be p∫N, from which will be obtained ∫Np 

= (p+1)∫N = ∫p∫N. 

 

 87. In the same way as is deduced in §74, if the number N is 

multiplied by the square of a prime number p, not contained in it, the 

sum of the divisors of the product Np2 will be 

(1+p+p2)∫N, or ∫Np2 = ∫N∫p2; and, in the same way, we will have ∫Np3 = ∫N∫p3, 

and so forth. 

 

 88. Hence, for the several classes and types, the sums of the 

divisors will be expressed thusly 

∫p = 1+p 

∫p2 = 1+p+p2 

∫pq = (1+p)(1+q) 

∫p3 = 1+p+p2+p3 

∫p2q = (1+p+p2)(1+q) 

∫pqr = (1+p)(1+q)(1+r) 

∫p4 = 1+p+p2+p3+p4 

∫p3q = (1+p+p2+p3)(1+q) 

∫p2q2 = (1+p+p2)(1+q+q2) 

∫p2qr = (1+p+p2)(1+q)(1+r) 

∫pqrs  = (1+p)(1+q)(1+r)(1+s) 

etc. 

 

89. From these formulas, we deduce the following conclusions: 

∫p2 = p2+∫p = 1+p∫p 

∫p3 = p3+∫p2 = 1+p∫p2 = 1+p+p2∫p 



∫p4 = 1+p∫p3 = 1+p+p2∫p2 = 1+p+p2+p3∫p  

∫p5 = 1+p∫p4 = 1+p+p2∫p3 =1+p+p2+p3∫p2 = 1+p+p2+p3+p4∫p 

            etc. 

from which, it is evident that we have, in general, 

∫pn = 1+p∫pn–1 = 1+p+p2∫pn–2 = 1+p+p2+p3∫pn–3 etc. 

 

 90. Any number n having been proposed, for which it is required to 

determine the sum of its divisors, it should be broken up into its prime 

factors, and let 

N = pλqμrνsξ, which, when this is done, will become ∫N = ∫pλ.∫qμ.∫rν.∫sξ. 

 

91. Provided, therefore, that the sums of the divisors of both the 

prime numbers themselves, as well as their powers, can be given, the 

sums of the divisors of all numbers can be completely determined. 

 

92. For prime numbers themselves, p, since we have ∫p = p+1, the 

sum of the divisors will always be an even number, unless it be that p = 

2, in which case we have ∫2 = 3. For, if it be that p = 2a–1, we will have 

∫(2a–1) = 2a. But, because ∫p2 = p2+p+1, the sum of the divisors of the 

square of any prime number whatever will always be an odd number, and 

even repeatedly, a prime number, as in the case ∫22 = 7, ∫32 = 13, ∫52 = 31. 

 

93. Next, if N be the cube of a prime number, or if 

N = p3, we will have ∫p3 = 1+p+pp+p3 = (1+p)(1+pp), 

and, therefore, a composite number, and also, unless it be that n = 2, the 

sum of the divisors will be divisible at least by 4, because each factor 1+p 

and 1+pp is even. We will therefore have ∫p3 = (1+pp)∫p. 

 

 94. If the number N be the fourth power of a prime number, or N = 

p4, the sum of the divisors will be ∫p4 = 1+p+pp+p3+p4, and therefore 

always odd, and it may even happen that it be a prime number, just as 

∫24 = 31. 

 

 95. If it be that N = p5, because we have ∫p5 = 1+p+pp+p3+p4+p5, the 

sum of the divisors will be  

∫p5 = (1+p+pp)(1+p3) = (1+p)(1+p+pp)(1–p+pp), 



and, therefore, a composite number, which is so composed from the sums 

of the divisors of lesser powers, that we have 

∫p5 = (1–p+pp).∫p.∫p2. 

 

 96. But if there be proposed the product MN, whose factors M and 

N have no common prime factor, we will have ∫MN = ∫M.∫N, which sum of 

divisors is thus all the more compounded, the more distinct prime 

numbers go into it. 

 

 97. Any number N whatever having been proposed, the sum of the 

divisors of which is ∫N, if it be multiplied by a prime number p, the sum 

of the divisors of the product Np is always greater than p∫N. For ∫Np 

includes, firstly, all the divisors of the number N multiplied by p, whose 

sum is p∫N, and, besides, also those divisors of the number N which are 

not affected by p. 

 

 98. This is shown yet again in two parts. First, if the prime number 

p is not contained in N, we will certainly have ∫Np = ∫p.∫N = (1+p)∫N = p∫N+∫N, 

in which case we have, without doubt, ∫Np > p∫N. 

 

 99. But if p is already contained in N, so that N = Mpn, we will have 

∫N = ∫M.∫pn; but ∫Np = ∫M.∫pn+1. Yet, it was established above that ∫pn+1 = 

1+p∫pn, from which ∫Np = ∫M+p∫pn∫M is obtained, so that we have ∫Np = 

p∫N+∫M and, therefore, ∫Np > p∫N. 

 

 100. Thus, the sums of the divisors of the numbers, in the natural 

order of their progression, are: 

∫  1 =   1 ∫13 = 14 ∫25 = 31 ∫37 =   38 ∫49 =   57 

∫  2 =   3 ∫14 = 24 ∫26 = 42 ∫38 =   60 ∫50 =   93 

∫  3 =   4 ∫15 = 24 ∫27 = 40 ∫39 =   56 ∫51 =   72 

∫  4 =   7 ∫16 = 31 ∫28 = 56 ∫40 =   90 ∫52 =   98 

∫  5 =   6 ∫17 = 18 ∫29 = 30 ∫41 =   42 ∫53 =   54 

∫  6 = 12 ∫18 = 39 ∫30 = 72 ∫42 =   96 ∫54 = 120 



∫  7 =   8 ∫19 = 20 ∫31 = 32 ∫43 =   44 ∫55 =   72 

∫  8 = 15 ∫20 = 42 ∫32 = 63 ∫44 =   84 ∫56 = 120 

∫  9 = 13 ∫21 = 32 ∫33 = 48 ∫45 =   78 ∫57 =   80 

∫10 = 18 ∫22 = 36 ∫34 = 54 ∫46 =   72 ∫58 =   90 

∫11 = 12 ∫23 = 24 ∫35 = 48 ∫47 =   48 ∫59 =   60 

∫12 = 28 ∫24 = 60 ∫36 = 91 ∫48 = 124 ∫60 = 168. 

 

 101. Not every number occurs amongst these sums of divisors, and 

indeed, up to 60, the following are excluded: 

2, 5, 9, 10, 11, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 33, 34, 35, 37, 

41, 43, 45, 46, 47, 49, 50, 51, 52, 53, 55, 58, 59. 

But the numbers that express sums of divisors are: 

1, 3, 4, 6, 7, 8, 12, 13, 14, 15, 18, 20, 24, 28, 30, 31, 32, 36, 38, 39, 

40, 42, 44, 48, 54, 56, 57, 60. 

 

 102. Hence, it is apparent that two or more numbers sometimes 

produce the same sum of divisors, for example: 

∫  6 = ∫11 = 12  ∫14 = ∫15 = ∫23 = 24 

∫10 = ∫17 = 18  ∫20 = ∫26 = ∫41 = 42 

∫16 = ∫25 = 31  ∫33 = ∫35 = ∫47 = 48 

∫21 = ∫31 = 32  ∫24 = ∫38 = ∫59 = 60. 

∫34 = ∫53 = 54 

∫28 = ∫39 = 56 

 

 103. This problem is often proposed: to find a number that bears a 

given ratio to the sum of its divisors. That is, it is required that N:∫N = 

n:m, or 
∫ 𝑁

𝑁
=

𝑚

𝑛
, where it is necessary, in the principle case, that m > n; for 

if it were that m = n, we would have N = 1. 

 

 104. Expressing m:n in lowest terms, the number N will be equal 

either to n or to some multiple of n. Let it be stipulated, therefore, that N 



= an, and we will have ∫N = ∫an = am. But, unless a = 1, we have ∫an > a∫n, 

hence4 m > ∫n. Wherefore, if it be that m < ∫n, there will be no solution; 

but if m = ∫n, there will be a unique solution, namely N = n. 

 

 105. Therefore, unless it be that either m = ∫n, or m > ∫n, the 

problem does not admit of a solution. In the former case, N will be equal 

to n and there will not be any other solution. In the latter case, in which 

m > ∫n, the number N will be equal to a multiple of some n, say N = an, 

and there will possibly be another solution. Nevertheless, there are, at 

any rate, such ratios m:n, for which it cannot be satisfied by any means, 

even though it be that m > ∫n. 

 

 106. A number, the sum of the divisors of which is twice as big as 

itself, is perfect. So, if it be that ∫N = 2N, then N will be a perfect number. 

Any such number, if it be even, will be of the sort 2nA, where A is an odd 

number, whether prime or composite. Therefore, since it be that 

N = 2nA, we will have ∫N = (2n+1–1)∫A = 2n+1A, whence 
∫ 𝐴

𝐴
=

2𝑛+1

2𝑛+1−1
. 

 

 107. Because the numerator of the fraction 
2𝑛+1

2𝑛+1−1
 only surpasses 

the denominator by a unit, it cannot exceed the sum of the divisors of the 

denominator; therefore, it will be either equal or less. In the latter case, 

there is no solution and, indeed, the former cannot be, unless 2n+1–1 is a 

prime number. Hence, whenever 2n+1–1 be a prime number, A should be 

taken equal to it, and we will have a perfect number = 2n(2n+1–1). 

 

 108. All even perfect numbers, therefore, are contained in the 

formula 2n(2n+1–1), if, indeed, 2n+1–1 be a prime number, because it 

certainly cannot happen unless n+1 is a prime number, although not all 

primes chosen for n+1 make 2n+1–1 prime. But, up to now, no one has 

demonstrated whether, or not, there are, besides the even perfect 

numbers, any odd ones. 

 

 
4 Reading hincque for hinque. 



 109. If there be an odd perfect number, all its factors would 

necessarily be odd. Let it be, therefore = ABCD etc. and it necessarily 

makes ∫A.∫B.∫C.∫D = 2ABCD an oddly even5 number. For this reason, only 

one amongst the sums of divisors ∫A, ∫B, ∫C, ∫D could be oddly even, all 

the rest being odd; therefore, all the factors A, B, C, D, except one, will be 

even powers of prime numbers, but that one will be either a prime 

number of the form 4n+1, or a power of the same, whose exponent is 4λ+1. 

And thus, such a perfect number will have such a form as (4n+1)4λ+1PP, 

P being an odd number, and 4n+1 prime. 

 

 110. I omit many other problems, in which the connection between 

the numbers to be investigated and the sums of their divisors is proposed, 

that would be fittingly considered herein, because, from the beginning 

already made, it is not difficult to elicit a method for solving them.  

 

 

 

Chapter IV 

On Numbers Prime and Composite to Each Other 

 

111. Two numbers that have no other factor or common divisor 

besides the unit are called prime to each other; but those that have 

another common divisor besides the unit are called composite to each 

other. Thus, 8 and 15 are numbers prime to each other, but 9 and 15 are 

numbers composite to each other. 

 

112. The unit, therefore, is prime to all numbers. Certainly, when 

n indicates any number whatever, the numbers 1 and n are prime to each 

other, because they admit no other common divisor besides the unit. 

 

113. Likewise, two numbers n and n+1, differing by a unit, are 

prime to each other; for whatever divisors the number n may have, none 

of them can divide the number n+1. For, indeed, if p be a divisor of the 

 
5 That is, the double of an odd number. 



number n, the next greater number divisible by p will be n+p, so that n+1 

certainly does not admit division by p. 

 

114. A prime number p is prime to all numbers, except those that 

are its multiples; hence, the numbers a and p are prime to each other, 

unless it be that either a = p, or a = np. Therefore, the prime number p is 

prime to all numbers less than itself. 

 

115. The multitude of numbers less than a given number a is a-1, 

amongst which it is worth the trouble to determine how many are either 

prime or composite to a; since, from that, the determination is easily 

extended to all numbers greater than a. 

 

 116. For, let b<a and, if b and a be prime to each other, all the 

numbers b+a, b+2a, b+3a, etc. as well will be prime to a; and, further, if 

b and a have a common divisor, it will be a divisor of the numbers b+a, 

b+2a, b+3a, etc. 

 

 117. If, then, a be a prime number = p, because all the numbers 

less than it are prime to it, the multitude of these is = p–1. 

 

 118. If it be that a = 2p, there are p even numbers from 1 to a, 

which therefore are not prime to a, and further the number p as well is 

not prime to a. These, whose multitude is = p, are removed from all the 

numbers from 1 up to a and p–1 are left, and that amount will be prime 

to a. 

 

 119. If it be that a = 3p, amongst the numbers not greater than it, 

there are first those that are divisible by 3 and are not prime to it, whose 

multitude is = p, next p and 2p, in addition, are not prime to a; all the 

rest, whose multitude is 3p–p–2 = 2(p–1) will be prime to a = 3p. 

 

 120. Similarly, if a = 5p, the numbers which have a common divisor 

with a are firstly all those divisible by 5, whose multitude is = p, and also 

those that are divisible by p, that is, p, 2p, 3p and 4p; since the number 

5p has already been accounted for. Whence, the multitude of numbers 



composite to a is p+4 and, therefore, the multitude of numbers prime to 

a = 4p–4 = 4(p–1), which of course are not greater than a. 

 

 121. More generally, if it be that a = pq, both p and q being prime 

factors, there are, from the unit to a, p numbers divisible by q, namely q, 

2q, 3q, …, pq; next there are q numbers divisible by p, namely p, 2p, 3p, 

…, qp, of which the last qp has already been counted. Therefore, the 

multitude of all the numbers not surpassing a, which are composite to a, 

will be = p+q–1, whence the rest, whose multitude is  

= qp–p–q+1 =(p–1)(q–1), 

will be prime to a. 

 

 122. Here we suppose distinct prime numbers for p and q. For, if 

we had a = pp, other numbers would not be composite to a, except those 

divisible by p, and since the multitude of those is = p, the multitude of 

the rest, those that are prime to a, will be = pp–p = p(p–1). 

 

 123. Similarly, if it be that a = p3, because it does not have other 

prime divisors besides p, all the numbers, from 1 to a, composite to a are 

p, 2p, 3p, …, p2p, and since the multitude of these is = p2, all of the 

remaining numbers, whose multitude is p3–p2 = p2(p–1), will be prime to 

a. 

 

 124. Hence, it is evident that, in general, if a be any power whatever 

pn of a prime number p, the multitude of numbers prime to a, which 

indeed be not greater than a, will be pn–1(p–1). 

 

 125. Let a = p2q, both p and q being distinct prime numbers, and 

since a does not have any other prime divisors besides p and q, the 

numbers composite to a either will be divisible by p, which are p, 2p, 3p, 

…, pq.p, in multitude = pq, or divisible by q, which are q, 2q, 3q, …, p2q, 

in multitude = p2. But, pq, 2pq, 3pq, …, p.pq, in multitude = p, occur 

amongst the latter and have already been enumerated, so that the 

multitude of all those composite to a is = pq+p2–p. Because of this, the 

rest, whose multitude is = ppq–pq–pp+p = p(p–1)(q–1), will all be prime to 

a. 



 

 126. Let a = pqr, with p, q and r being distinct prime numbers, and 

so the numbers composite to a are divisible 

1) by p, namely p, 2p, 3p, …, qr.p,   in multitude qr 

2) by q,      «      q, 2q, 3q, …, pr.q,          «           pr 

3) by r,      «       r, 2r, 3r, …, pq.r,           «           pq. 

But here those divisible by pq, in multitude r, then those divisible by pr, 

in multitude q, and, finally, those divisible by qr, in multitude p, are 

counted twice, and are therefore removed; but, in so doing, the number 

pqr is completely taken away, and should thus be put back again. And 

so, the multitude of numbers composite to a will be qr+pr+pq–r–q–p+1; 

whence the rest, whose multitude is 

pqr–qr–pr–pq+r+q+p–1 = (p–1)(q–1)(r–1), 

will be prime to the number a = pqr. 

 

 127. From this, we conclude that, for all the kinds of numbers, we 

will have 

if the proposed   the multitude of numbers less  
   number be        than a and prime to it 

a = p     p–1 

a = p2    p(p–1) 

a = pq    (p–1)(q–1) 

a = p3    p2(p–1) 

a = p2q    p(p–1)(q–1) 

a = pqr    (p–1)(q–1)(r–1) 

a = p4    p3(p–1) 

a = p3q    p2(p–1)(q–1) 

a = p2q2    p(p–1)q(q–1) 

a = p2qr    p(p–1)(q–1)(r–1) 

a = pqrs    (p–1)(q–1)(r–1)(s–1) 

 

128. In order that this conclusion may be more firmly corroborated 

and not to rely too much on induction6, we should examine the form a = 

 
6 That is, induction by enumeration, not mathematical induction. 



Mp, where M is any number whatever and p a prime not contained in M. 

We also specify that the multitude of numbers from 1 to M, prime to M, 

be = μ and, thus, the multitude of numbers composite to M is = M–μ. 

 

129. Therefore, since there are M–μ numbers composite to M from 

1 to M, there will be p(M–μ) numbers composite to M from 1 to Mp, which 

therefore will also be composite to Mp, and in addition the following are 

composite to Mp: p, 2p, 3p, …, Mp, in multitude M, but from which those 

that are already composite to M, whose multitude is M–μ, should be taken 

out; and so there remain but μ numbers which are only composite to Mp 

and not to M also. Hence, from 1 to Mp and composite to Mp, there will 

be in all this many: p(M–μ)+μ, and the rest, whose multitude is Mp–p(M–

μ)–μ = μ(p–1), will be prime to the number Mp. 

 

130. It may be shown in a similar way that, if the number proposed 

be = Mpn, with p being a prime number not contained in M, and if μ be 

the multitude of numbers prime to M, which are contained between the 

limits 1 and M, then the multitude of all the numbers below Mpn, prime 

to the number Mpn, will be = pn–1μ(p–1). 

 

131. For we should search for numbers composite to Mpn, all of 

which will be composite to either M or to p. But the multitude of numbers 

from 1 to Mpn, composite to M, is = pn(M–μ); moreover, those that are 

composite to p will be: p, 2p, 3p, …, Mpn–1.p, in multitude = Mpn–1. Yet, 

from these, those which are already composite to M ought to be excluded, 

whose multitude is pn–1(M–μ), so that the multitude of those that are 

composite to Mpn, but not composite to M, will be = Mpn–1–pn–1(M–μ)=pn–1μ, 

whence the multitude of numbers from 1 to Mpn, composite to Mpn, will 

be in all = pn(M–μ)+pn–1μ. Because of this, the rest, whose multitude is 

Mpn–pn(M–μ)–pn–1μ = pn–1μ(p–1), will be prime to Mpn. 

 

132. Therefore, since the multitude of numbers prime to pn and less 

than it is = pn–1(p–1), from the preceding proposition we conclude with the 

highest rigor: If the number proposed be = pλqμrνsξ etc., the multitude of 

all the numbers prime to it and less than it will be 



= pλ–1(p–1).qμ–1(q–1).rν–1(r–1).sξ–1(s–1) etc. 

 

 133. If, therefore, M and N be numbers prime to each other, and if 

the multitude of numbers from 1 to M, prime to M, be = m and the 

multitude of numbers from 1 to N, prime to N, be = n, then the multitude 

of numbers prime to the product MN and not greater to it will be = mn. 

 

 134. Hence, it is clear that the multitude of all prime numbers, just 

as Euclid has already demonstrated, cannot be finite. For, if the last and 

greatest prime number were = p, the number M may be set up equal to 

the product of all the prime numbers, M = 2.3.5.7…p, which would clearly 

be composite to all numbers. Since the number M is certainly prime to 

M–1, or even M+1, it will be clear that the assertion is absurd. 

 

 135. From the above, it is also clear that, amongst the numbers 

less than M, not only the number M–1, but also several others are 

certainly prime to M, since the multitude of these numbers prime to M is 

= 1.2.4.6…(p–1), which is greater than the quantity of prime numbers 

that are multiplied by each other. 

 

 136. Let’s set m = 1.2.4.6…(p–1), with M being = 2.3.5.7…p; and 

since, from 1 to M, there are as many numbers prime to M as there are 

units contained in m, these, be they either prime themselves or composed 

of primes, are greater than p. 

 

 137. If, from 1 to M, there be m numbers prime to M, there will be 

2m numbers prime to M from 1 to 2M and, in general, from 1 to NM, there 

will be Nm numbers prime to M. For, in any interval whatever,  

1…M,   M+1…2M,   2M+1…3M,   3M+1…4M, etc., 

the multitude of numbers prime to M is the same. 

 

 138. If n indicates any other number whatever, and if there be n 

numbers prime to N from 1 to N, there will be Mn numbers prime to N 

from 1 to MN. But, in the same interval, there are Nm numbers prime to 

M. Indeed, each of those that are prime to MN are prime to M and also to 

N.  

 



 139. However, we have already shown that, if the numbers M and 

N be prime to each other, then, in the interval from 1…MN, there are as 

many numbers prime to MN as there are units contained in mn; and these 

numbers occur in each of the preceding multitudes Mn and Nm. (*) 

 

(*) Notes written by the illustrious author in the margins. On the greatest 
common divisor and on finding it. — If A and B be prime numbers, a 
multiple of A can be found, which, divided by B, leaves a given number 
C. — If these numbers be prime to each other, any of their powers 
whatever will be prime to each other. — If A be prime to B and also to C, 
it will likewise be prime to BC. — If the product AB be divisible by the 
prime p, one or the other factor will be divisible by it. — If A and B be 
prime to each other, there can be found numbers m and n, that will make 
mA–nB = 1, or any other given number whatever. — If φ be the greatest 

common factor of the numbers A and B, then 
𝐴

𝜑
 and 

𝐵

𝜑
 will be prime to 

each other. — If a divided by b produces the remainder r, then na divided 
by nb will produce the remainder nr. — If a divided by b produces the 
remainder r, a common factor of the numbers a and b, if they have one 
besides the unit, will likewise be a factor of the remainder r. Again, if b 
and r have a common factor, it will likewise be a factor of a. — If a and b 
be numbers prime to each other and a > b, we will have a = mb+p; and b 
> p, then also b = np+q and p > q, and thus finally we reach the unit. 

 

 

 

Chapter V 

On Remainders Arising from Division 

 

140. If the number a is not a multiple of the number b, division of 

the former by the latter does not succeed, and the excess of the number 

a over the nearest less multiple of b is called the remainder arising from 

the division. Thus, if it be that a = mb+r, then r will be the remainder 

arising from the division of the number a by b. 

 

141. Hence, it is clear that the remainder r is always less than the 

number b, the divisor; for if it were equal, that is if r = b, by increasing 

the index m of the multiple by a unit, a would be a genuine multiple of b, 

that is to say a = (m+1)b; and if it were that r > b, by increasing the index 

of m, it would be reduced below b. 

 



142. Therefore, any divisor b whatever being proposed, if the 

dividend a be a multiple of b, the remainder will be = 0; but7 if a be not a 

true multiple of b, the remainder will be either 1 or 2, or 3, or some other 

number less than b, so that the multitude of the remainders that can 

occur is b–1, or exactly b if the cipher also be counted. 

 

143. For any divisor b whatever, therefore, all the numbers can be 

distributed into as many classes as there are units contained in b. The 

first class will contain, of course, all the numbers that are multiples of b, 

that is of the form mb; the second, those which divided by b leave 1 for 

the remainder, third, those which leave 2, fourth, those which leave 3 

and, finally, the last, which leave b–1. 

 

144. Thus, taking 2 as the divisor, there are two classes, of which 

the first contains numbers of the form 2m, the other numbers of the form 

2m+1. Numbers of the first class are called even, of the latter odd. 

 

145. If the triad be selected for the divisor, all the numbers will be 

separated into three classes: the first is made up of numbers of the form 

3m, the second, of numbers of the form 3m+1 and the third, of numbers 

of the form 3m+2. 

 

146. If the divisor be set = 4, the four classes of all the numbers is 

comprised by these four forms: I. 4m, II. 4m+1, III. 4m+2, IV. 4m+3, where 

the first class is assigned the name evenly even; the third of numbers 

oddly even. But the second and fourth present the odd numbers 

subdivided into two classes. 

 

147. Similarly, the divisor 5 supplies these five classes of numbers: 

I. 5m, II. 5m+1, III. 5m+2, IV. 5m+3, V. 5m+4, and also the divisor 6 

provides these 6 classes: 

I. 6m, II. 6m+1, III. 6m+2, IV. 6m+3, V. 6m+4, VI. 6m+5, 

and so on for any other divisor. 

 

 
7 Reading autem for antem. 



 148. Consequently, any number you please is assigned to some 

fixed class by any divisor whatever, or is expressed by some fixed form, 

which, since the number of divisors can be increased to infinity, can be 

done in infinite ways. 

 

 149. For, if the number be less than the proposed divisor, it itself 

can be considered the remainder, the index of the multiple vanishing; 

thus, if it be that a < b, we will have a = mb+a, with m being = 0, and, 

therefore, the number 3 belongs to the class 5m+3 with respect to the 

divisor 5.  

 

150. Any class whatever contains infinite numbers in increasing 

arithmetic progression, the consecutive difference being equal to the 

divisor. Thus, in general, if the divisor be b and the remainder r, every 

number is assigned to a class mb+r: r, b+r, 2b+r, 3b+r, 4b+r, 5b+r, etc., 

the general term of which arithmetic progression is the very formula mb+r, 

from which it arises. 

 

151. Furthermore, the formula mb+r can be represented by (m+1)b–

b+r, and thus the positive remainder r is to be thought of as equivalent 

to the negative remainder –(b–r), from which it is clear that the idea of the 

remainder is to be more broadly construed, even embracing negative 

numbers. 

 

152. Hence, when the divisor is = 2, the formula for odd numbers, 

2m+1, may also be represented as 2m–1; and, if the divisor b be = 3, the 

class of numbers, which leave the dyad upon division by 3, is also 

contained in the formula 3m–1; and thus all numbers are necessarily 

contained in one of the three formulas 3m, 3m+1 and 3m–1. 

 

153. Because of this, if we wish to admit negative remainders, we 

will be able to represent all the formulas mb±r in such a way that the 

remainder r does not surpass half the divisor b. For, if 𝑟 >
1

2
𝑏, taking –(b–

r) for r, we will have 𝑏 − 𝑟 <
1

2
𝑏. 

 



154. Similarly, since we have mb+r = (m–1)b+b+r, the remainder r 

is also equivalent to b+r, if we take the word in a wider sense. In general, 

therefore, the remainders, speaking less properly, b+r, 2b+r, 3b+r, etc., 

are equivalent to the remainder, properly speaking, r.  

 

155. That is to say, the divisor being b, every number, even if 

greater than b, can be considered as a remainder, which can be reduced 

to the remainder properly speaking, by taking the divisor b away from it 

as many times as possible and, by admitting negatives, it may even be 

kept below half of the divisor b. 

 

156. Thus, if the divisor be 6 and the remainder 16, this improper 

remainder will be reduced to the proper remainder 4, and even to the 

negative remainder –2; that is, the formulas 6m+16, 6m+4, 6m–2 should 

be considered as equivalent because all the numbers contained in one 

are at the same time contained in the others. 

 

157. It behooves us to consider carefully several notable properties 

about remainders. If the number A be divided by the divisor d, producing 

the remainder α, the numbers A+d, A+2d, A+3d, etc. will leave the same 

remainder α, but the number A+1, divided by the same d, will give the 

remainder α+1 and, more generally, the number A+n will give the 

remainder α+n, which, if it exceed the divisor d, by subtracting it as many 

times as possible, will be reduced to the minimum form. 

 

158. Similarly, if the remainder α agrees with the number A when 

the divisor is taken to be d, the numbers A–d, A–2d, 3A–d, etc. will 

likewise leave the same remainder, but the remainder α–1 agrees with the 

number A–1 and the remainder α–n with the number A–n, which, if it by 

chance be negative, will be reduced to a positive one by the addition of 

the divisor d. 

 

159. When the divisor is taken to be d, if the remainder α agrees 

with the number A, and the remainder β with the number B, the 

remainder α+β agrees with the aggregate A+B of these numbers, which, 



should it be that α+β > d, corresponds [congruit8] to α+β–d. Hence it is 

clear that, if it be that α+β = d, A+B will be a multiple of d. 

 

160. Under the same conditions, the remainder α–β agrees with the 

difference of the numbers A–B, or even α–β+d, if by chance it be that β > 

α. Whence, if it be that α = β, that is, if the numbers A and B leave equal 

remainders, their difference will be divisible by the divisor d. 

 

161. Assuming the divisor d, if the number A produces the 

remainder α, its double 2A will give the remainder 2α, or even 2α–d, its 

triple 3A will give the remainder 3α, whose minimum form, if it be greater 

than d, will be either 3α–d, or 3α–2d. But, in general, the remainder of 

any multiple whatever nA will be nα or nα–md. 

 

162. If it be posited that the divisor = d, the remainder α answers 

to the number A and the remainder β to the number B, then the 

remainder αβ agrees with the product AB, which, if it be by chance greater 

than the divisor d, is reduced to αβ–d or αβ–md. 

 

163. For we will have A = md+α and B = nd+β, from which the 

product becomes 

AB = mnd2+(mβ+nα)d+αβ, 

whose last part αβ can be considered as the remainder, since the first 

parts are divisible by d. 

 

 164. We deduce from this that, if the number A divided by d leaves 

the remainder α, the remainder αα answers to its square A2, and the 

remainder α3 to its cube A3, and the remainder αn to any power whatever 

An, which, the division having been by d, will be reduced to minimum 

form as before. 

 

 165. Because of this, if the remainder = 1 be left to the number A 

when divided by d, all its powers A2, A3, A4, etc., divided by that same 

divisor d, will leave the same remainder = 1. But if the remainder of the 

 
8  Observe that the standard mathematical term for this relation would become 
“congruence”. 



number A be –1, equivalent to d–1, the remainders of the even powers A2, 

A4, A6, A8, etc. will be +1, but those of the odd ones –1. 

 

166. Finally it should be noticed that, if the number A divided by d 

produces the remainder α, then A–α will be divisible by the number d. 

Whence, since An gives the remainder αn for the divisor d, An–αn will 

likewise be divisible by d. 

 

 

 

Chapter VI 

On Remainders Arising from the Division 

of the Terms of Arithmetic Progressions 

 

 167. Let’s begin with the sequence of natural numbers, whose 

terms 1, 2, 3, 4, etc., divided by any divisor d whatever, will give the 

remainders 1, 2, 3, 4, etc. until the term d is reached, with which the 

remainder = 0 agrees; the following terms d+1, d+2, d+3, etc., up to 2d, 

will, however, give back the remainders 1, 2, 3, etc. in the same order; 

the remainder of 2d again vanishes; and so on. 

 

 168. Now let any arithmetic progression whatever 

a, a+b, a+2b, a+3b, a+4b, a+5b, etc. 

be proposed, and let the several terms of it be divided by d, where the 

remainder a arises from the first term and does not return before the term 

a+nb is reached, of which the part nb proves to be divisible by d, and after 

which the remainders of the terms will come forth in the same order as 

from the beginning. (*) 

 

(*) Written in the margin. These remainders exceed, by the number a, the 
remainders arising from the progression 0, b, 2b, 3b, 4b, etc., wherefore it 
will be sufficient to develop these. 

 

 169. In the first place, it is immediately clear that there cannot 

result from this more distinct remainders than the [amount of] units 



contained in the divisor d. Whence, if that many distinct remainders are 

already produced from the beginning, it is necessary that the former be 

reproduced again successively. Moreover, the term a+db, whose index is 

d+1, always produces the same remainder as a, the first. 

 

 170. If the difference b of the progression be a factor of the divisor 

d, or if, in any event, b and d have the common factor φ, so that b = Bφ 

and d = Dφ, then the first remainder a will come back again before the 

term a+bd is reached; this will certainly happen at the term a+Db, whose 

index is D+1, since Db = BDφ = Bd is divisible by d. 

 

 171. Therefore, it is appropriate here to set out two cases, the one, 

in which the divisor d and the difference b 9  of the progression are 

numbers prime to each other, and the other, in which they are composite 

to each other, or in which they have some common factor besides the 

unit. 

 

 172. If the divisor d and the difference b of the progression be prime 

to each other, the first remainder a does not return before the term a+db; 

for, if it were to recur at some previous term, say a+(d–n)b, then (d–n)b, 

and hence also nb and, therefore, also n, would be divisible by d, which 

would be absurd. 

 

 173. In order to determine the remainders, therefore, it is necessary 

to consider the terms of the progression from the first, a, up to a+(d–1)b, 

whose multitude is d, which terms we may display, arranged in order, 

together with their remainders thusly: 

 

Indexes:         1,     2,       3,         4,         5,                    d 

Progression:   a,   a+b,   a+2b,   a+3b,   a+4b, .......... a+(d–1)b, 

Remainders:   α,     β,        γ,         δ,         ε,                     λ 

 

 174. In the first place, therefore, I observe that all these remainders, 

whose multitude is d, are distinct from each other. For, just as the first, 

 
9 Reading b for a. 



α, has been shown not to occur further, so the second, β, is shown to 

appear only one time. For, if this same remainder had arisen from the 

term a+nb, with n < d, the difference (n–1)b of the terms, and therefore 

also n–1, would be divisible by d, which is absurd. 

 

 175. Since, therefore, all the remainders α, β, γ, δ, …, λ are distinct 

from each other, and their multitude is = d, all the numbers less than d, 

together with the cipher, will occur amongst them, that is, the numbers 

0, 1, 2, 3, …, (d–1), whose multitude altogether is = d, will occur. 

 

 176. Hence, if r be any number whatever less than the divisor d, 

there will certainly be a term of the progression, a+nb, with n < d, which, 

divided by d, leaves the remainder r. And also, taking r = 0, there will be 

a term of the kind a+nb divisible by d.  

 

 177. If the term a+nb produces the remainder r, then a+nb–r will 

be divisible by d. Hence, if b and d be numbers prime to each other, and 

a–r indicates any number whatever, there will always be a number n less 

than d such that the number a–r+nb becomes divisible by d. 

 

 178. Let a+mb be a term divisible by d, with m < d, thus the 

following term a+(m+1)b will give the remainder b, but the preceding one 

a+(m–1)b will give the remainder –b, that is d–b. Next, let a+nb be a term, 

which leaves the unit when divided by d, then, when that number is taken 

away from this one, the difference (n–m)b will also leave the unit. 

 

 179. Let’s put n–m = p, so that the number pb, divided by d, leaves 

the unit, and assuming the term a+mb divisible por d, the remainder = 1 

agrees with the term a+(m+p)b, the remainder = 2 with the term 

a+(m+2p)b, the remainder = 3 with the term a+(m+3p)b, and in general 

the remainder = n with the term a+(m+np)b. 

 

 180. If m+np be greater than the divisor d, this can be taken away 

from it so many times until the number k < d remains and the term a+kb, 

divided by d, will leave the remainder = n. 

 



 181. Terms leaving given remainders can now be more easily 

determined, provided that the product pb, which leaves the unit on 

division by d, is known. For, since the first term a leaves α, the term 

a+npb will leave α+n. 

 

 182. If, therefore, the given remainder be = r, set α+n = r, and, since 

n = r–α and p has already been found, the term producing the remainder 

r will be a+(r–α)pb; or even more generally a+((r–α)p±μd)b, where μ may be 

supposed such as to make (r–α)p±μd < d. 

 

 183. The whole business, therefore, turns on tracking down, for the 

number b, the multiple pb, which, divided by d, leaves the unit. Since pb–

1 would consequently be divisible by d, setting pb–1 = qd, it is necessary 

to determine p and q that make pb–qd = 1. But p can always be assigned 

below d. 

 

 184. Often a product of the kind πb, which divided by d leaves d–1 

ou –1, is more easily found; but then the product (d–π)b will produce the 

remainder = +1, so that, π having been found, we will have p = d–π. Then, 

therefore, the term a+((α–r)π±μd)b leaves the given remainder r. 

 

 185. Let’s now also examine the remainders, which arise if the 

difference b of the progression and the divisor d be not numbers prime to 

each other. But we have already seen that, if the common factor be φ, so 

that we have b = Bφ and d = Dφ, the term a+Db already produces the 

same remainder as the first, a. 

 

 186. Whence, if φ be the maximum common factor of the numbers 

b and d, because the first remainder a, or eventually α, recurs at the term 

a+Db, there cannot be more distinct remainders than the number D: 

neither, therefore, do all the numbers less than the divisor d occur 

amongst the remainders. 

 

 187. In order to examine these remainders more easily, let’s set a 

= 0, and the terms of the progression with their remainders are 

Indexes        1     2       3        4                 D 



Terms           0,   Bφ,   2Bφ,   3Bφ . . . . (D–1)Bφ 

Remainders  0,   βφ,     γφ,      δφ,              λφ 

for it is evident that, if these terms be divided by d = Dφ, the remainders 

are likewise divisible by φ. 

 

 188. For, if mB divided by D produces the remainder r, we will have 

mB = nD+r, and therefore mBφ = nDφ+rφ. Whence, if mBφ is divided by Dφ 

= d, the remainder will be rφ, a multiple of φ. Consequently, since all the 

numbers less than D can appear for r, all the multiples of φ, which do not 

surpass the divisor d = Dφ, must also appear amongst those remainders, 

whose multitude is certainly = D. 

 

 189. If we add the number a to the several terms, the several 

remainders will be increased by this same amount, which, since b = Bφ 

and d = Dφ, will therefore be: 

Indexes          1      2         3           4          5                 D 

Terms            a,   a+b,    a+2b,    a+3b,   a+4b . . . . a+(D–1)b 

Remainders   a,   a+βφ,   a+γφ,    a+δφ,    a+εφ,            a+λφ 

where the sequence β, γ, δ, ε, …, λ contains all the numbers less than D. 

 

 190. In this case, therefore, all the numbers that, being diminished 

by the number a, are not divisible by φ, that is, the maximum common 

divisor of the difference b and the divisor d, are excluded from the 

sequence of remainders. 

 

 191. Since the numbers B and D are prime to each other, a multiple 

of the first, say mB, can be exhibited, which, divided by D, leaves a given 

remainder r; but then the term a+mBφ of our progression, that is a+mb, 

divided by Dφ = d, will leave the remainder a+rφ (*). 

 

(*) Written in the margin. A method for determining a formula ax+b, such that 
it is divisible by the given number d. 

 

 

  



 

Chapter VII 

On Remainders Arising from the Division 

of the Terms of Geometric Progressions 

 

 192. In general, we represent a geometric progression thusly: a, ab, 

ab2, ab3, ab4, ab5, etc., the terms of which, if divided by any number d 

whatever, will give remainders of such a kind that they can be obtained 

easily from the remainders of the progression 1, b, b2, b3, etc. — of course, 

by multiplying them by a. 

 

193. Thus, the investigation is reduced to that about remainders of 

pure powers, so that it is to be determined what remainder any power bn 

whatever, divided by a given divisor d, leaves. Here it is certainly fitting 

to distinguish the cases in which the numbers b and d are either prime, 

or composite, to each other. 

 

194. If it be that b = pφ and d = qφ, we will look for the remainder 

arising from pnφn–1, if it is divided by q; and that, multiplied by φ, will give 

the remainder arising from the division of the number pnφn by qφ and, in 

this way, we are brought back to the division of a power bn by d, where b 

and d are numbers prime to each other. 

 

195. Let, therefore, b and d be numbers prime to each other and 

let the remainders arising from the division of the powers of b be indicated 

thusly: 

Powers             1,  b,  b2,  b3,  b4,  b5,  b6,  b7,  etc. 

Remainders      1,  α,  β,    γ,    δ,    ε,    ζ,    η,  etc. 

all of which will also be prime to the divisor d, because d is prime to all 

the powers of b.  

 

196. Because these remainders 1, α, β, γ, δ, etc. are all less than d, 

they cannot all be distinct from each other. Indeed, if the multitude of 

numbers that are prime to d and also less than d be μ, more distinct 

remainders cannot result than μ contains of units. 



 

197. Since, therefore, countless powers produce the same 

remainders, if we set bm and bm+n as giving the same remainder, the 

difference of these powers, bm+n–bm = bm(bn–1) will be divisible by d. 

Because bm is prime to d, it follows that bn–1 is divisible by d, that is, the 

power bn gives the remainder = 1. 

 

198. Because more than μ distinct remainders cannot occur, if the 

progression be extended to the term bμ, since the number of its terms = 

μ+1, at least one remainder occurs twice, and thus the case already 

considered comes to pass before m+n surpasses μ, whence there will be 

a power bn, reproducing the remainder = 1, such that n does not surpass 

μ. 

 

199. Let’s stipulate bn to be the least power after the unit that, 

divided by d, leaves the unit, but the following powers, bn+1, bn+2, bn+3, etc., 

will produce the same remainders as the initial powers b, b2, b3, etc., until 

the power b2n, which again leaves the unit as remainder, is reached. 

 

200. Since, therefore, the same remainders return, going forth from 

the power bn as from the beginning, not only will all the powers b0, bn, b2n, 

b3n, b4n, etc. leave the same remainder 1, but also b1, bn+1, b2n+1, b3n+1, 

b4n+1, etc. will have the same remainder, as also will bm, bn+m, b2n+m, b3n+m, 

etc., divided by d, leave equal remainders. 

 

201. Putting, therefore, bn for the least power leaving the unit as 

the remainder, so that n does not exceed μ, the multitude of numbers less 

than d and prime to it, all the antecedent powers 1, b, b2, b3, …, bn–1, will 

produce unequal remainders, which will thereafter return in the same 

order. For if two of them were equal, there would be a lesser value for n, 

contrary to the hypothesis. 

 

202. But if all the numbers prime to the divisor d and less than it 

occur in the remainders, the multitude of which is = μ, we will have n = 

μ, and also bμ–1 will be divisible by d. But if not every number prime to d 



occurs amongst the remainders, it is necessary that we have n < μ. We 

will show, however, that, in this case, n is an aliquot part of μ. 

 

203. If not all the numbers prime to d and less than it, whose 

multitude is = μ, occur amongst the remainders, whose multitude = n, I 

will call those which are excluded from the rank of the remainders by the 

name non-remainders, so that the multitude of remainders n with the 

multitude of non-remainders must exhaust the number μ. 

 

204. If the numbers r and s occur in the sequence of remainders 1, 

α, β, γ, etc., the number rs, or an equivalent remainder, will likewise occur 

in it. For, if the remainders r and s answer to the powers bρ and bσ, the 

remainder rs will respond to the power bρ+σ. And, hence, the number rfsg 

will occur amongst the remainders, whatever may be taken for the 

exponents f and g. 

 

205. Again, if the remainder r agrees with the power bρ, and the 

remainder rs, or rs–λd, with the power bρ+σ, then the remainder s will 

agree with the power bσ. For the remainder rs will agree with the product 

bρs, the same as for the power bρ+σ; hence, the difference bρ+σ–bρs = bρ(bσ–

s) will be divisible by d. Because of this, since bρ is prime to d, it is 

necessary that bσ–s be divisible by d, and so the remainder s will answer 

to the power bσ. 

 

206. If, therefore, the numbers r and rs are found amongst the 

remainders, it is certain that the number s is going to be found there also. 

But if the sequence of remainders 1, α, β, γ, δ, etc., whose number is = n, 

does not encompass all the numbers less than d and prime to it, whose 

multitude is = μ, there will be one, or more, which must be assigned to 

the class of non-remainders. 

 

207. Let x be such a non-remainder, and it is also clear that the 

numbers αx, βx, γx, δx, etc. are to be found amongst the non-remainders, 

for, if αx were found in the remainders, because α occurs there, x would 

also have to be found there, contrary to the hypothesis. Thus, from a 

single non-remainder, it necessarily follows that there are as many non-



remainders as remainders, that is to say n. For these non-remainders are 

also unequal to each other just as the remainders 1, α, β, γ, δ, etc. are, 

and, besides, if there were two that were equal there, there would also be 

such here, which is absurd. (*) 

 

(*) Written in the margin. If x and y be non-remainders, we will have y = αx and 
xy = αxx; now if the number of non-remainders = the number of remainders, 
it must be shown that xx is contained amongst the remainders. 

 

208. It is therefore now immediate that n < μ and there are, at a 

minimum, n non-remainders; if everything is encompassed, the number 

of both remainders and non-remainders will be = n+n, which must be 

equal to μ, whence we have n = 
μ

2
; hence, if n < μ, it cannot be that the 

number of remainders supersedes n, half of the number μ. 

 

209. If not every non-remainder occurs in the way set forth as x, 

αx, βx, γx, etc., let y be a number < d and prime to it, which is found 

neither in these non-remainders nor in the remainders, and similarly the 

numbers αy, βy, γy, etc., distinct from the preceding, must be assigned to 

the non-remainders, and so, once again, n numbers are added to the non-

remainders. 

 

210. If these two orders do not yet exhaust all the non-remainders, 

a new order will be added, equally consisting of n terns, and perhaps a 

new one again consisting of the same number of terms; whence we 

deduce that the number of all the non-remainders, unless there be none, 

is equal either to the number n, or to its double, or its triple, or, in general, 

to some multiple of it. 

 

211. Since, therefore, all the non-remainders united with the 

remainders must exhaust the multitude of all the numbers less than the 

divisor d and prime to it, we will have either n = μ, or 2n = μ, or 3n = μ, 

etc. and so, the exponent n will always be an aliquot part of the number 

μ. 

 

212. But if b and d be numbers prime to each other and μ indicates 

the multitude of all the numbers prime to d and less than it, and then if 



bn be the lowest power after the case n = 0, which, divided by d, leaves 

the unit, then we will have n = μ, or n will be equal to some aliquot part 

of μ, so that we have n = 
μ

𝑚
, with m being some divisor of μ. 

 

213. Since, however, after bn, each of b2n, b3n, b4n, etc. also 

acknowledges the unit as its remainder, the power bmn = bμ, divided by d, 

will always leave the unit. Hence, provided that b and d be numbers prime 

to each other, the formula bμ–1 will always be divisible by the number d. 

 

214. Moreover, if c and d also be numbers prime to each other, 

seeing that cμ–1 admits of division by d, the difference bμ–cμ of these 

formulas will always be divisible by the number d, provided that each of 

the numbers b and c be prime to d. 

 

215. If we take the prime number p for d, we will have μ = p–1, and 

the formula bp–1–1 will always be divisible by p, unless the number b be a 

multiple of p. But it can happen that the simpler form bn–1 also admits 

of division by p, whereby it is necessarily required that the exponent n be 

an aliquot part of p–1. 

 

216. If the divisor be d = pq, with p and q being unequal prime 

numbers, and b is not included in either of these numbers, then, because 

μ = (p–1)(q–1), the form b(p–1)(q–1)–1 will be divisible by d. 

 

217. And also if p, q, r, s be unequal prime numbers and if it be 

that d = pλqμrνsξ and also if b be any number whatever prime to d, then 

setting 

m = pλ–1(p–1)qμ–1(q–1)rν–1(r–1)sξ–1(s–1), 

the form bm–1 will always be divisible by d, and also it can sometimes 

happen that the simpler form bn–1, where n is some aliquot part of m, 

results in divisibility. 

 

 218. Yet if we retain the general divisor d and let μ be the multitude 

of numbers less than and prime to it, while some number prime to d is 

taken for b, whose smallest power, divided by d, leaving the unit be bn, 

we now see that we necessarily have either n = μ, or n = 
1

2
μ, or n = 

1

3
μ, or n 



= 
1

4
μ, or n = 

1

5
μ, if indeed μ admits such aliquot parts; which cases it will 

behoove us to examine more diligently.  

 

219. Certainly one may immediately suspect that this 

determination depends on the nature of the number b, so that, for a given 

divisor d, certain numbers taken for b may produce n = μ, others n = 
1

2
μ, 

others n = 
1

3
μ, others n = 

1

4
μ, or still lesser aliquot parts of μ. 

 

220. But letting n be some aliquot part of μ, if the two powers bn 

and cn leave the unit, the compound (bc)n will also leave the unit. Then it 

is clear that the power (b±λd)n, divided by d, will also leave the unit. 

 

221. Since the power bμ always leaves the unit, let’s seek out 

numbers to be taken for b so that 𝑏
1

2
𝜇
 also leaves the unit, in which case 

it is necessary, above all, that μ be an even number, which indeed always 

happens unless it be that n = 2. 

 

222. Now, if we take b = cc, such that c be a number prime to d, it 

is certain that 𝑏
1

2
𝜇 = 𝑐𝑛 leaves the unit, which also happens if b = cc±λd. 

Therefore, fewer numbers, fit to be taken for b, are remainders which 

result from the division of square numbers by d, provided that the 

squares be prime to d. 

 

 223. Similarly, the power 𝑏
1

3
𝜇
, divided by d, will leave the unit, if it 

be that b = c3, and, more generally, if b = c3±λd. Therefore, fewer values, 

fit for b, are remainders arising from the division, by the number d, of 

cube numbers prime to d. But it is evident that this cannot happen 

unless the number μ is divisible by 3. 

 

 224. If μ be divisible by 4, then the power 𝑏
1

4
𝜇
, divided by d, will 

leave the unit if b = c4 and, more generally, b = c4±λd. Fewer numbers, 

therefore, are remainders which arise from the division of biquadratics 

by d, taking, of course, only those biquadratics that are prime to d. 

 



 225. In general, therefore, if the number μ be divisible by ν, the 

power 𝑏
𝜇

𝜈, divided by d, will leave the unit if we take b = cν, or even b = 

cν±λd, so that the numbers fit to be substituted for b are the remainders, 

which arise from the division of powers of order ν by the number d, these 

powers being prime to d. 

 

 226. It is sufficient, therefore, to take for b numbers less than d, 

which are prime to it; yet, the unit, taken for b, certainly gives back all 

remainders equal to the unit, so that in this case we always have n = 1, 

or 𝑛 =
𝜇

𝜇
. There remains this unique case: if the divisor is taken to be d = 

2, in which, of course, we have μ = 1. 

 

 227. Letting the divisor be d = 3, we will have μ = 2, and besides 

the case b = 1, for which n = 1, we will have the case b = 2, whence arises 

the geometric progression with its remainders: 

 

Geo. progr.    1, 2, 22, 23, 24,  etc., where we have n = 2, 

Remainders   1, 2, 1,  2,   1,   etc., or n = μ. 

 

 228. Letting the divisor d = 4, we will have μ = 2, and besides the 

case b = 1, in which n = 1 = 
1

2
μ, we have the case b = 3.  

 

Geo. progr.    1, 3, 32, 33, 34,  etc., whereby n = 2 = μ, 

Remainders   1, 3, 1,  3,   1,   etc. 

 

229. Letting the divisor be d = 5, we will have μ = 4 and we will have 

these cases 

 

             b = 1          b = 2                     b = 3              b = 4 

Geo. progr.      1, 1      1, 2, 22, 23, 24      1, 3, 32, 33, 34     1, 4, 42 

Remainders     1, 1      1, 2, 4,  3,   1       1, 3, 4,  2,   1      1, 4, 1 

                      n = 1          n = 4                     n = 4              n = 2 

in two cases, therefore, we have n = 4, in one n = 2 and in one n = 1. 

 

 230. If the divisor d = 6, we will have μ = 2 and there are two cases 



 

                       b = 1      b = 5   

Geo. progr.       1, 1      1, 5, 52 

Remainders      1, 1      1, 5, 1 

                        n = 1      n = 2                      

 

 231. If the divisor d = 7, we will have μ = 6 and there will be just 

that many cases 

 

              b = 1         b = 2                     b = 3                       b = 4 

Geo. progr.       1, 1      1, 2, 22, 23      1, 3, 32, 33, 34, 35, 36     1, 4, 42, 43 

Remainders      1, 1      1, 2, 4,  1       1, 3, 2,  6,   4,  5,  1      1, 4, 2,  1 

                       n = 1         n = 3                     n = 6                      n = 3 

 

                                      b = 5                b = 6     

Geo. progr.       1, 5, 52, 53, 54, 55, 56     1, 6, 62 

Remainders      1, 5, 4,  6,   2,  3,  1      1, 6, 1 

                                      n = 6                n = 2     

 

232. If the divisor d = 8, we will have μ = 4 and just that many cases 

 

              b = 1      b = 3         b = 5          b = 7 

Geo. progr.       1, 1      1, 3, 32      1, 5, 52      1, 7, 72 

Remainders      1, 1      1, 3  1       1, 5, 1       1, 7, 1 

                       n = 1      n = 2         n = 2          n = 2 

in no case, therefore, will it be that n = μ, but in three n = 
1

2
μ and in one 

case n = 
1

4
μ. 

 

 233. If the divisor be d = 9, we will have μ = 6 and just as many 

cases 

 

              b = 1                  b = 2                     b = 4 

Geo. progr.       1, 1      1, 2, 22, 23, 24, 25, 26      1, 4, 42, 43 

Remainders      1, 1      1, 2, 4,  8,   7,  5,  1       1, 4, 7,  1 

                       n = 1                  n = 6                     n = 3 

 



                           b = 5                      b = 7           b = 8 

Geo. progr.      1, 5, 52, 53, 54, 55, 56      1, 7, 72, 73      1, 8, 82 

Remainders     1, 5, 7,  8,   4,  2,  1       1, 7, 4,  1        1, 8, 1 

                                    n = 6                     n = 3            n = 2 

 

 234. If the divisor be d = 10, we will have μ = 4 

 

              b = 1           b = 3                     b = 7             b = 9 

Geo. progr.       1, 1      1, 3, 32, 33, 34      1, 7, 72, 73, 74     1, 9, 92 

Remainders      1, 1      1, 3, 9,  7,  1        1, 7, 9,  3,  1       1, 9, 1 

                       n = 1          n = 4                     n = 4              n = 2 

 

 235. Letting d = 11, we will have μ = 10 and just as many cases 

 

              b = 1                             b = 2                                    

Geo. progr.       1, 1      1, 2, 22, 23, 24, 25, 26, 27, 28, 29, 210    

Remainders      1, 1      1, 2, 4,  8,  5,  10,  9,  7,  3,  6,   1     

                       n = 1                            n = 10                                 

 

                              b = 3                        b = 4                      b = 5 

Geo. progr.    1, 3, 32, 33, 34, 35    1, 4, 42, 43, 44, 45    1, 5, 52, 53, 54, 55 

Remainders   1, 3, 9,   5,  4,  1     1, 4, 5,   9,  3,  1     1, 5,  3,  4,   9, 1  

                             n = 5                         n = 5                      n = 5 

 

 

                                      b = 6     

Geo. progr.       1, 6, 62, 63, 64, 65, 66, 67, 68, 69, 610    

Remainders      1, 6, 3,   7,  9, 10,  5,  8,  4,   2,  1 

                                                n = 10          

 

                                      b = 7     

Geo. progr.       1, 7, 72, 73, 74, 75, 76, 77, 78, 79, 710    

Remainders      1, 7, 5,   2,  3, 10,  4,  6,  9,   8,  1 

                                                n = 10          

 

 



                                      b = 8     

Geo. progr.       1, 8, 82, 83, 84, 85, 86, 87, 88, 89, 810    

Remainders      1, 8, 9,   6,  4, 10,  3,  2,  5,   7,  1 

                                                n = 10          

 

                                 b = 9                        b = 10 

Geo. progr.       1, 9, 92, 93, 94, 95,           1, 10, 102 

Remainders      1, 9, 4,  3,   5, 1              1, 10,  1 

                                 n = 5                        n = 2          

 

 236. Letting d = 12, we will have μ = 4 and just as many cases 

 

              b = 1      b = 5           b = 7        b = 11 

Geo. progr.       1, 1      1, 5, 52       1, 7, 72     1, 11, 112 

Remainders      1, 1      1, 5, 1        1, 7,  1     1, 11,   1 

                       n = 1      n = 2           n = 2        n = 2 

here, therefore, we always have n < μ, namely, in three cases n = 
1

2
μ and 

in one n = 
1

4
μ. 

 

 237. If the divisor be d = 13, we will have μ = 12 and, for the smallest 

powers bn, which, divided by 13, leave the unit, we find 

if           b = 1,  2,  3, 4, 5,  6,   7,  8, 9, 10, 11, 12 

we have n = 1, 12, 3, 6, 4, 12, 12, 4, 3,  6,  12,  2. 

 

 238. Just as whenever b = 1, we have n = 1, whatever the divisor d 

may be, so to, on taking b = d–1, we have n = 2, that is, (d–1)2 divided by 

d leaves the unit, which never happens for the first power. Concerning 

the remaining values taken for b, however, it is more difficult to judge. 

 

 239. Since the power (kd+1)n, divided by d, leaves 1, if it be that 

kd+1 = bc, and the power bn, divided by d, also leaves the unit, then the 

power cn will likewise leave the unit. For, since bn leaves 1, the product 

bncn will leave cn, but, by hypothesis, bncn leaves 1; therefore, in the 

assessment of the remainders, cn is equivalent to the unit, that is, cn, 

divided by d, will leave the unit. 



 

 240. Whence, if bn be the least power leaving the unit when divided 

by d, and if it be that bc = kd+1, the least power of c leaving the unit will 

be either cn, or a yet smaller one, the exponent being an aliquot part of n. 

But, if a smaller power of c, say 𝑐
𝑛

ν, leaves the unit, that power of b also 

leaves the unit, from which, since this is contrary to the hypothesis, it 

follows that, if bn be the smallest power leaving the unit, cn will also be 

the smallest power leaving 1. 

 

 241. Thus, setting d = 13, because 54 is the smallest power leaving 

the unit, if it be that 5c = 13k+1, then c4 will likewise be the smallest 

power leaving the unit. Indeed, to make 13k+1 divisible by 5, we must 

take k = 5λ–2, and we will have c = 13λ–5, whose smallest value is c = 8, 

so that 84 is also the smallest power leaving the unit when divided by 13. 

 

 242. But whatever be the number b, less than d and prime to it, 

there will likewise be one, and not more, number c, also less than d and 

prime to it, such that bc = kd+1. For if there were two, so that both bc = 

kd+1 and be = ld+1, then bc–be = b(c–e) would be divisible by d, whence, 

because b and d are prime [to each other], c–e would be divisible by d, 

which, since c and e are less than d, is not possible unless e = c. It may 

happen, however, that c = b, which always comes to pass if it be that 

either b = 1 or b = d–1. 

 

 

 

Chapter VIII 

On Powers of Numbers which, Divided  

by Prime Numbers, Leave the Unit 

 

 243. If the power an, divided by the number d, leaves some 

remainder, all the powers (a+λd)n with the same exponent will also leave 

the same remainder; moreover, if n be an even number, the powers (λd–



a)n will also leave the same remainder, whence the investigation of 

remainders reduces to that of numbers a less than the divisor d. 

 

 244. Now let the divisor d be any prime number whatever, and, 

because the dyad offers no difficulty, we put d = 2p+1, and so 2p will be 

the multitude of numbers prime to d and less than it. Now, if a be any 

number prime to d, which happens provided that a is not a multiple of d, 

we saw that the power a2p, divided by d = 2p+1, always leaves the unit. 

 

 245. Often it may happen that some lesser power an, with n < 2p, 

divided by the same number d = 2p+1, leaves the unit; then, however, the 

exponent n is certainly an aliquot part of 2p. But if this happens, not only 

the formula a2p–1, but also the formula an–1 will be divisible by the prime 

number 2p+1. 

 

 246. But if the formula an–1 be divisible by the prime number 2p+1, 

the formula amn–1 will also be divisible, whence, since the formula a2p–1 

certainly is divisible by 2p+1, the difference amn–a2p, or a2p(amn–2p–1), will 

also be divisible; because of this, since the factor a2p does not admit of 

division, it is necessary that the other factor amn–2p be divisible, whatever 

number be taken for m. 

 

 247. Let λ be the maximum common divisor of the numbers n and 

2p; and if the formula an–1 be divisible by the prime number 2p+1, the 

formula aλ–1 will also be divisible by 2p+1. For, let n = αλ and 2p = βλ, so 

that α and β are numbers prime to each other, and, since both aαλ–1 and 

aβλ–1 are multiples of 2p+1, the formulas aμαλ–1 and aνβλ–1 will also be 

multiples. But, because α and β are prime numbers10, μ and ν can be 

found that make μα = νβ+1, whence the difference will be aνβλ+λ–aνβλ = 

aνβλ(aλ–1), which is divisible by 2p+1, so that it is necessary that aλ–1 be 

divisible by 2p+1. 

 

 248. If, therefore, n be a number prime to 2p, the form an–1 cannot 

be divisible by the prime number 2p+1, unless a–1 be divisible by it. 

 
10 That is, they are prime to each other. 



Whence, if a–1 be not a multiple of the prime number 2p+1, the formula 

an–1 cannot be divisible by it, unless n and 2p be numbers composite to 

each other, and if the maximum common divisor of them be λ, the formula 

aλ–1 will be divisible by 2p+1. 

 

 249. If, therefore, an be the least power of a, which, divided by the 

prime number 2p+1, leaves the unit, then n is certainly an aliquot part 

of the number 2p. But then, if it be that ab = k(2p+1)+1, then bn will also 

be the least power of b, which, divided by 2p+1, leaves the unit. 

 

 250. If n be a prime number and the formula an–1 be divisible by 

the prime number 2p+1, either n will be an aliquot part of 2p (since there 

does not exist any other common divisor), or, if it be prime to 2p, the 

number a–1 will be divisible by 2p+1. Because of this, the formula an–1 

does not admit other prime divisors besides those of a–1, unless they be 

of the form 2p+1, with 2p a multiple of n. Hence, all of its prime factors 

will be contained in the form 2mn+1. 

 

 251. Whence, the form a3–1 does not admit other prime divisors 

besides the divisors of a–1, except those having the form 6m+1, which are 

7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, etc. Since, therefore, aa+a+1 is 

a factor of a3–1, it also is divisible by no other prime numbers. 

 

 252. In a similar way, the form a5–1 does not have other divisors 

besides those of a–1, except those contained in the form 10m+1, which 

are 11, 31, 41, 61, 71, etc. Whence, also numbers of the kind 

a4+a3+a2+a+1, 

if they be not prime, do not admit of other divisors. 

 

253. Whenever perfect numbers are sought after, the formula 2n–1 

is a prime number and, in the first place, it is clear that this cannot 

happen, unless n be a prime number. But if n be such, the formula 2n–1 

will certainly not have divisors other than those of the form 2nm+1, 

whence the determination of whether it is prime or not is more easily 

accomplished [negotio absolvitur]. 

 



254. Since a2p–1 is always divisible by the prime number 2p+1, and 

that form consists of the factors ap–1 and ap+1, it is necessary that one 

or the other be divisible by 2p+1. But we saw that if it be that a = 

ee±λ(2p+1), then ap–1 will be divisible; in these cases, therefore, the 

formula ap+1 will certainly not be divisible by 2p+1. 

 

255. The question arises as to whether the formula ap–1 might 

perhaps always be divisible by 2p+1 and, therefore, never the other ap+1? 

It is clear that this should be immediately denied in the case in which p 

is an odd number. For, because then ap+1 has the factor a+1 and, taking 

a = 2p, this formula is manifestly divisible by 2p+1. 

 

256. In general, it can, however, be shown in the following way that 

the formula an–1, with n < 2p, is not always divisible by the prime number 

2p+1, but rather there certainly are numbers of the sort that, put for a, 

division of the formula an–1 does not occur. This will be most conveniently 

demonstrated by reduction11 to absurdity.  

 

 257. For, whoever would deny this must affirm that all the formulas 

1n–1, 2n–1, 3n–1, 4n–1, 5n–1, …, nn–1 are divisible by 2p+1 and, therefore, 

also both their first differences 2n–1, 3n–2n, 4n–3n, 5n–4n, etc. and their 

second differences 3n–2.2n+1n, 4n–2.3n+2n, 5n–2.4n+3n, etc., and all the 

following ones. 

 

 258. But the differences of order n are constants, which, if they be 

indicated by the letter N, may be expressed as being 𝑁 = (𝑛 + 1)𝑛 − 𝑛. 𝑛𝑛 +

𝑛(𝑛−1)

1.2
(𝑛 − 1)𝑛 −

𝑛(𝑛−1)(𝑛−2)

1.2.3
(𝑛 − 2)𝑛 + etc., the values of which, for various 

values of n, are easily computed: 

If   n = 1   we have   N = 2–1 = 1 

   n = 2     N = 32–2.22+1 = 2 = 1.2 

   n = 3     N = 43–3.33+3.23–1 = 6 = 1.2.3 

   n = 4     N = 54–4.44+6.34–4.24+1 = 24 = 1.2.3.4 

   etc. 

 
11 The Latin phrase often retained in English is, of course, reductio ad absurdum. Euler 
uses the phrase deductionem ad absurdum. 



 

 259. In order that this may be shown more clearly, writing n+1 for 

n,  

𝑃 = (𝑛 + 2)𝑛+1 − (𝑛 + 1). (𝑛 + 1)𝑛+1 +
(𝑛+1)𝑛

1.2
𝑛𝑛+1 −

(𝑛+1)𝑛(𝑛−1)

1.2.3
(𝑛 − 1)𝑛+1 + etc., 

and, beginning with the previous term,  

𝑃 = (𝑛 + 1)𝑛+1 − (𝑛 + 1)𝑛𝑛+1 +
(𝑛+1)𝑛

1.2
(𝑛 − 1)𝑛+1 − etc. 

But the value of N can be represented as 

𝑁 = (𝑛 + 1)𝑛 − 𝑛𝑛+1 +
𝑛

1.2
(𝑛 − 1)𝑛+1 −

𝑛(𝑛−1)

1.2.3
(𝑛 − 2)𝑛+1 + etc., 

which, multiplied by n+1, produces the value of P, so that P = (n+1)N. 

 

 260. Therefore, since we have N = 1 in the case n = 1, in the case n 

= 2 we will have N = 1.2, in the case n = 3 we will have N = 1.2.3 and, in 

general, for any number n whatever, we will have N = 1.2.3…n. But this 

difference of order n is not divisible by the prime number 2p+1, because 

n < 2p, whence it follows that not all the terms of the sequence set out in 

§257 are divisible by it. 

 

 261. Let 6p+1 be a prime number and, since a6p–1 is divisible by it, 

unless a be a multiple of it, there will be cases in which a2p–1 will also be 

able to be divided by it, namely taking a = c3±λ(6p+1). But there will also 

be cases in which the formula a2p–1 will not be divisible by the prime 

number 6p+1, as is evident from the demonstration just now presented. 

 

 262. Since we have already shown that the formula a3p–1 will be 

divisible by 6p+1, if it be that  

a = cc±λ(6p+1), 

it may now be deduced that, if the number a is contained in both the 

form cc±λ(6p+1) and c3±λ(6p+1), then the formula ap–1 will be divisible by 

6p+1, which will likewise happen if it be that a = c6±λ(6p+1). 

 

 263. If 4p+1 be a prime number, so that a4p–1 is divisible by it, then 

even ap–1 will be able to be divided by it, if it be that a = c4±λ(4p+1). In 

fact, there are also cases in which the formula ap–1 will not admit of 

division: certainly those [in which] either ap+1 or a2p+1 will be divisible 

by 4p+1. 



 

 

 

Chapter IX 

On the Divisors of Numbers of the Form an±bn 

 

 264. Given a prime number 2p+1, provided that a and b are not 

multiples of it, then both the formulas a2p–1 and b2p–1 will be divisible by 

it; and, therefore, their difference a2p–b2p will also always admit of division 

by the prime number 2p+1. 

 

 265. Let’s now suppose that the number an–bn is divisible by the 

prime number 2p+1, and in order to investigate in what way this can 

happen, let’s suppose that φ is the maximum common divisor of the 

numbers n and 2p, so that, putting n = αφ and 2p = βφ, the numbers α 

and β will be prime to each other. 

 

 266. Since, however, α and β are numbers prime to each other, it 

can happen that μα = νβ+1. Because of this, since aαφ–bαφ is divisible by 

2p+1, then aμαφ–bμαφ, that is, a(νβ+1)φ–b(νβ+1)φ, will be divisible, thence, 

because of aβφ–bβφ, so too the number aνβφ–bνβφ, as well as the same 

multiplied by aφ, namely a(νβ+1)φ–aφbνβφ. 

 

 267. Removing this last form from the preceding one, the difference 

aφbνβφ–b(νβ+1)φ = bνβφ(aφ–bφ) will be divisible by the prime number 2p+1. But, 

bνβφ is not divisible by it, therefore it is necessary that the other factor aφ–

bφ be divisible. 

 

 268. Therefore, if the number an–bn be divisible by the prime 

number 2p+1 and φ be the maximum common divisor of the numbers n 

and 2p, then the number aφ–bφ will also be divisible by 2p+1 and, if the 

latter does not admit of division, the former likewise does not admit of it. 

 



 269. And if, therefore, n and 2p be numbers prime to each other, 

that is, the unit is their maximum common divisor, unless a–b be 

divisible by 2p+1, an–bn will not admit of division by this prime number. 

 

 270. Hence, in investigating the prime divisors of the number an–

bn, besides the divisors of a–b, which readily present themselves, we must 

search for the rest amongst those prime numbers 2p+1, for which 2p and 

n are not prime, but composite, to each other. 

 

 271. Whence, if n be a prime number, we must search for all the 

divisors of the number an–bn, besides those that a–b contains, only 

amongst prime numbers of the form λn+1, if indeed a and b be numbers 

prime to each other, which condition, it is clear, must be added. 

 

 272. Therefore, the prime divisors of the form an–bn, besides a–b, 

for various values of n, should be sought for as follows: (*) 

forms            divisors should be sought for amongst these prime numbers: 

a2–b2        2λ+1 ... 3, 5, 7, 11, 13, 17, 19, none being excluded 

a3–b3        3λ+1 ... 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, etc. 

a5–b5        5λ+1 ... 11, 31, 41, 61, 71, 101, etc. 

a7–b7        7λ+1 ... 29, 43, 71, 113, 127, etc. 

a11–b11    11λ+1 ... 23, 67, 89, 199, 331, etc. 

     etc. 

 

(*) Written in the margin. 1. The number n can also be added to the divisors of 
the form an–bn. 2. From a3–b3, it follows that the number aa+ab+bb cannot 
have other divisors except 3λ+1; therefore, 3λ–1 certainly are not divisors. 

 

273. If n be not a prime number, but the product of two primes, 

say n = αβ, the prime divisors of the form aαβ–bαβ, besides a–b, are 

contained in the form 2p+1, where 2p is not prime to αβ; whence, as either 

α, or β or even αβ is the maximum common divisor, the form of the prime 

divisors will be either λα+1, or λβ+1 or λαβ+1, in the first of which λ must 

not contain β, in the second it must not contain α, but in the third it is 

not limited. 

 



274. But divisors of the form λα+1 also divide aα–bα, and divisors of 

the form λβ+1 also divide aβ–bβ, if indeed λ be prime to β in the first, but 

prime to α in the latter. 

 

275. Because of this, if only those divisors of the formula aαβ–bαβ 

are desired, that do not also divide either aα–bα or aβ–bβ, they should be 

sought amongst prime numbers of the form λαβ+1; but if we prefer to 

exclude only the divisors of the form aα–bα, we should seek for the rest 

amongst the prime numbers λβ+1. 

 

276. Let α = 2 and β = 2, and all the prime divisors of the number 

a4–b4, which do not also divide a2–b2, will be contained in the form 4λ+1; 

and therefore these will be divisors of the numbers a2+b2; whence it is 

clear that numbers of the form a2+b2 do not admit of other prime divisors 

except those that are of the form 4λ+1. 

 

277. Let α = 2 and β = 3, and all the prime divisors of the number 

a6–b6, which do not also divide a3–b3, will be contained in the form 2λ+1; 

but those which also do not divide a2–b2, in 6λ+1; these, therefore, will be 

the divisors of the form a2–ab+b2, and such numbers do not admit of 

[agnoscunt] other divisors. 

 

278. From this, we deduce that, in general, if the divisors of a2m–

b2m are to be determined, which are not also divisors of the number am–

bm, that is, if the divisors of the number am+bm are desired, it is required 

to seek for them amongst prime numbers of the form 2λm+1. But the 

divisor a+b is excluded from these if m be an odd number. 

 

279. Thus, we may make the following table for various values of 

m: 

Forms of           divisors should be sought for amongst prime numbers 
numbers           of the form 

a2+b2  4λ+1 which are 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97 

a3+b3  6λ+1 ............... 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97 

a4+b4  8λ+1 ............... 17, 41, 73, 89, 97, 113, 137, 193 

a5+b5         10λ+1 ............... 11, 31, 41, 61, 71, 101, 131, 151, 181 

a6+b6         12λ+1 ............... 13, 37, 61, 73, 97, 109, 157, 181, 193 



a7+b7         14λ+1 ............... 29, 43, 71, 113, 127, 197, 211, 239 

a8+b8         16λ+1 ...............17, 97, 113, 193, 241, 257, 337 

         etc. 

The case where the exponent is a power of the dyad should be noted above 

all, because the divisors can, in general, be distributed amongst the 

others. Numbers of the kind 𝑎2𝑛
+ 𝑏2𝑛

 do not have other prime divisors, 

except those contained in the form 2n+1λ+1. 

 

 280. But, an–bn will be able to be divided by the prime number 

mn+1 if the numbers a and b be so composed as to make axm–bym 

divisible by mn+1; clearly, provided that numbers can be assigned to x 

and y, for which this condition is satisfied, then an–bn will certainly be 

divisible by mn+1. 

 

 281. For, if axm–bym be divisible by mn+1, then anxmn–bnymn will also 

be divisible. But the form xmn–ymn is always divisible, and therefore also 

anxmn–anymn, on account of which also the difference anymn–bnymn, and so 

an–bn will be divisible by the prime number mn+1. 

 

282. If, therefore, numbers of such a kind be assumed for a and b 

that an–bn not be divisible by somr prime number mn+1, then no numbers 

can be assigned to x and y, such that axm–bym admits of division by that 

same prime number mn+1, unless indeed both x and y be a multiple of 

it, but x and y are stipulated prime to each other. 

 

283. Thus, since 22–1 is only divisible by 3, and if 2m+1 be a prime 

number, then, unless it be that m = 1, no number contained in the form 

2xm–ym will be able to be divided by the prime number 2m+1: 

thus given        no number          will be divisible by 

m = 2             2x2–y2                   5 

m = 3             2x3–y3                   7 

m = 5             2x5–y5                 11 

m = 6             2x6–y6                 13 

                         etc. 

 

 



 

Chapter X 

On Remainders Arising  

from the Division of Squares by Prime Numbers  

 

 284. Whatever remainder is left, when the square a2 is divided by 

any number d that you please, the same remainder is likewise left when 

the infinite squares (nd±a)2 are divided by the same number d. 

 

 285. Because of this, if we wish to examine the remainders that are 

left by division of square numbers by a given number d, it will suffice to 

investigate the squares whose roots are less than the divisor d, therefore 

these: 

1, 4, 9, 16, …, (d–4)2, (d–3)2, (d–2)2, (d–1)2, 

the number of which is d–1. 

 

 286. But the extreme squares 1 and (d–1)2, as well as any couple 

equally remote from the extremes, give equal remainders; whence, if d–1 

be an even number, more distinct remainders than 
1

2
(𝑑 − 1) cannot result, 

and, if d–1 be an odd number, on account of the one situated in the 

middle, no more than 
1

2
𝑑. 

 

 287. Now let d be a prime number, and because it is easy12 to judge 

about the dyad, it is stipulated that d = 2p+1; now, since all the 

remainders result from the squares 1, 4, 9, …, (p–2)2, (p–1)2, p2, the 

number of them cannot be greater than p, whence it is clear that not all 

the numbers less than d = 2p+1, whose multitude is 2p, occur amongst 

the remainders, but at least half of them are excluded. 

 

 288. I say first, however, that all the remainders arising from the 

squares 1, 4, 9, …, p2 are unequal to each other; for, if two squares not 

greater than p2, say m2 and n2, gave the same remainder, their difference 

m2–n2 and, therefore, either m–n or m+n, would be divisible by the prime 

 
12 Reading promptu for promtu. 



d = 2p+1, which cannot happen, since, because 𝑚 <
1

2
𝑑 and 𝑛 <

1

2
𝑑, we 

have m+n less than d. 

 

 289. Since, therefore, all the remainders, arising from the division 

of the squares 1, 4, 9, …, p2 by the prime number 2p+1, are unequal, we 

represent them thusly: 

roots              1   2   3    4     5     6       p 

squares          1   4   9   16   25   36      p2 

remainders     1   α   β    γ      δ     ε        π 

and the multitude of these remainders will be = p. 

 

 290. Since the multitude of all the numbers less than the divisor 

2p+1, which are also prime to it, is = 2p, it is clear that half of these 

numbers are excluded from the class of remainders, and we therefore call 

them non-remainders. The multitude of non-remainders will thus be = p, 

which we indicate by German letters 𝕬, 𝕭, 𝕮, 𝕯, etc. 

 

 291. If, therefore, we find the non-remainders for any prime divisor 

2p+1, we will be able to assert that there is no square number xx such 

that xx–𝕬 is divisible by 2p+1, where 𝕬 indicates any non-remainder 

whatever. And, moreover, there can always be exhibited as many 

formulas xx– 𝕬, indivisible by 2p+1, as p contains of units. 

 

 292. For any prime divisor 2p+1, therefore, the numbers less than 

it can be separated into two classes, of which one encompasses the 

remainders, the other the non-remainders, each of which contains the 

same amount of numbers, so that any remainder answers, as it were, to 

a non-remainder. Thus, it behooves us to examine the nature of these 

two classes more carefully. 

 

 293. If there occur two numbers m and n in the class of remainders, 

their product mn will likewise occur in it, or a remainder equivalent to it. 

For, if the remainder m arises from the square a2 and n from b2, the 

remainder mn arises from the product a2b2, which is equally a square. 

 



 294. If, therefore, any number m whatever be amongst the 

remainders, all its powers m2, m3, m4, etc., or remainders equivalent to 

them, will likewise be found in the same place. Then, indeed, if the 

number n also be there, the numbers mn, m2n, mn2 and in general mμnν 

will likewise be present in the same class of remainders. 

 

 295. The class of remainders 1, α, β, γ, …, π of any prime divisor 

2p+1, therefore, has this notable property, that the product of any two or 

more terms whatever likewise occur in it, provided that, in accord with 

the nature of remainders, they are reduced to minimum values. 

 

 296. It is more remarkable that the class of remainders consists of 

a fixed number of terms, the number of which is only = p, the same 

number of non-remainders being excluded. Notwithstanding that in 

whatever way the remainders may be combined amongst themselves by 

multiplication, nevertheless the same numbers always occur in that class. 

 

 297. Let m be any number whatever occurring in the class of 

remainders, 2p+1 being the prime divisor and, as we saw above, if the 

terms of the geometric progression 1, m, m2, m3, m4, etc. be divided by 

2p+1, all the products of pairs of them are also contained amongst the 

remainders; and thus, no numbers will occur in the remainders of these 

powers that are not also found in the remainders of the squares. 

 

 298. Since, therefore, the multitude of remainders, arising from the 

powers, cannot surpass the multitude arising from the squares, which is 

= p, it is clear that either the power mp or an inferior power produces a 

remainder = 1. We have already shown this, for, if m has arisen from the 

square aa, we will have m = aa–k(2p+1); and mp–1 is clearly divisible by 

the prime number 2p+1. 

 

 299. But, returning to the remainders of squares, we should 

observe that, if the numbers m and mn occur therein, then it is necessary 

that the number n must also be found in the same place. For, if the 

remainder m arises from the square aa and mn from the square bb, the 



remainder mn likewise originates from naa, whence bb–naa will be 

divisible by 2p+1, a and b being prime to 2p+1. 

 

 300. But if bb–naa is divisible by 2p+1, then (b+k(2p+1)2–naa will 

also be divisible. It is, however, always permitted to suppose that k be 

such that it makes b+k(2p+1) = ac, that is, such that k(2p+1) divided by 

a leaves b. There is some number c, therefore, such that aacc–naa, that 

is cc–n, is divisible by 2p+1, whereby the square cc will give the remainder 

n. 

 

 301. If α be in the class of remainders, but the number 𝕬 in that of 

non-remainders, the product α𝕬 will certainly be found in the class of 

non-remainders. For, if it were in the class of remainders, 𝕬 would 

likewise be in the same place, contrary to the hypothesis. 

 

 302. If the product mn occurs in the class of remainders, and one 

factor m of it in the class of non-remainders, the other, n, will likewise 

certainly be found in the class of non-remainders; for, if n were in the 

remainders, m would likewise belong in the same place. 

 

 303. If two non-remainders 𝕬 and 𝕭 be taken together [in se 

ducantur]13, the product will fall into the class of remainders. For, since 

every square occurs in the class of remainders, it is evident, first of all, 

that every square 𝕬2, 𝕭2, 𝕮2, etc. is there; it is now required further to set 

up a proof that the product 𝕬𝕭 of the two of them be indeed also found 

in the same place. 

 

 304. The remainders 1, α, β, γ, etc., whose number is = p, being 

known, and 2p+1 being the prime divisor, there are indeed for the same 

divisor non-remainders, whose number, since the remainders are 

numbers less than 2p+1, is likewise = p. But, given one non-remainder 

𝕬, all the rest [of them] are determined thusly from the remainders: 𝕬, 

α𝕬, β𝕬, γ𝕬, etc., being reduced, of course to the smallest terms. For these 

numbers are unequal to each other and their multitude is = p. 

 

 
13 The metaphor is that of marriage. 



 305. Any two non-remainders 𝕯 and 𝕰 whatever can be considered, 

therefore, as products of the kind δ𝕬 and ε𝕬, where δ and ε are 

remainders and 𝕬 a non-remainder; whence, the product of any two non-

remainders will be 𝕯𝕰 = δε𝕬𝕬, where δε, in as much as it is a product of 

two remainders, is found in the class of remainders. 

 

 306. But then 𝕬𝕬 also occurs in the class of remainders, because 

all the squares, or equivalent remainders, are found in it. Because of this, 

since δε and 𝕬𝕬 are both remainders, it is necessary that their product 

𝕯𝕰 likewise be a remainder, and so the product of any two non-

remainders is certainly contained in the class of remainders. 

 

 307. Therefore, the joining of two numbers according to their 

nature of being remainders and non-remainders is done thusly: 

1. The product of two remainders is a remainder. 

2. The product of a remainder and a non-remainder is a 

non-remainder. 

3. The product of two non-remainders is a remainder. 

 

 308. These things will be thoroughly illuminated, if we consider 

carefully the remainders and non-remainders [arising] from the division 

of squares by prime numbers: 

 

divisor                 3          5              7                   11 

remainders          1        1, 4        1, 4, 2        1, 4, 9, 5, 3 

non-remainders   2        2, 3        3, 5, 6        2, 6, 7, 8, 10 

 

divisor                          13                                    17 

remainders          1, 4, 9, 3, 12, 10        1, 4, 9, 16, 8,   2,  15, 13 

non-remainders   2, 5, 6, 7,  8,  11        3, 5, 6,  7, 10, 11, 12, 14 

 

divisor                                     19 

remainders          1, 4, 9, 16,  6,  17, 11,  7,   5 

non-remainders   2, 3, 8, 10, 12, 13, 14, 15, 18 

 

 



divisor                                           23 

remainders          1, 4,  9,  16,    2,  13,  3,  18, 1214,  8,   6 

non-remainders   5, 7, 10, 1115, 14, 15, 17, 19, 20,   21, 22 

 

divisor                                                   29 

remainders          1, 4, 9, 16, 25,  7,  20,  6,  23, 13,  5,  28, 24, 22 

non-remainders   2, 3, 8, 10, 11, 12, 14, 15, 17, 18, 19, 21, 26, 27 (*). 

 

(*) Written in the margin. Divisor: 59. Remainders:1, –2, 3, 4, 5, –6, 7, –8, 9, –
10, –11, 12, –13, –14, 15, 16, 17, –18, 19, 20, 21, 22, –23, –24, 25, 26, 27, 
28, 29. Therefore, if 4n–1 be prime, either the form xx+myy or xx–myy is 
divisible by it. 

 

309. We call the number, which together with the remainder makes 

up the divisor, the complement of the remainder; so, if the divisor be = d 

and some remainder be = r, its complement will be d–r. 

 

310. If the complement of any remainder occurs in the class of 

remainders, the complements of all the remainders will occur in that 

same place. For, if d–α, with d being the divisor, occurs in the class of 

remainders 1, α, β, γ, δ, etc., the remainder d–α can also be represented 

by –α = –1.α, because of which, since both α and the product –1.α are 

remainders, –1 will also be a remainder, and, therefore, –β, –γ, –δ, etc., 

which are equivalent to the rest of the complements, will also be 

remainders. 

 

311. Therefore, either none or all of the complements will occur in 

the sequence of remainders. It is clear from the examples above, if the 

divisor be either 3, or 7, or 11, or 19, or 23, the complement of no 

remainder is to be found amongst the remainders, but they are all non-

remainders. But if the divisor be 5, or 13, or 17, or 29, the complements 

of each remainder is likewise to be found in the class of remainders. 

 

312. If the prime divisor be 2p+1, and the complements of each 

[remainder] likewise occur amongst the remainders, seeing that they are 

 
14 Reading 12 for 11. 
15 Reading 11 for 12. 



joined to each other in pairs, so that either one [of the pair] is the 

complement of the other, and neither can any one be its own complement, 

since 2p+1 does not admit of a half, the number of remainders will 

necessarily be even. 

 

313. Since, therefore, the number of the remainders is = p, it 

cannot happen that the complements of the remainders are also 

remainders, unless p be an even number. Because of this, if p be an odd 

number, it is certain that the complement of no remainder is contained 

in the class of remainders, and hence the complements of all the 

remainders make up the class of non-remainders. 

 

314. Let, therefore, p be the odd number = 2p–1, so that the prime 

divisor is 4q–1, and all the complements of remainders are non-

remainders. Thus, if α be any remainder whatever, its complement 4q–1–

α will be a non-remainder, that is, there is no square, which divided by 

4q–1, leaves 4q–1–α. 

 

315. Since, therefore, α can indicate any square whatever, say nn, 

there is no square reduced by the number, 4q–1–nn, that can be divided 

by 4q–1. Hence, mm–(4q–1–nn), or mm+nn, never proves to be divisible by 

a prime number of the form 4q–1, unless by chance each of the numbers 

m and n be divisible by it. 

 

316. It has been demonstrated, therefore, that the sum of two 

squares prime to each other cannot be divided by any prime number of 

the form 4q–1. But if such a sum of pairs of squares has prime divisors, 

they certainly are of the form 4q+1, discounting, of course, the dyad, 

which also can be a divisor whenever both squares are assumed odd. 

 

317. When the complements of the remainders are discovered 

amongst the remainders, the complements of the non-remainders will 

also be non-remainders; but if the complement of one remainder be a 

non-remainder, all the complements of the remainders will be non-

remainders, and the complements of the non-remainders will, in turn, be 

remainders. 



 

318. If the divisor be 2p+1, it is only in the case that p be an even 

number that the complements of the remainders are likewise remainders; 

that they are always remainders, however, has not yet been established 

[evictum]. But, for this, these remainders should be compared with the 

remainders arising from the sequence of powers, for the same divisor 

2p+1, [as to] whether the sequence of powers is constituted in such a way 

that the multitude of remainders be equal to the multitude of non-

remainders. 

 

319. Let 1, a, a2, a3, etc. be a sequence of powers of this kind, which 

produces p distinct remainders, the prime divisor being = 2p+1, so that 

all the remainders will be 1, a, a2, a3, …, ap–1, which powers, of course, 

being used, as it were, as equivalent to the remainders. But the non-

remainders, just as many in number, are expressed thusly: A, Aa, Aa2, 

Aa3, …, Aap–1. 

 

320. Here the remainders, just as the remainders of squares, are 

so composed that 1) they begin with the unit, 2) the product of a pair of 

remainders is likewise a remainder, 3) the product of a remainder and a 

non-remainder occurs amongst the non-remainders, whence one may 

conclude that the product of a pair of non-remainders crosses over again 

into the class of remainders. 

 

321. If ap–1 be divisible by 2p+1, then a is certainly a remainder of 

the squares. For, if it were a non-remainder, all the rest of the remainders, 

which are aα, aβ, aγ, etc., would have the very same property and, 

therefore, all of the numbers x would be so constituted that xp–1 could be 

divided by 2p+1, which is absurd (*). 

 

(*) This paragraph was inserted handwritten in the margin.  
 

 322. For, since it is contained amongst the remainders of squares, 

where the number of non-remainders is equal to the number of 

remainders, if it turns out otherwise in the remainders of powers, and the 

product of a pair of non-remainders gives a non-remainder again, the 



multitude of non-remainders will surpass the multitude of remainders, 

contrary to the hypothesis. 

 

 323. This can also be shown more convincingly thus: Since A can 

indicate any non-remainder whatever, and also any non-remainder can 

be represented as being Aan, the product of a pair of non-remainders will 

be AAan, which, if it were a non-remainder, would be equivalent to a form 

of the kind Aam, or of the kind Aam+νp, such that m is greater than n, and 

therefore the difference Am–AAan would be divisible by 2p+1. 

 

 324. But since neither A nor an can be divided by 2p+1, am–n–A 

would be divisible by 2p+1, that is, the power am–n, divided by 2p+1, would 

leave the remainder A. But, since A is not a remainder, it follows that this 

hypothesis is absurd, and therefore the product of two non-remainders 

is not contained in the form Aam, which encompasses all the non-

remainders, and therefore it is necessary that it occur amongst the 

remainders. 

 

 325. Because of this, if a be such a number that ap is the least 

power which, divided by the prime number 2p+1, leaves the unit, and 

therefore as many distinct remainders arise from the division of the terms 

of the geometric progression 1, a, a2, a3, a4, …, ap–1 as p contains of units, 

and there are just that many non-remainders, it is certain that all the 

products of pairs of non-remainders are contained in the class of 

remainders. 

 

 326. But since all the numbers less than the divisor 2p+1 are 

contained either in the remainders or in the non-remainders, the squares 

of each one will certainly occur in the class of remainders, which also 

happens in the remainders arising from squares, so it follows that both 

classes of remainders, both that arising from squares and that from the 

geometric progression above, clearly agree with each other. 

 

 327. And if 1, α, β, γ, δ, etc. be the remainders of the squares divided 

by the prime divisor 2p+1, and 𝕬 be any non-remainder whatever, the 

number 𝕬 will also be found amongst the non-remainders which answer 



to the geometric progression 1, a, a2, a3, …, ap–1, if indeed ap be the least 

power producing the unit for its remainder. 

 

 328. We already saw above that, if a be a remainder arising from 

squares, ap–1 will certainly be divisible by 2p+1; now, however, it is clear 

that, if a be a non-remainder with respect to squares, then ap is not the 

least power of this a, which, divided by 2p+1, leaves the unit. Therefore, 

either ap will not leave the unit, or there will also be a lesser one 𝑎
𝑝

𝜈, which 

leaves the unit. 

 

 329. If a be a number of such a kind that its power ap, divided by 

the prime number 2p+1, leaves the unit, then a is certainly contained 

amongst the remainders of the squares. This is evident if ap be the least 

power of this type. But, if on the contrary, it be not the least, it would 

appear to be all the more true of it. For, if there be a lesser one, some of 

them will cross over from those remainders, in number p, into the class 

of non-remainders. For, if 𝑎
1

2
𝑝
 be the least, then a will be contained 

amongst the remainders of the biquadratics, but if 𝑎
1

3
𝑝
, amongst the 

remainders of the sixth powers, etc., therefore it will always be contained 

amongst the remainders of squares. 

 

 330. If, therefore, a be a non-remainder in regard to squares, then 

ap–1 is certainly not divisible by 2p+1, whence, if a be a complement of 

any remainder whatever, say a = d–α, putting d = 2p+1, then (d–α)p–1 is 

not divisible by 2p+1, but αp–1 is certainly divisible, because α is a 

remainder, whence the difference (d–α)p–αp will also not be divisible. 

 

 331. But this difference would be divisible if p were an even number, 

because, unless p be an odd number, that situation cannot be the case 

and we may suppose any (d–α)p–1 undividable by 2p+1, that is, any d–α 

is a non-remainder. 

 

 332. But if p be an even number, any complement of a remainder 

α, say d–α, is certainly a remainder, and for this reason (d–α)p–1 is 



divisible by 2p+1; for, if it were a non-remainder, this divisibility could 

not happen. 

 

 333. If, therefore, it be that p = 2q and the number = 4q+1 be the 

proposed prime divisor, then the complements of every [remainder] will 

be found amongst the remainders of squares, that is, if the remainders 

be 1, α, β, γ, etc., then –1, –α, –β, –γ, etc. will also be remainders. 

 

 334. Thus, for any of the squares taken from the progression 1, 4, 

9, 16, …, 4qq, there will be another, which, added to that one, produces 

a sum divisible by 4q+1, that is, since the multitude of these square be = 

2q and each one has, as it were, its conjugate16, there will be q pairs of 

two distinct squares, whose sum is divisible by 4q+1. (*) 

 

(*) Written in the margin: Two squares can always be produced, whose sum is 
divisible by the prime number 4q+1, and indeed one of the squares may be 
taken at will.  

 

 335. And because each square does not surpass 4qq, the sum of 

the pair is certainly less than 8qq, whence, if such a sum be divided by 

4q+1, the quotient will certainly be less than 2q. This quotient, however, 

unless it be = 2, will also be either a prime number of the form 4n+1, or 

some product of such primes (316). 

 

 336. Therefore, 4q, and hence also q, the complement, as it were, 

of the unit, to which –1 is equivalent, occurs amongst the remainders of 

the squares as many times as there is a prime divisor of the form 4q+1; 

and, in the same way, all the remaining negative squares, –4, –9, –16, 

etc., also occur in that very place, so that the included remainders 

encompass [those] of both the squares and of those taken negatively, and, 

together with the products of all their pairs, the multitude of all of which 

numbers, if they be brought to their least form by division by 4q+1, will 

still be = 2q, so that the same amount is excluded. 

 

 
16 Or, more literally, “consort”; once again, the metaphor is that of marriage. 



 337. Contrarywise, however, if the prime divisor be of the form 4q–

1, then –1 and all the negative squares are returned to the non-

remainders (*). For, if –1 were a remainder, (–1)2q–1–1 would be divisible 

by 4q–1, which, however, cannot happen. But in the previous case, if –1 

be a non-remainder, when the divisor is 4q+1, then (–1)2q–1 would not be 

divisible by 4q+1, which, in the same way, is false. 

 

(*) Written in the margin: Therefore, there are not any sums of two squares 

divisible by a prime number 4q–1.  

 

 338. Only squares, however, are always found in the class of the 

remainders, the remaining numbers indeed fall now amongst the 

remainders, now amongst the non-remainders, depending on the divisor, 

just as we saw that –1 is a remainder, if the divisor be 4q+1, but –1 is a 

non-remainder, if the divisor be 4q–1. 

 

 339. For other, non-square numbers, a similar criterion is observed: 

The number +2 is of course found amongst the remainders, as often as 

the prime divisor is either of the form 8q+1 or of the form 8q–1, that is, 

8q+7. In the remaining cases, in which the divisor is either 8q+3 or 8q+5, 

the number +2 occupies a place amongst the non-remainders. (*) 

 

(*) Written in the margin: But this cannot, as the preceding, be fortified by a 
demonstration. 

 

 340. But the number –2 occurs amongst the remainders in the 

cases in which the prime divisor is either 8q+1 or 8q+3; the same number 

–2, however, falls amongst the non-remainders in the cases in which the 

prime divisor is either 8q+5 or 8q+7. 

 

 341. Further, the number +3 is a remainder, if the prime divisor be 

either 12q+1 or 12q+11; but the same will be a non-remainder, if the 

divisor be either 12q+5 or 12q+7. The number –3, however, is a remainder, 

if the prime divisor be either 12q+1 or 12q+7; but –3 will be a non-

remainder, if the divisor be 12q+5 or 12q+11. 

 



 342. The number +4 is always assigned to the remainders, and the 

decision about –4 is the same as for –1. The number 5, however, is found 

amongst the remainders, if the divisor be either 20q+1, or 20q+9 or 

20q+11, or 20q+19; but –5 is found amongst the remainders, if the divisor 

be either 20q+1, or 20q+3, or 20q+7, or 20q+9. 

 

 343. Let’s bring together these results, so that they may be 

surveyed in a single view: 

Number will be 
in remainders             if the prime divisor be 

+1     4q+(1,   3) 

–1     4q+ 1 

+2     8q+(1,   7) (*) 

–2     8q+(1,   3) 

+3   12q+(1, 11) 

–3   12q+(1,   7) 

+5   20q+(1,   9,  11, 19) 

–5   20q+(1,   3,    7,   9) 

+6   24q+(1,   5,  19, 23) 

–6   24q+(1,   5,    7, 11) 

+7   28q+(1,   3,    9  19,  25, 27) 

–7   28q+(1,   9,  11, 15,  23, 25) 

+10   40q+(1,   3,    9, 13,  27, 31, 37, 39) 

–10   40q+(1,   7,    9, 11,  13, 19, 23, 37) 

+11   44q+(1,   9,  25,   5,    7, 37, 39, 19, 35, 43) 

–11   44q+(1,   9,  25,   5,  37,   3, 15, 23, 27, 31) 

+12   48q+(1, 11,  13, 23,  25, 35, 37, 47) 

–12   48q+(1, 13,  25, 37,    7, 19, 31, 43) 

+14   56q+(1,   5,    9, 13,  25, 45, 11, 31, 43, 47, 51, 55) 

–14   56q+(1,   5,    9, 13,  25, 45,   3, 15, 19, 23, 27, 39) 

+15   60q+(1,   7,  11, 17,  43, 49, 53, 59) 

–15   60q+(1, 17,  49, 53,  19, 23, 31, 47)(**)  

       etc. 

 

 



Written in the margin: 
(*) xx–2yy does not admit other divisors except those of the form 8q+(1, 7). 

 (**) 1) If xx = mn+r, then the square xx, divided by m or by n, leaves the same 
remainder r. Therefore, if the remainder r agrees with the divisor m, it will 
also agree with the divisor n. 
2) If  divisor in non-remainders remainder 
    4n–1   –1 
    8n–1   –2        +2 
    8n–3   ±2 
  12n–1   –3        +3 
  12n–7   ±3 
    8n±3   +2 
This can be demonstrated; but, if divisor be 8n+1, then +2 is in remainders, 
which, however, cannot be demonstrated from this. 

 

 344. Up to here, however, these results only rest upon induction17, 

but, in order that a demonstration be found out, it will be helpful to 

observe the following. First of all, any number whatever ±n will be found 

amongst the remainders, if the prime divisor be of the form 4nq+1, or 

even 4nq+ii, where i indicates any odd number whatever. Next, a positive 

number +n will be a remainder, if the prime divisor be of the form 4nq–1, 

or more generally 4nq–ii; for these divisors, however, a negative number 

–n will be found amongst the non-remainders. 

 

 345. If a positive number n be a remainder for the divisor d, it will 

also be a remainder for any prime divisor of the form 4nq±d, or even 

4nq±dii; but, if a negative number –n be a remainder for the divisor d, it 

will likewise be a remainder for the divisor 4nq+d, but a non-remainder 

for the divisor 4nq–d. 

 

 346. If a positive number n be a remainder for the divisor d, and 

further also for the divisor e, it will also be a remainder for any prime 

divisor of the form 4nq±de. But if a negative number –n be a remainder 

for the divisors d and e, it will likewise be a remainder for any prime 

divisor of the form 4nq+de; for the divisors 4nq–de, however, it will be 

assigned to the non-remainders. 

 

 347. If a positive number n be a non-remainder for the divisors d 

and e, it will certainly be a remainder for all the prime divisors of the form 

 
17 That is, induction by enumeration, not mathematical induction. 



4nq±de; but if the negative number –n be a non-remainder for the divisors 

d and e, it will be a remainder for all prime divisors of the form 4nq+de; 

for divisors of the form 4nq–de, however, it will be a non-remainder. 

 

348. Any number ±n being proposed, it will always be a remainder, 

if the prime divisor be contained in anyone of the forms of the kind 4nq+A, 

4nq+B, 4nq+C, etc., the number of which is equal to half of the multitude 

of the numbers prime to 4n and less than it. But if, however, the divisor 

is contained in the remaining forms, it will be a non-remainder. 

 

349. The case in which the number n is a square and, of course, 

always occurs amongst the remainders, whatever divisors be taken, 

should, however, be removed. And, moreover, if n be a negative square, 

the same reasoning applies as for –1. 

 

350. It should be demonstrated first, therefore, that, if the prime 

divisor be 4nq+ii, where i is an odd number, both the numbers n and q, 

as well as their negatives –n and –q, always occur amongst the 

remainders of squares. Let i = 2m+1 and because the divisor 

4nq+4mm+4m+1 is of the form 4p+1, the negative square –4mm–4m–1 is 

contained amongst the remainders and, therefore, the number 4nq and, 

because 4 is a remainder, also the number nq, and likewise –nq; because 

of this, either both numbers n and q must occur at the same time 

amongst the remainders, or at the same time amongst the non-

remainders, whence it is necessary that, provided either one be amongst 

the remainders, the other will be found in the same place. 

 

351. If n were not a remainder, there would be no square xx, such 

that xx–n would be divisible by 4nq+4mm+4m+1. If, therefore, it could be 

demonstrated that there is such a square, the truth of the proposition 

would be established. Actually, if n were a non-remainder, the expression 

n2nq+2mm+2n–1 would not be divisible by the prime number, and, therefore, 

if the contrary could be demonstrated, we would have what we want 

[intendimus]. (*) 

 



(*) Written in the margin: If n were a non-remainder, nzz would likewise be a 
non-remainder, and therefore also 

±𝑛𝑧𝑧 ∓ 𝑦(4𝑛𝑞 + 4𝑚𝑚 + 4𝑚 + 1), 
which expression, if it were the case for even one square, would establish 
the proposition. In this respect, it would seem that, because of the 
ambiguous sign, it must occur in at least one case; and all the more so, 
since n and q are interchangeable, and moreover it is true even if the divisor 
be not prime. Question, if n = 3, q = 5, 2m+1 = 5, ±3zz±85y, or ±5zz±85y, 
cannot be made a square. Therefore, the demonstration should be set up so 
that the divisor be a prime. 

 

352. Further, it is necessary to demonstrate that, if the prime 

divisor be 4nq–4mm–4m–1, the number n occurs amongst the remainders 

of the squares, but the number –n amongst the non-remainders. Equally 

so, that the number q will be amongst the remainders and –q amongst 

the non-remainders. However, since (2m+1)2 is certainly amongst the 

remainders, 4nq and therefore also nq, will be in the same place. 

 

353. Conceding these propositions, even though the demonstration 

be not yet known, assuming that i is an odd number and that 4nq±ii is 

prime, for the prime divisor 4nq+ii, since n and –n are remainders, and 

likewise naa and –naa, there will always be a square xx such that xx–naa 

be divisible by 4nq+ii, and further also a square yy such that yy+naa be 

divisible by 4nq+ii. 

 

354. But when the prime divisor be 4nq–ii, because of the 

remainder naa, there will always be a square xx, such that xx–naa is 

divisible by 4nq–ii; there does not exist, however, any square yy, such 

that yy+naa is made divisible by 4nq–ii, because in this case –naa is a 

non-remainder. 

 

355. When 4nq+ii is a number of the form 4p+1, there will always 

be a sum of two squares ff+gg divisible by it, one of which can be selected 

at will. Because of this, if xx–naa be divisible by 4nq+ii, a square yy can 

be found, such as to make xx+yy divisible by 4nq+ii and, moreover, 

yy+naa will also be divisible by it. 

 

356. When 4nq–ii is of the form 4p–1, there are no sums of squares 

divisible by 4nq–ii; because of this, if xx–naa were divisible by 4nq–ii, it 



could not happen that yy+naa be divisible by it; for then the sum xx+yy 

would likewise be divisible, which is absurd. 

 

 357. Assuming d = 4nq+ii as the prime divisor, because there is a 

form xx+naa divisible by it, there will also be a form yy+qaa divisible by 

it, whence also qxx–nyy. Indeed, there will also be a divisible form yy–

qaa, and also, for this reason, one of the form qxx+nyy. 

 

 358. If the prime divisor be d = 4nq–ii, because there are such 

formulas as xx–naa and yy–qaa divisible by it, the form qxx–nyy will also 

be divisible by d. Since, however, the form yy+qaa is not divisible by d, 

no form of the kind qxx+nyy will be divisible by d. 

 

 359. Although these propositions can indeed be demonstrated, the 

others, as we have observed above, have not yet been established. From 

345, if there be a square leaving, when divided by d, the positive 

remainder n, there will also be one leaving naa; then, however, 4nq±d 

being a prime number, there will be some square xx, which, divided by 

4nq±d, leaves the same remainder, that is, xx–naa will be divisible by 

4nq+d. 

 

 360. Of course, if bb–naa be divisible by d, there will always be a 

number xx–naa divisible by the prime number 4nq±d. Moreover, when i 

indicates an odd number, a form of the kind xx–naa can be produced, 

which is divisible by the prime number 4nq±dii. 

 

 361. If there be a square bb, which leaves a negative remainder –n 

or –naa on division by d, there will also be a square xx, which, divided by 

the prime number 4nq+dii, leaves –n or –naa. Of course, if d be a divisor 

of the form bb+ncc, there will be an x such that xx+naa is divisible by the 

prime number 4nq+dii. 

 

 362. Indeed, if d be a divisor of the form bb+ncc, there will not be 

any form xx+naa, which is divisible by the prime number 4nq–dii. If, for 

example, it be that n = 3, take d = 7, because 22+3.1 = 7, and it is certain 



that no numbers of the form xx+3aa admit divisors of the form 12q–7ii, 

some of which are: 5, 17, 29, 41, 53, 65, 77, 89, 101, 9, 21, 33, 45. 

 

 363. It follows from §346 that, if d and e be divisors of any number 

of the form aa–nbb, then there always is a square xx, such that xx–ncc is 

divisible by the prime number 4nq±deii, which can also be deduced from 

the preceding, demonstrating that if aa–nbb has the divisor d, and 

another similar form ff–ngg the divisor e, there will also be an hh–nkk 

divisible by the product de. This will be clear if we consider carefully 

remainders of squares divided by composite numbers. 

 

 364. Further, it is noteworthy that the number n, and also, 

therefore, naa, cannot occur amongst the remainders of squares, unless 

the prime divisor be of the form 4nq+α, where α does not signify all the 

numbers prime to 4n and less than it, but only half of them, the other 

half being completely excluded. And thus, all prime divisors of the form 

xx–naa have a form of the kind 4nq+α, where α indicates several numbers, 

with just as many being excluded. 

 

 365. The reckoning is similar for numbers of the form aa+naa, 

whose prime divisors are restricted to the form 4nq+α, so that the same 

amount of numbers are excluded from α as are admitted. In either case, 

however, all odd squares ii are valid for α and, if α is valid, αii will also be 

valid. 

 

 366. In order to attempt these desired demonstrations, we consider 

the prime divisor 4p+1, and since the sum of two squares aa+bb divisible 

by it can be exhibited, for which one can be taken at will, (4p+1)bb is 

removed and aa–4pbb will be divisible by 4p+1, that is, there will be a 

square aa, which, divided by 4p+1, leaves 4pbb, therefore leaving p, that 

is, there will be a form aa–pbb that is divisible by 4p+1. 

 

 367. Since there is a form aa–bb divisible by 4p+1, adding (4p+1)bb, 

there will also be a form aa+pbb divisible by 4p+1, which is already clear 

because, if the squares be divided by the prime number 4p+1, both +p 

and –p will be found in the remainders. 



 

 368. But, let the prime divisor be 4ffp+ii, where i indicates an odd 

number, and because both forms aa+bb and aa–bb, divisible by it, can 

be exhibited, hence iiaa+iibb and iiaa–iibb; taking away from there and 

adding here (4ffp+ii)bb, the formulas iiaa–4ffpbb and iiaa+4ffpbb will be 

divisible by 4ffp+ii, that is, ±4ffpbb will be amongst the remainders of the 

squares and, therefore also ±p. Thus, there will be numbers of the forms 

xx+pyy and xx–pyy divisible by 4ffp+ii. (*) 

 

(*) Written in the margin: The preceding is manifest; for 
𝑥𝑥+𝑝𝑦𝑦

4𝑓𝑓𝑝+𝑖𝑖
 = integer if x = i, 

y = 2f; 
that xx–2yy be divisible by 41 x = 7, 10, 13, 14, 17 
     y = 2,   3,   8,   4,   1 
that xx–2yy be divisible by 17, 

                
 

 369. Therefore, if, the observations above being granted, the prime 

divisor is contained in any of these forms: 4rq+1, 4rq+α, 4rq+β, 4rq+γ, 

4rq+δ, etc., where the numbers 1, α, β, γ, δ, etc. are prime to 4r and less 

than it, only half of which occur here, then the number r certainly occurs 

amongst the remainders of the squares; and for the remainder –r, the 

formulas for the divisors are treated in a similar way, agreeing with them 

if the divisor be of the form 4p+1, but disagreeing with them if the form 

of the divisor be 4p–1. 

 

 370. It is also worthwhile to observe that, from the form 4rq+4m+1, 

half are to be excluded both for the remainder +r and for –r, the divisors 

of which are common for this form. But, from the form 4rq+4m–1, half 

are valid for the remainder +r, the other half for the remainder –r, and 

here the divisors that are valid for one remainder are excluded from the 

other. 

 

 

  



 

Chapter XI 

On Remainders Arising  

from the Division of Cubes by Prime Numbers  

 

 371. When the prime divisor be d = 2p+1, whatever remainder is 

left by the cube a3, the same will also be left by the cubes (a+d)3, (a+2d)3, 

etc. and in general (a+nd)3; because of this, it suffices to consider only 

those cubes, whose roots are less than d, which are: 

1, 8, 27, 64, …, (d–4)3, (d–3)3, (d–2)3, (d–1)3. 

 

 372. Let r be the remainder which any one of these cubes, a3, leaves; 

it is clear that the cube (d–a)3 will leave the remainder –r, or d–r. Because 

of this, if any number r whatever occurs amongst the remainders of the 

cubes, its negative –r, or d–r, which is called the complement of the former, 

will likewise occur in the very same place. 

 

 373. Let 1, α, β, γ, δ, etc. be the remainders arising from the division 

of the cube numbers by the prime number d = 2p+1, of which, if they be 

all mutually distinct, the number will be = d–1; and therefore all the 

numbers less than d will occur there. But if any numbers occur two or 

more times, then some numbers will be excluded and assigned to the 

non-remainders. (*) 

 

(*) All the cubes less than d2, reduced to minimum values, as well as their 
products two at a time, three at a time etc., occur in these remainders. 

 

 374. To investigate whether it can happen that the same number r 

occurs amongst the remainders twice, let’s assume that the same 

remainder r results from the cubes a3 and b3, whose roots a and b are 

unequal and less than the divisor d, and so their difference b3–a3 = (b–

a)(aa+ab+bb) will be divisible by d. But, since d is prime to the factor b–

a (because d is prime), it is necessary that the other factor aa+ab+bb be 

divisible by d. 

 



 375. But if the cube b3 produces the same remainder as the cube 

a3, to any other cube c3 there will answer the cube e3, likewise leaving the 

same remainder as the former. For, if the cubes a3 and b3 produce the 

same remainder, so also will a3x3 and b3x3, reduced to minimum values, 

that is, (ax–md)3 and (bx–nd)3, bring forth the same remainder. But 

because a and d are numbers prime to each other, it is always permitted 

to take x and m such that ax–md be equal to the given number c, and 

hence we will have e = bx–nd, distinct from c and less than d; for, if it 

were that e = c, we would have ax–md = bx–nd, and hence (a–b)x would 

be divisible by d, although neither a–b nor x is divisible. 

 

 376. Thus, it is immediate that, if one remainder occurs twice, they 

will all occur twice; and, therefore, the multitude of distinct remainders 

is reduced by half. This cannot happen, however, unless the divisor d be 

a divisor of the form aa+ab+bb, where a and b are less than d. But if the 

divisor be not of that form, all the remainders will be distinct and their 

multitude = d–1 = 2p. 

 

 377. Let the cubes a3 and b3 produce the same remainder r, so that 

a2+ab+b2 is divisible by d, and also 3a3+3a2b+3ab2 will be divisible by d; 

a3–b3 is taken away, so that we have that 

2a3+3a2b+3ab2+b3 = a3+(a+b)3 

is divisible by d. Therefore, because a3 leaves r, the cube (a+b)3 will leave 

the remainder –r and, hence, the cube (d–a–b)3, or (2d–a–b)3, will give the 

remainder +r. 

 

 378.18 And immediately, therefore, if there are two cubes a3 and b3, 

leaving the same remainder r, there will also be a third (d–a–b)3, or (2d–

a–b)3, leaving the same remainder, the root of which will be less than d 

and distinct from both the preceding a and b. For, neither can it be that 

d–a–b = a, nor that 2d–a–b = a; for, if it were [the case] that b = d–2a, or 

b = 2d–2a, then b3 would leave the remainder –8a3, or –8r. But, because 

it leaves r by hypothesis and the two remainders r and –8r cannot be 

 
18 Reading 378 for 387. 



equivalent, because the difference = 9r is not divisible by d, except for the 

case d = 3, which is obvious, it follows that two equal remainders always 

suppose a third. 

 

 379. If therefore two cubes a3 and b3 produce the same remainder 

r, there will consequently be a third c3 exhibiting the same remainder, the 

root of which is so constituted that the sum of all of them a+b+c is either 

= d, or = 2d, for c = d–a–b or c = 2d–a–b, because of which, each of them 

is less than d. And, thus, from two it is always easy to find the third. 

 

 380. From this one may deduce, moreover, that there are never 

more than three cubes a3, b3, c3 below the cube d3, which leave the same 

remainder; for, if there were a fourth e3 distinct from those, these also 

(λd–a–e)3, (λd–b–e)3, (λd–c–e)3, 

would produce the same remainder and would be distinct from the 

preceding ones. For, if it were that λd–a–e = b, then a+b+e would be 

divisible by d and, therefore, e = c, contrary to the hypothesis; hence, we 

would have not only four, but seven cubes giving the same remainder. 

 

 381. Hence, by combining them two at a time, more cubes less than 

d3 could be elicited in turn, leaving the same remainder, so that in the 

end all the cubes would be produced. But, since, one remainder r being 

granted, there would be a distinct other one –r, it is clear that there are 

not more than three cubes less than d3 that may exhibit the same 

remainder. 

 

 382. Therefore, in the sequence of remainders 1, α, β, γ, etc., the 

multitude of which is = d–1 = 2p, either they are all unequal, or they are 

equal three at a time; but the latter cannot happen, unless 2p be a 

number divisible by 3. Because of this, if p be not divisible by 3, it is 

certain that all the remainders will be unequal to each other, and, 

therefore, all the numbers less than d will occur in the remainders. 

 

 383. Since all the prime numbers, excepting 2 and 3, are contained 

in one or the other of the formulas 6q+1 and 6q–1, if the prime divisor be 

6q–1, all the numbers less than it occur in the remainders, and there are 



not any non-remainders. But if the divisor be 6q+1, it can happen that 

the multitude of distinct remainders be only 2q, and thus there would be 

4q non-remainders. 

 

 384. We saw in addition that this last case happens if the divisor 

be of the form aa+ab+bb, whence it is clear, as we have already observed, 

that such a form does not admit of other prime divisors except those of 

the form 6q+1. But the quadruple of the former 4aa+4ab+4bb = 

(2a+b)2+3b2 returns the form aa+3bb, whose prime divisors enjoy that 

notable property. 

 

 385. One should search, therefore, for those divisors of squares 

that leave –3 or –3bb for the remainder, which, as was observed above 

(341), are contained in the two forms 12q+1 and 12q+7, which are 

reducible to the single form 6q+1, whence again it is permitted to 

conclude that all the prime numbers of the form 6q+1 are endowed with 

that property; although a satisfactory demonstration of this thing is still 

needed. 

 

 386. But, this being granted, we obtain this proposition: Whenever 

the prime divisor be of the form 6q+1, the remainders of the cubes from 

1 to 216q3 are not all unequal to each other, but, because [they are] equal 

in threes, the multitude of unequal remainders is only 2q, and the rest of 

the numbers less than the divisor, the multitude of which is 4q, will be 

non-remainders. But whenever the prime divisor is not of the form 6q+1, 

all the remainders are unequal to each other, so that there are not any 

non-remainders. 

 

 387. Therefore, it is apposite to consider only divisors of the form 

6q+1, for which the multitude of non-remainders is twice as large as the 

multitude of remainders. Let’s present [evolvamos, “roll out”] the simpler 

cases: 

for divisor:              7               13                             19 

remainders:          1, 6         1,  8,  5, 12           1,  8,   7,  11, 12, 18 

non-remainders: {
2,
5,

 
3
4

             
2,

11,
  
4,
9,

  
3,

10,
   

6
7

                
. 2,
17,

  
 3,
16,

  
4,

15,
  

5,
14,

   
6,

13,
   

9
10

 



 

for divisor:                                    31                   

remainders:           1,   8,  27,  2,  16, 15, 29,  4, 23, 30 

non-remainders: {
3,

28,
 

5,
26,

  
6,

25,
    

7,
24,

   
9,

22,
   

10,
21,

  
11,
20,

  
12,
19,

  
13,
18

  
14
17

     

 

for divisor:                                          37                     

remainders:           1,   8,  27, 14, 31  10,   6.  23, 29, 11, 26, 36 

non-remainders: {
2,

35,
 

3,
34,

  
4,

33,
    

5,
32,

  
7,

30,
    

9,
28,

   
12,
25,

   
13,
24,

  
15,
22,

   
16,
21,

   
17,
20,

  
18
19

           

 

for divisor:                                               43                     

remainders:           1,   8, 27, 21, 39, 11,  4, 32, 22, 16,  35, 2,  41, 42 

non-remainders: {
3,

40,
 

5,
38,

  
6,

37,
  

7,
36,

   
9,

34,
   

10,
33,

  
12,
31,

  
13,
30,

  
14,
29,

   
15,
28,

   
17,
26,

  
18,
25,

  
19,
24,

   
20
23

 . 

 

 388. For any prime divisor of the form 6q+1, therefore, all the cubes 

less than it occur in the remainders, and then their complements 6q, 6q–

7, 6q–26, 6q–63, etc. Continuing, also their products two by two. Then 

also, if any product mn, with one factor m, be there, the other factor n is 

likewise found in the very same place. 

 

 389. For, if a3 leaves mn and b3 leaves m, assuming the divisor 6q+1 

= d, we can make a = fb–gd and, therefore, f3b3 leaves mn, but nb3 also 

leaves mn, and so f3b3–nb3 and, besides, f3–n will be divisible by d, that 

is, f3 will leave n. 

 

 390. If the prime divisor be d = 6q+1 and the number α occurs 

amongst the remainders of the cubes, then α2q–1 will be divisible by d. 

Whence, the remainders, which arise from the division of the geometric 

sequence 1, α, α2, α3, α4, …, α2q by the same divisor, will agree with the 

remainders of the cubes. 

 

 391. Again, however, it must be shown that, if a2q–1 be divisible by 

the prime divisor 6q+1, the number a certainly occurs amongst the 

remainders of the cubes, which is easily done, at least if 2q is not divisible 



by 3. For, if it be that 2q = 3k±1, since a2q = a3k±1 occurs amongst the 

remainders of the cubes, in as much as it is equivalent to the unit, it is 

necessary that a be found in the same place. 

 

392. It remains to be shown, therefore, that, if it be that 2q = 3k 

and a3k–1 can be divided by 6q+1 = 9k+1, then a will be amongst the 

remainders of the cubes (*); a3k, as a cube, is likewise certainly found 

there, but a demonstration must be sought for that the remainder of a3k 

is equivalent to the unit. 

 

(*) Written in the margin: For, if a were non-remainder, all the rest of the non-
remainders, which are a, aα, aβ, aγ, aδ, and a2, a2α, a2β, a2γ, etc. would enjoy 
the same property that their powers to the exponent 2q, minus the unit, 
would be divisible by 6q+1; therefore, all the numbers would have this 
property, which is absurd. 

 

 393. But since the distinct remainders of the powers 1, a, a2, a3, 

etc., in number 2q, are equally in the remainders of the cubes, and both 

classes begin with the unit and have the common terms a3, a6, a9, etc., 

then the rest of their properties are common to them and the class of 

powers can contain no terms distinct from the other class. 

 

 394. If, however, we attend to the non-remainders of the cubes, 

divided by the prime number 6q+1, it is indeed certain that, if mn be a 

remainder, and m a non-remainder, n will likewise be a non-remainder. 

But again, not all the products of two non-remainders produce a 

remainder; however, all the products of any remainder with a non-

remainder are non-remainders. 

 

 395. For, first, the square of every non-remainder is likewise 

contained amongst the non-remainders; certainly, if A be a non-

remainder, A2 will likewise be a non-remainder, however, this non-

remainder A2 multiplied by the non-remainder A certainly gives a 

remainder, because it is a cube. 

 

 396. For, if A2 were a remainder, A4q–1 would be divisible by 6q+1; 

and since A6q–1 is certainly divisible, A6q–A4q would also be divisible, as 

would A2q–1 and, therefore, A would be a remainder of the cubes, contrary 



to the hypothesis. Because of this, if AA be a remainder, A will also be a 

remainder, and, on the contrary, if A be a non-remainder, AA will likewise 

be a non-remainder. 

 

 397. Therefore, if the remainders of the cubes be 1, α, β, γ, δ, etc., 

the prime divisor being = 6q+1, and if A be the only non-remainder we 

have, first, all the numbers A, Aα, Aβ, Aγ, etc., then also A2, A2α, A2β, A2γ, 

etc., will be non-remainders, and, since these numbers are all distinct 

from one another, it is clear, as we have already demonstrated, that the 

multitude of non-remainders is twice that of the remainders. 

 

 398. Hence it is also clear that, if the prime divisor be 6q+1, there 

can only be 2q distinct remainders; for, if all the numbers could occur 

amongst the remainders, a2q–1 would in general be divisible by 6q+1 

whenever a < 6q+1, but since this is absurd, there is, therefore, at least 

one non-remainder, from which the 4q non-remainders follow. 

 

 399. Since, therefore, two classes of non-remainders are obtained 

from a single non-remainder A, the first being A, Aα, Aβ, Aγ, etc. and the 

second being A2, A2α, A2β, A2γ, etc. and each contains as many terms as 

the class of remainders, the products two at a time from one class are 

found in the other class and the products two at a time from both classes 

make remainders. 

 

 400. If we may still be uncertain as to whether all the non-

remainders are obtained in this manner from a single one, let B be a non-

remainder contained in neither class, and then B, Bα, Bβ, Bγ, etc. as well 

as B2, B2α, B2β, B2γ, etc. will be non-remainders, there being the same 

number in both places as there are remainders, and all these numbers 

will be distinct from the preceding ones. In addition, either AB or AB2 will 

not be a remainder; one of them certainly proves to be a remainder, the 

other a non-remainder. (*) 

 

(*) Written in the margin: It must be demonstrated that both of them cannot 
simultaneously be remainders. If AB be a non-remainder, it is contained 
either in class A, or B, or A2, or B2. But each of these is absurd, therefore 
AB is a remainder. 



 

 401. If AB be not a remainder, we can represent the classes of non-

remainders in pairs thusly: 

First class:       A,   Aα,  Aβ,  Aγ, etc.      B,  Bα,   Bβ,  Bγ, etc. 

Second class:   A2, A2α, A2β, A2γ, etc.     B2, B2α, B2β, B2γ, etc. 

and any number A whatever from the first class, multiplied by any 

number you please from the second class, produces a remainder distinct 

from whichever you please; whence more remainders will appear than in 

fact there are, which is absurd. 

 

 402. Since, therefore, there are only 2q remainders for the prime 

divisor 6q+1, given any cube a3 whatever, there will be another b3, less 

than (6q+1)3, the difference of which will be divisible by 6q+1, and 

therefore aa+ab+bb will likewise be divisible by it. Hence, every prime 

number 6q+1 is a divisor of numbers of the form aa+3bb, or of the form 

aa+3, or 3aa+1. 

 

 403. As an example, let the divisor be 373, and the remainders of 

the cubes, as well as the non-remainders of both classes, are as follows: 

          Remainders                                 Non-remainders 

                 ±                              Class I.   ±                    Class II.   ± 

    1,   7,   8,  12,  13, 17        2,   3,   5,  14,  16, 21        4,   6,   9,  10,  11, 15 

  18,   19,   20,   22,   23      24,   26,   34,   35,   36      25,   28,   29,   32,   37 

  27,   30,   31,   33,   41      38,   39,   40,   44,   46      42,   43,   48,   52,   63 

  45,   49,   50,   55,   56      47,   51,   53,   54,   57      68,   70,   71,   72,   73 

  58,   64,   67,   74,   75      59,   60,   61,   62,   65      76,   77,   78,   79,   80 

  84,   86,   87,   91,   96      66,   69,   81,   82,   83      88,   92,   94, 102, 103 

  97, 104, 109, 111, 113      85,   89,   90,   93,   95    105, 106, 108, 114, 117 

119, 125, 126, 129, 133      98,   99, 100, 101, 107    118, 120, 122, 124, 127 

136, 137, 139, 140, 142    110, 112, 115, 116, 121    130, 131, 132, 138, 141 

144, 145, 146, 152, 154    123, 128, 134, 135, 147    143, 149, 153, 159, 162 

156, 157, 158, 160, 161    148, 150, 151, 155, 165    164, 166, 170, 171, 173 

163, 167, 169, 176, 184    168, 172, 174, 179, 181    175, 177, 178, 180, 183 

                185                                   182                                   186 

 in number 2.62 = 124.            in number = 124.              in number = 124. 



 

404. Since, therefore, the prime divisor is 6q+1 and the multitude 

of non-remainders is twice that of the multitude of remainders, there will 

also be fewer divisors, for which a given number be contained amongst 

the remainders. Thus, a given number a will be a remainder, if the divisor 

be a factor of the form x3±ay3, or the form x3±aay3; for, if it be that x3±ay3 

= dn, the cube x3, divided by d, gives the remainder ay3, and thus a will 

also be in the remainders. 

 

 405. Therefore, prime divisors of the numbers x3±ay3 should be 

sought for and, for our purposes, only those that are at the same time of 

the form 6q+1. In this way, putting a = 2, the dyad will be found amongst 

the remainders, whenever the divisor of the form 6q+1 be a number from 

the sequence: 

31, 43, 109, 127, 157, 223, 229, 277, 283, 307, 397, 433, 439, 457, 499, 601, 

643, 691, 727, 733, 739, 811, 919, 997, 1021, 1051, 1069, 1093, etc. 

 

 406. Therefore, if 6n+1 be such a number, both 2 and 22 will be 

remainders; then 22n–1 will be divisible by it and, therefore, either 2n–1, 

or 2n+1. But, if 6n+1 be either of the form 8m+1 or 8m+7, that is, either 

n = 4m, or n = 4m+1, then 23n–1 is also divisible by 6n+1; whence it is 

clear that in this case, in which n be either 4m or 4m+1, 2n–1 will be 

divisible by 6n+1; in the case, however, in which n is either 4m+2 or 4m+3, 

not 2n–1, but 2n+1 will be divisible by 6n+1. 

  



 

 407. Thus, transporting the numbers given above 

 

  by        is divisible                by             is divisible 
  31      210–1 and 25–1          499        2166–1 and 283+1 

  43      214–1   «    27+1          601       2200–1    «   2100–1 

109      236–1   «    218+1         643       2214–1    «   2107+1 

127      242–1   «    221–1         691       2230–1    «   2115+1 
157      252–1   «    226+1         727       2242–1    «   2121–1 

223      274–1   «    237–1         733       2244–1    «   2122+1 

229      276–1   «    238+1         739       2246–1    «   2123+1 
277      292–1   «    246+1         811       2270–1    «   2135+1 

283      294–1   «    247+1         919       2306–1    «   2153–1 

307      2102–1  «    251+1         997       2332–1    «   2166+1 
397      2132–1  «    266+1       1021       2340–1    «   2170+1 

433      2144–1  «    272–1       1051       2350–1    «   2175+1 

439      2146–1  «    273–1       1069       2356–1    «   2178+1 
457      2152–1  «    276–1       1093       2364–1    «   2182+1 

 

 408. If we consider attentively these divisors, for which the dyad 

comes about [convenit] as a remainder, we will notice that they all result 

from the form 27pp+qq, whenever that be a prime number; although this 

observation is not yet supported with a demonstration. 

 

 409. If we want those prime divisors of the form 6q+1, for which 3 

comes about as a remainder, we will find these: 

61, 67, 73, 103, 193, 307, 367, 439, 577, 1021, etc. 

which, if we may rely on conjecture, are contained in the form 3pp+qq, if 

it be that either p = 9n, or p±q = 9n. 

 

 410. Those prime divisors, however, of the form 6q+1, that have 5 

in the remainders of cubes, are found from the form x3±5y3, of which the 

divisors must be 13, 67, 127, 181, 199, 241, 487, 739, etc., which we 

observe to be contained in the form 3pp+qq under the conditions: 1) if p 

= 15n, 2) if p = 3m and q = 5n, 3) if p±q = 15n and 4) if p±2q = 15n. 

 

 411. If 6 should occur amongst the remainders, the divisors are 

found to be  

7, 37, 139, 163, 181, 241, 307, 337, 349, 379, 631, 727, 751, 997, etc., 

which are discovered to be contained in the form 3pp+qq, if it be that p = 

9n, or 2p±q = 9n. The truth of these observations, however, are only 



supported by conjecture, neither can we conveniently make further 

progress by induction. (*) 

 

(*) Written in the margin: For 7 to be a remainder and 3pp+qq the divisor, it 
must be that either p = 3m and q = 7n, or p±q = 21n, or 4p±q = 7n, or p = 
21m, or p±2q = 7n. — For 10 to be a remainder, for the divisor 3pp+qq, it 
must be that either p = 5n, or q = 5n. 

 

 

 

Chapter XII 

On Remainders Arising from the Division 

of Biquadratics by Prime Numbers 

 

 412. If the prime divisor be d, whatever remainder is left by the 

biquadratic a4, the same is left, not only by the biquadratics (d+a)4, 

(2d+a)4, etc., but also by (d–a)4, whence, if d = 2p+1, more than p distinct 

remainders cannot occur. 

 

 413. If the remainders be 1, α, β, γ, δ, etc., the multitude of which 

cannot be more than p, all the biquadratics, reduced of course to their 

minimum form, will occur amongst them and moreover they will enjoy 

the property that their products, two by two, are found amongst them. 

 

 414. These remainders, therefore, originate from the biquadratics 

1, 16, 81, 256, …, p4, and it behooves us to inquire diligently whether, or 

not, they will all be distinct from one another for the given prime divisor 

2p+1. 

 

 415. But it is certainly clear, first of all, that should one occur twice, 

say from the biquadratics a4 and b4, then, because b4–a4 would be 

divisible by d = 2p+1, it will be possible to make b = md±na, whence n4a4–

a4 will be divisible and, thus, also n4–1. Then, likewise c4 and n4c4 will 

produce equal remainders, and every remainder will occur twice. 

 

 416. If, therefore, d be a divisor of the formula b4–a4 (taking a and 

b less than ½d) and, therefore, of the formula b2+a2, because neither b–



a nor b+a can be divisible by it, then each remainder occurs twice. But, 

on the contrary, if it is not a factor of the formula b2+a2, all the divisors 

will be distinct. 

 

 417. But by §279 all the prime divisors of the form bb+aa are 

contained in the form 4q+1, because of which, if the proposed divisor be 

of the form 4q–1, certainly 2q–1 distinct remainders emerge from the 

division of the biquadratics and there will be just as many non-

remainders, not more. Let’s explain this case first. 

 

 418. Thus, let the prime divisor be 4q–1 and the distinct 

remainders arising from the biquadratics be 1, α, β, γ, δ, etc., the number 

of which will be 2q–1, and let the non-remainders be A, B, C, D, etc., of 

the same number. And also, it is clear, in the first place, that, if A be a 

non-remainder, Aα, Aβ, Aγ will also be non-remainders. For, if Aα4 were a 

remainder, arising from the biquadratic b4, then b4–Aα4 would be divisible 

by d. But we have b = mα±nd, whence m4α4–Aα4 and, therefore, m4–A 

would be divisible by d and m4 would leave A, contrary to the hypothesis. 

 

 419. This property indeed extends to all divisors, so that the 

product of a remainder and a non-remainder is always a non-remainder. 

But the product AB of two non-remainders, at least if the prime divisor 

be 4q–1, is certainly a remainder; for, if it were a non-remainder, it would 

agree with a term Aα4, so that Aα4–AB, and therefore α4–B, would be 

divisible by d, contrary to the hypothesis. 

 

 420. In this case, in which the divisor is = 4q–1, the remainders of 

the biquadratics are provided with the same property as the remainders 

of squares and, moreover, clearly agree with them for the same divisor. 

For every remainder of the biquadratics is contained in the remainders of 

squares and, since they are equal in multitude, it is necessary that they 

be absolutely the same, whence the same thing that we explained above, 

about remainders and non-remainders, is true here. 

 

 421. Now let the prime divisor be 4q+1 and all the remainders 1, α, 

β, γ, δ, etc. have the property that αq–1 is divisible by 4q+1. These 



remainders will certainly also be contained in the remainders of the 

squares for the same divisor 4q+1; but, in contrast, not all the remainders 

of the squares are at the same time remainders of biquadratics, which is 

shown thusly. 

 

 422. Any remainder whatever of squares can be represented by x2, 

but if it were a remainder of biquadratics, x2q–1 would be divisible by 

4q+1, where x indicates any number you please less than the divisor; that 

is to say, 12q–1, 22q–1, 32q–1, 42q–1, …, (2q)2q–1, can be divided by 4q+1, 

which cannot be done, so that not every square occurs in the remainders 

of the biquadratics. 

 

 423. If x2 does not occur in the remainders of the biquadratics, αx2, 

βx2, γx2, δx2, etc. likewise will not occur in that place, which, since they 

are remainders of squares, are clearly amongst the remainders of the 

squares, the multitude of which is 2q; but, at minimum, there are the 

same number of non-remainders of biquadratics as there are remainders 

of biquadratics; whence it is clear that the multitude of remainders of 

biquadratics is either = q or less than this, which last, however, cannot 

be. 

 

 424. So that we may investigate this more easily, we may examine 

the simpler divisors of the form 4q+1, both with regard to the remainders 

and non-remainders of the biquadratics: 

 

 

 425. From these examples, we see that the number of remainders 

is = q, than which it cannot be greater, as we already demonstrated. The 

number of non-remainders is three times as many; we have separated 



them into three classes, since the numbers of each class enjoy their own 

special properties. 

 

 426. One may most conveniently constitute these three classes 

thusly: since there are squares not occurring in the remainders, let xx be 

such a square; and it is certain that neither x nor x3 can be found 

amongst the remainders. Therefore, if the remainders be 1, α, β, γ, δ, ε, 

etc., the three classes of non-remainders will be: 

  I. x,   αx,   βx   γx,  δx, etc. 

 II. x2, αx2, βx2, γx2, δx2, etc. 

III. x3, αx3, βx3, γx3, δx3, etc. 

 

 427. Each class contains as many terms as there are remainders, 

and all the terms of these classes are distinct from one another. Indeed, 

terms of the same class are manifestly distinct; on the other hand, the 

diversity of the terms in different classes is shown thusly. 

 

 428. If αx were equivalent to βx2, then βx2–αx, and therefore βx–α, 

would be divisible by 4q+1, whence, since α is a remainder, βx, being 

equivalent to it, would also be a remainder, which is absurd. In a similar 

way, if αx, or αx2, agreed with βx3, either α–βx2 or α–βx would be divisible 

by 4q+1, and therefore βx2, or βx, would go over into the remainders, 

contrary to the hypothesis. 

 

 429. Hence, if the number of remainders be = n, the number of 

non-remainders will be 3n, or at least it will not be less than 3n. And 

besides, if all the non-remainders be contained in the three mentioned 

classes, it is necessary that the multitude of both remainders and non-

remainders taken together be = 4q and, therefore, n = q. 

 

 430. When these classes are arranged in the manner that we have 

fashioned them, it is clear that the product of two non-remainders from 

both the first and the third classes is contained in the second class; 

further, the product either of two terms of the second class, or one of the 

first class with one of the third class crosses over to the class of the 

remainders. But the product of a term from the first class with one from 



the second is found in the third class and the product of one from the 

second class with one from the third is found in the first. 

 

 431. From this, one discerns that a square number can have no 

place either in the first or the third classes, since it would be led into the 

remainders by multiplying it by itself. Therefore, the second class 

contains only squares and, since remainders can also be considered as 

squares, the multitude of all the squares is = 2n. 

 

 432. If the second class, with the remainders, includes all the 

squares which can be considered as distinct remainders with respect to 

the divisor 4q+1, and their number is = 2q, as we saw in the remainders 

of the squares, because 2n = 2q and hence 4n = 4q, they are all the 

numbers less than the divisor and neither are there non-remainders not 

contained in our three classes, and we will have n = q. 

 

 433. Now, should anyone doubt whether all the numbers which are 

not remainders occur in our three classes of non-remainders, this doubt 

will be removed if we point out that there are no square non-remainders 

that are not contained in the second class. For, if yy were such a square, 

on account of that, three new classes of non-remainders would 

immediately emerge and then the number of non-remainders would be = 

6n, and besides, if the non-remainders were now completed, we would 

have 7n = 4q. 

 

 434. That there is not such a square yy, dragging along behind it 

three new classes of non-remainders, is indeed shown thusly: Let, in 

addition to the others, the three classes arising from such a square be: 

IV. y, αy, βy, γy, etc.    V. y2, αy2, βy2, γy2, etc.    VI. y3, αy3, βy3, γy3, etc. 

each of which will contain n terms; it is necessary to examine two cases, 

the first in which xy would be a remainder, the second in which it would 

be a non-remainder. 

 

 435. Let ay be a remainder and then all the terms of the fourth 

class, multiplied by x, that is xy, αxy, βxy, γxy, etc., in number n, will be 

remainders. Also, to be sure, all the terms of the third class, multiplied 



by x, that is x4, αx4, βx4, γx4, etc., are remainders, just as many in number, 

and distinct from the former ones; for, if αxy and βx4 agreed with each 

other, αy–βx3 would be divisible by the divisor and αy would fall into the 

third class, contrary to the hypothesis. Thus, 2n distinct remainders 

would appear; but, because this is absurd, xy cannot be made a 

remainder. 

 

 436. Having, therefore, disposed of the case in which xy is a 

remainder, we may assume xy to be a non-remainder and, since all the 

non-remainders are comprehended in six classes, xy must occur in one 

of them; moreover, we may put xy as equivalent to either αx, or αx2, or 

αx3, or αy, or αy2, or αy3, from which an absurdity follows, in as much as 

y would be a remainder and would fall into either class I or II of non-

remainders, or x would be a remainder and would fall into class IV or V. 

 

 437. But since six classes of non-remainders cannot be granted, 

either they should be constituted by only three, as we would have it, or 

by more than six. The latter would happen if all the square non-

remainders do not yet occur in classes II and V. Let, therefore, zz be a 

non-remainder contained in neither of these classes, and three new 

classes will spring up from it, each consisting of n terms: 

VII. z, αz, βz, etc.    VIII. z2, αz2, βz2, etc.    IX. z3, αz3, βz3, etc. 

 

 438. Now indeed, as is shown in §435, neither xy, nor xz, nor yz 

can be a remainder because more remainders would follow from that than 

there actually are. Further, if xy were contained in any of the first six 

classes, the same inconvenience would arise as before; because of this, 

xy must be in one of the latter three classes. We should consider, 

therefore, whether xy can be equivalent to αz. 

 

 439. But if xy were equivalent to αz, then xz, because it is certainly 

a non-remainder, would be equivalent to either βy, or βy2, or βy3; because 

of this, since xy–αz and xz–βyν, where ν indicates either 1, or 2 or 3, would 

be divisible by 4q+1, z(xy–αz)–y(xz–βyν), that is βyν+1–αz2, would be 



divisible, and thus αz2 would be equivalent to βyν+1, and therefore would 

be contained in a different class, which would be absurd. 

 

440. Thus it is demonstrated that, if the prime divisor be 4q+1, the 

distinct divisors of the biquadratics will be = q in number, neither more, 

nor less, but the non-remainders will be comprehended in three classes, 

of which each consists of q terms. 

 

441. Because of this, since the distinct remainders arise from the 

biquadratics 1, 24, 34, 44, …, 16q4, the multitude of which is = 2q, they 

must be equal in pairs. Hence, if a is any number less than 2q, there will 

always be another b, unique and likewise not greater than 2q, such that 

b4 and a4 leave equal remainders, that is, such that b4–a4 is divisible by 

4q+1. 

 

442. But since both b–a and b+a are less than 4q+1, bb+aa will be 

divisible by 4q+1. Hence, for a proposed prime number 4q+1, a sum of 

two squares aa+bb, divisible by it, can be produced such that neither root 

surpasses 2q and one of the squares can be selected at will. 

 

443. We have already shown above that the sum of two squares 

aa+bb, prime to each other, does not admit prime divisors, other than the 

dyad, except those of the form 4n+1. From which it appears that one can 

conclude that all prime numbers of the form 4q+1 are sums of two 

squares and also certainly that 2(4q+1), or 5(4q+1) or 13(4q+1), etc. will 

be the sum of two squares. 

 

444. Although it has already been taken care of, that there are not 

more than two biquadratics, whose roots do not exceed 2q, that leave the 

same remainder, this can nevertheless also be demonstrated in another 

way. For, let a, b, c be three numbers not exceeding 2q, such that aa+bb, 

aa+cc and bb+cc are all divisible by 4q+1, and, moreover, their differences 

aa–cc, aa–bb and bb–cc would also be divisible. But, since neither a–c nor 

a+c can be divided by 4q+1, their product aa–cc likewise cannot be 

divided. 

 



 445. Thus, we have given a new proof that, if the prime divisor be 

4q+1, the multitude of distinct remainders arising from the division of the 

biquadratics is = q, and cannot be less; whence, the multitude of non-

remainders will be 3q, distributed in the three above mentioned classes. 

 

 446. Therefore, the remainders of the biquadratics arising from the 

prime divisor 4q+1, which are 1, α, β, γ, δ, etc., have the property that αq–

1, βq–1, γq–1, etc. admit of division by the prime number 4q+1. However, 

whether, or not, all remainders 19  upholds [refragentur] this property 

should be considered. 

 

 447. Let xx be a non-remainder and then x and x3 will equally be 

non-remainders. Now, if (xx)q–1, or x2q–1, were divisible by 4q+1, all the 

terms αx2, βx2, γx2, etc. would enjoy the same property, whereby, since 

the remainders, properly speaking, enjoy it, all the squares from 1 to 4qq 

would be provided with the same property. 

 

448. All the numbers from 1 to 2q, would thus have the property 

that their power with the exponent 2q, divided by 4q+1, would leave the 

unit; and, so, all the differences between two terms of the sequence 1, 22q, 

32q, 42q, …, (2q)2q, would be divisible by 4q+1, which, however, is absurd, 

as was shown above. 

 

449. This accomplishes what was proposed, namely, if the square 

xx be a non-remainder, then x2q–1 certainly is not divisible by 4q+1. Since 

x and x3 are also non-remainders, however, much less will the formulas 

xq–1 and x3q–1 be divisible by 4q+1, whence it is clear that, if aq–1 admits 

of division by 4q+1, then the number a will necessarily be found amongst 

the remainders of the biquadratics. 

 

450. When, therefore, the power aq, divided by the prime number 

4q+1, leaves the unit, then every remainder arising from the sequence of 

powers 1, a, a2, a3, a4, etc., will be contained in our remainders of 

 
19 That is, including quadratics that are non-residues of the biquadratics. 



biquadratics. And in turn, if a be not a remainder of the biquadratics, the 

formula aq–1 certainly will not be divisible by 4q+1. 

 

451. If q be an odd number, the number –1, or 4q, will not occur 

amongst the remainders, because (–1)q–1 certainly cannot be divided by 

4q+1. In this case, therefore, if the remainders be 1, α, β, γ, δ, etc., their 

negatives –1, –α, –β, –γ, etc., that is 4q, 4q+1–α, 4q+1–β, 4q+1–γ, etc. will 

certainly be found amongst the non-remainders. 

 

452. Hence, it follows that, if q be an odd number, there are not 

two biquadratics a4 and b4, whose sum a4+b4 is divisible by the number 

4q+1. For, if a4 agreed with the remainder α, another b4 would agree with 

–α, which, however, we have just now shown cannot happen.  

 

 453. But contrarywise, if q be an even number, –1 certainly occurs 

amongst the remainders of the biquadratics, for, if it were a non-

remainder, (–1)q–1 would not be divisible by 4q+1. Since it is divisible, 

however, it is clear that the negative of every biquadratic, or its 

complement, is also contained amongst the remainders. 

 

 454. If, therefore, q be an even number and 4q+1 a prime number, 

or if 8q+1 be a prime number, for any given biquadratic a4, there will be 

another b4, such that their sum a4+b4 is divisible by 8q+1. Thus, for the 

given number a, a number x can always be found, such that the sum of 

the biquadratics a4+x4 is divisible by 17, or 41, or 73, or 89, or 97, etc. 

 

 455. On the contrary, however, there will be no sum of two 

biquadratics which is divisible by any prime number from the sequence 

5, 13, 29, 37, 53, 61, 101, etc.; much the less by any prime number of 

the form 4q–1, because not even the sum of two squares is divisible by 

such a number. 

 

 456. Therefore, the sum of two biquadratics, prime to each other, 

cannot have, besides the dyad, other divisors, except those contained in 

the form 8q+1; thus we have: 

1+24 = 17   24+34 = 97   44+54 = 881 74+84 = 73.89 

1+34 = 2.41   24+54 = 641   44+74 = 2657 74+94 = 2.4481 



1+44 = 257   24+74 = 2417   44+94 = 17.401 74+104 = 12401 

1+54 = 2.313   24+94 = 6577   54+64 = 17.113 84+94 = 10657 

1+64 = 1297   34+44 = 337   54+74 = 2.17.89 94+104 = 1656120. 

1+74 = 2.1201   34+54 = 2.353   54+84 = 4721 

1+84 = 17.241   34+74 = 2.17.73   54+94 = 2.3593 

1+94 = 2.17.193   34+84 = 4177   64+74 = 3697 

1+104 = 73.137   34+104 = 17.59321  

 

 457. Now, let’s seek out those divisors for which the dyad is to be 

found amongst the remainders, which indeed never happened in the 

cases presented in §424. But wherever 2 occurs, 2α also occurs; and, 

therefore, the divisor 4q+1 must be a factor of such numbers as a4–2b4, 

or 2b4–a4; whence these divisors are deduced: 

73, 89, 113, 233, 281, 353, 593, 617, 937, 1249, 1889, 2273, 2393, 

4177, 4721, 4801, 6529, etc., 

which numbers seem to be contained in the form 64pp+qq. (*) 

 

(*) Written in the margin: For 3 to be a remainder, the divisor must be pp+qq, so 
that either p = 12m, or p = 3(2m+1) and q = 4n+2. For 5 to be a remainder, 
the divisor is made = 100pp+qq. 

 

 458. But the numbers contained in the formula 64pp+qq are: 

73, 89, 113, 233, 257, 281, 337, 353, 577, 593, 601, 617, 881, 

937, 1033, 1049, 1097, 1153, 1193, 1201, 1249, etc. 

Since all the preceding occur therein and the rest satisfy the question, 

there is nothing that should make us doubt the truth of the conjecture 

and, since all these numbers are of the form 8n+1, both –2 and 2 are to 

be found in the remainders. 

 

 459. Examining all the prime divisors of the form 4q+1 up to 101, 

the number q always occurs amongst the remainders, so that qq–1 is 

divisible by 4q+1; insofar as it is true in general, the numbers q, q2, q3, 

16q, 81q, 256q, 16qq, 81qq and hence –4, q–20, –64, and –4q would 

likewise be amongst the remainders. 

 

 
20 Reading “16561” for “16511”. 
21 Reading “17.593” for “2.17.593”. 



 460. This observation is confirmed by what was reported in §33922 

above, where we decided that the number 2 is amongst the remainders 

of the squares, if the prime divisor be of the form 8p+1, but it is a non-

remainder, if the divisor be of the form 8p+5, whereby 24p–1 is divisible 

by 8p+1, but 24p+2–1 is not divisible by 8p+5, whence, since 28p+4–1 is 

divisible, it is necessary that 24p+2+1 be divisible by 8p+5. 

 

 461. Thus, since the form 4q+1 answers to 8p+1, if q be an even 

number, in this case 22q–1, or 4q–1, is divisible by 4q+1 and, therefore, 

the number 4 and its negative –4 must be found amongst the remainders 

of the biquadratics. But if q be an odd number, in which case 4q+1 

answers to 8p+5, 22q+1, or 4q+1, which answers to (–4)q–1, is divisible by 

4q+1; thus, even in this case –4 should be found amongst the remainders 

of the biquadratics. 

 

 462. For the divisor 4q+1, therefore, whether p be an even number, 

or an odd one, –4 is always found in the remainders of the biquadratics, 

whence, since –4q, because of 1, is present there, q must likewise be 

present, and thus one observation is confirmed by the other. 

 

 

 

Chapter XIII 

On Remainders Arising from the Division 

of Surdosolids23 by Prime Numbers 

 

 463. If the divisor be d and a5 leaves α, then (d–a)5 will leave –α, 

and thus the number of all the remainders originating from the powers 

1, 25, 35, 45, …, (d–1)5, if they be all distinct, is = d–1. 

 

 464. Let 1, α, β, γ, etc. be all the distinct remainders and their 

products, two by two, will occur amongst them; moreover, if any product 

 
22 Reading “§339” for “§389”. 
23 That is, fifth powers. 



mn appears there along with one factor m, the other n also will appear 

there. For, if mn arises from a5, and m from b5, mn will also originate from 

nb5, and a5–nb5 will be divisible by d. But we can put a = fb±gd, and 

therefore a5 leaves the same remainder as f5b5, thus, since f5b5–nb5, and 

therefore also f5–n, is divisible by d, n will be in the remainders. 

 

 465. If a be in the remainders, a2, a3, a4, will likewise be there, but 

a5 is always there. Hence, in its turn, if a2 be in the remainders, a3 = a5:a2 

will likewise be in the very same place; and, because a4 is a remainder, a 

will also be a remainder. Therefore, if any power whatever an (provided 

that n be not a multiple of five) be a remainder, all its powers a, a2, a3, 

etc. will also be remainders. 

 

 466. Let m be the multitude of the remainders 1, α, β, γ, δ, etc. for 

the prime divisor 2q+1 and, if all the numbers less than the divisor occur 

in the remainders, we will have m = 2q and, besides, that there are such 

cases will be clear soon. 

 

 467. If it be that m < 2q, there will be a number that is a non-

remainder; let A be of this kind and, hence, the non-remainders will be, 

firstly, A, Aα, Aβ, etc., m in number; but then, because A2, A3, A4 are non-

remainders, m new ones are obtained from each of them, so that one non-

remainder A envelops four classes of non-remainders: 

 I. A, Aα, Aβ, Aγ, etc.           III. A3, A3α, A3β, A3γ, etc. 

II. A2, A2α, A2β, A2γ, etc.      IV. A4, A4α, A4β, A4γ, etc. 

 

 468. Therefore, as soon as there is one non-remainder, 4m non-

remainders are immediately generated and, if that be all of them, it is 

necessary that we have m+4m = 2q and, therefore, 5m = 2q and 𝑚 =
2𝑞

5
; 

therefore, unless q be a multiple of five, non-remainders cannot appear. 

 

 469. But if there be a new non-remainder B beyond the four classes, 

there would once more arise from it four classes: 

 V. B, Bα, Bβ, Bγ, etc.           VII. B3, B3α, B3β, B3γ, etc. 

VI. B2, B2α, B2β, B2γ, etc.     VIII. B4, B4α, B4β, B4γ, etc. 



Now, whether AB be designated a remainder or a non-remainder, an 

absurdity follows; whence it is necessary that all the non-remainders, if 

there be any, be exhausted by the four former classes. 

 

 470. It is therefore certain that whenever the number q in the prime 

divisor 2q+1 is not a multiple of five, all the numbers occur in the 

remainders, and their multitude is = 2q. Hence, there will not be two 

numbers a and b, less than 2q+1, such that a5–b5 would be divisible by 

2q+1; and thus a4+a3b+aabb+ab3+b4 can be divided by no prime number 

2q+1, in which q is not a multiple of five. 

 

 471. All the prime divisors, therefore, of numbers of the form 

a4+a3b+aabb+ab3+b4, or of a5–b5, excepting the divisor a–b, are contained 

in the formula 10p+1, and these numbers can in no way be divided by 

any number contained in the formulas 10p+3, 10p+7 and 10p+9. 

 

 472. But if the prime divisor be 10p+1, not all the numbers will 

occur in the class of remainders, for, if they were all to occur, x2p–1 would 

always be divisible by 10p+1, whatever x may be, or the differences of all 

the powers 1, 22p, 32p, 42p, …, (2p+1)2p would be divisible by 10p+1, whose 

absurdity was already shown above. 

 

 473. Whence, if the prime divisor be 10p+1, the number of distinct 

remainders is only = 2p, and there will be 8p non-remainders, and thus 

there will always be five numbers a, b, c, d, e less than 10p+1, whose fifth 

powers product the same remainders. 

 

 474. Of course, for any given number a, four others b, c, d, e, each 

less than the divisor 10p+1, can always be assigned, so that  

these numbers     and therefore also these 

b5–a5    b4+ab3+a2b2+a3b+a4 

c5–a5    c4+ac3+a2c2+a3c+a4 

d5–a5    d4+ad3+a2d2+a3d+a4 

e5–a5    e4+ae3+a2e2+a3e+a4 

are divisible by it. The demonstration can be adapted from the same one 

for the preceding powers. 



 

 475. Therefore, the differences of the first minus the three following 

can be divided by the same divisor; moreover, these differences, since 

they are divisible by b–c, b–d, b–e, will be reduced to these 

b3+b2c+bc2+c3+ab2+abc+ac2+a2b+a2c+a3, 

b3+b2d+bd2+d3+ab2+abd+ad2+a2b+a2d+a3, 

b3+b2e+be2+e3+ab2+abe+ae2+a2b+a2e+a3. 

 

 476. Next, one should take the differences of these, which divided 

in turn by c–d and c–e, become 

c2+cd+d2+bc+bd+b2+ac+ad+ab+a2, 

c2+ce+e2+bc+be+b2+ac+ae+ab+a2, 

which are also divisible by 10p+1. And, once again, the difference of these, 

divided by d–e, is 

e+d+c+b+a. 

 

477. Hence, it is apparent that the five numbers a, b, c, d, e, the 

fifth powers of which leave equal remainders, when divided by the prime 

number 10p+1, are so composed that their sum 

a+b+c+d+e 

is also divisible by the same [number]. But, since each of them is less 

than 10p+1, their sum is either 10p+1, or 2(10p+1), or 3(10p+1), or 

4(10p+1). 

 

 478. Since it is also permitted to consider negative numbers as 

remainders, the sum a+b+c+d+e can be looked at as equal to nothing24, 

whence, given the four a, b, c, d, the fifth is automatically given, namely 

e = –a–b–c–d, and, since it is unique, it is clear that there are not more 

than five. 

 

 479. Behold, then, a new demonstration that the number of distinct 

remainders for any prime divisor 2q+1 be either = 2q or = 
2𝑞

5
, and that the 

first always happens if q be not a multiple of five, the second whenever 

 
24 That is, zero. 



we have q = 5p. In the first case, all the numbers less than the divisor are 

remainders, in the second only a fifth part of them. 

 

 480. Given, therefore, a prime divisor 10p+1, the multitude of 

distinct remainders is = 2p, amongst which the negative of any remainder 

whatever likewise occurs, from which their multitude is even. But then 

the same remainder agrees with five distinct powers, the roots of which 

are less than the divisor; it will be helpful to list some of them. 

 

 481. Since such divisors are 11, 31, 41, 61, 71, 101, etc., let’s 

examine first the divisor 10p+1 = 11, which makes p = 1: 

Remainders         from the powers           Classes of non-remainders 

                                                                     I.   II.   III.   IV. 

       1            15, 35, 45, 55,  95           2   4   8    5 

     10            25, 65, 75, 85, 105          9   7   3    6. 

 

482. Let the divisor be 10p+1 = 31 and p = 3; we will have 

Remainders            from the powers              Classes of non-remainders 

                                                                               I.   II.   III.    IV. 

       1           15,   25,   45,   85, 165             2   4    8   16 

       5           75, 145, 195, 255, 285           10  20    9  18 

     26           35,   65, 125, 175, 245           21  11  22  13 

       6          115, 135, 215, 225, 265          12  24  17    3 

     25            55,   95, 105, 185, 205          19    7  14  28 

     30          155, 235, 275, 295, 305          29  27  23  15 

 

483. Let the prime divisor be 10p+1 = 41 and, therefore, p = 4; we 

will have 

Remainders             from the powers                       Classes of non-remainders 

                                                                                        I.     II.     III.   IV. 

       1           15,   105,   165,   185,   375             2     4     8   16 

     40           45,   235,   255,   315,   405           39   37   33   25 

       3         115,   125,   285,   345,   385             6   12   24     7 

     38           35,     75,   135,   295,   305           35   29   17   34 

       9           55,     85,     95,   215,   395           18   36   31   21 

     32           25,   205,   325,   335,   365           23     5   10   20 



     14         155,   225,   245,   275,   355           28   15   30   19 

     27           65,   145,   175,   195,   265           13   26   11   22 

 

 484. Letting the prime divisor be 10p+1 = 61 and p = 6, we will have 

Remainders             from the powers                       Classes of non-remainders 

                                                                                        I.     II.     III.   IV. 

       1           15,     95,   205,   345,   585             2     4     8   16 

     60           35,   275,   415,   525,   605           59   57   53   45 

     13         125,   255,   425,   475,   575           26   52   43   25 

     48           45,   145,   195,   365,   495           35     9   18   36 

     14           55,   395,   455,   465,   485           28   56   51   41 

     47         135,   155,   165,   225,   565           33     5   10   20 

     11           85,   115,   285,   375,   385           22   44   27   54 

     50         235,   245,   335,   505,   535           39   17   34     7 

     21         105,   175,   295,   315,   355           42   23   46   31 

     40         265,   305,   325,   445,   515           19   38   15   30 

     29           65,   215,   435,   545,   595           58   55   49   37 

     32           25,     75,   185,   405,   555             3     6   12   24 

 

 485. Any prime divisor of the form 10p+1 being proposed, therefore, 

there will be a number a, such that a5–1 is divisible by it, which property 

the numbers a2, a3, a4 will likewise have, that is, their fifth powers also 

leave the unit. The following terms a5, a6, etc. are not distinct from these 

since a5 = a(10p+1)+1, and so a5 is equivalent to 1, a6 to a, a7 to a2, etc. 

 

 486. Since the five numbers whose fifth powers, divided by 10p+1, 

leave the unit can be represented by 1, a, a2, a3, a4, if b5 gives the 

remainder α, there will be five numbers b, ab, a2b, a3b, a4b, whose fifth 

powers, divided by 10p+1, leave the same remainder α. 

 

 487. Because the same thing can be extended to the higher powers, 

given any prime number mn+1, there will always be a number a, such 

that am–1 is divisible by it; and all its powers are provided with the same 

property. But a will be less than the divisor mn+1 and as many such 

distinct numbers as m contains of units can be exhibited. 

 



 488. Further, a prime number mn+1 being proposed, if the powers 

1m, 2m, 3m, 4m, etc., up to (mn)m, be divided by it, more than n distinct 

remainders will not be left and, therefore, there will be (m–1)n numbers 

less than the divisor that are not remainders. 

 

 489. If a be the smallest number after the unit whose power am, 

divided by mn+1, leaves the unit — and there will always be some unique 

number of this kind —, then, if the power bm leaves α, the powers with 

exponent m of all the numbers b, ab, a2b, a3b, …, am–1b, whose multitude 

is = m, will leave the same remainder α. 

 

 490. If m = 2, the smallest power a2, which, divided by the prime 

number 2n+1, leaves the unit, is as follows 

2n+1        n         a2 

   3           1         22 

   5           2         42 

   7           3         62 

 11           5       102 

and so on; in this case, we always have a = 2n. 

 

 491. If m = 3, the powers a3, which, divided by 3n+1, leave the unit, 

are 

3n+1      n         powers   3n+1      n          powers 

   7         2      13,   23,   43    61        20      13, 133, 473 

 13         4      13,   33,   93    67        22      13, 293, 373 

 19         6      13,   73, 113    73        24      13,   83, 643 

 31       10      13,   53, 253    79        26      13, 233, 553 

 37       12      13, 103, 263    97        32      13, 353, 613 

 43       14      13,   63, 363          103        34      13, 463, 563. 

  



 

492. Let m =4 and the powers a4, which, divided by 4n+1, leave the 

unit are 

4n+1      n             powers  4n+1      n              powers 

   5         1      14,   24,   44,   34  53        13      14, 234,   524, 304 

 13         3      14,   54, 124,   84  61        15      14, 114,   604, 504 

 17         4      14,   44, 164, 134  73        18      14, 274,   724, 464 

 29         7      14, 124, 284, 174  89        22      14, 344,   884, 554 

 37         9      14,   64, 364, 314  97        24      14, 224,   964, 754 

 41       10      14,   94, 404, 324        101        25      14, 104, 1004, 914 

 

493. If m = 5, the powers a5, which, divided by 5n+1, leave 1, are, 

as we have already seen,  

5n+1      n                  powers 

  11         2      15,    35,    95,    55,    45 

  31         6      15,    25,    45,    85,  165 

  41         8      15,  105,  185,  165,  375 

  61       12      15,    95,  205,  585,  345 

  71       14      15,    55,  255,  545,  575 

101       20      15,  365,  845,  955,  875 

 

 494. Let m = 6, and the sixfold powers a6, which, divided by 6n+1, 

leave the unit are 

6n+1      n                    powers 

   7         1      16,    26,    46,    66,    56,    36 

 13         2      16,    36,    96,  126,  106,    46 

 19         3      16,    76,  116,  186,  126,    86 

of course, the same powers as for the case m = 3 appear here, to which 

are adjoined those arising from negative roots. 

  



 

 495. Let m = 7 and the powers a7, which, divided by 7n+1, leave 

the unit, are 

7n+1      n                           powers 

  29         4      17,    77,  207,  247,    237,  167,    257 

  43         6      17,    47,  167,  217,    417,  357,    117 

  71       10      17,  207,  457,  487,    377,  307,    327 

113       16      17,  167,  307,  287,  1097,  497,  1067 

 

 496. We have already observed that, one of these numbers being 

known, the rest arise from its powers. Indeed, a method of investigating 

such numbers is most readily seen: Given a prime divisor mn+1, two 

powers am and bm producing the same remainder are sought out; then x 

is sought, such that we have 𝑥 =
𝑏+𝑝(𝑚𝑛+1)

𝑎
 and xm will leave the unit. 

Moreover, p can always be taken so as to make the number an integer. 

 

 497. If the divisor be mn+1, the powers with exponent m leaving the 

unit being 

1m, αm, βm, γm, δm, etc.   in number m, 

then, 1, α, β, γ, δ, etc, will be remainders arising from the geometric 

progression 1, α, α2, α3, α4, etc.; therefore, they will also originate from the 

sequence of powers 1n, 2n, 3n, 4n, 5n, 6n, etc. 

 

 498. Behold, therefore, a most easy method for finding at least one 

number α, such that αm–1 be made divisible by mn+1; of course, 2n can 

always be taken for α, or the remainder arising from this power of the 

dyad, moreover suitable values can be sought for from 3n, 5n, etc.; but, 

knowing one, the rest become known easily. 

 

 499. If the prime divisor be mn+1 and the number N occurs in the 

remainders of the powers 1, 2n, 3n, 4n, etc., the number Nan will likewise 

occur there; and there will be a number x, such that xn–Nan is made 

divisible by mn+1, and Nm–1 will also be divisible by mn+1. 

 

 500. Again, if Nm–1 be divisible by mn+1, N will be a remainder of a 

power of xn; for, if it were a non-remainder, all the rest of the non-



remainders, and therefore all numbers, would enjoy the same property; 

and all the numbers 1m–1, 2m–1, 3m–1, etc. would be divisible by mn+1, 

which however cannot happen. 

 

 501. Specifying the prime divisor mn+1, and 1, A, B, C, D, etc. being 

the remainders of the powers 1m, 2m, 3m, 4m, etc. and 1, α, β, γ, δ, etc. the 

remainders of the powers 1n, 2n, 3n, 4n, etc., then all the powers 

1m, αm, βm, γm, δm, etc. 

will leave 1; moreover, the powers 1n, An, Bn, Cn, etc. will leave remainder 

1 and, therefore, the forms αm–An will be divisible by mn+1. 
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 An attempt to demonstrate that, if the prime divisor be 8q+7, then 2 is to be found 

in the remainders. Let’s suppose that 2 is in the remainders and, since (2q+m)2 is in the 

same place, 8qq+8mq+2mm will be likewise, and therefore 

8mq+2mm–7q and 2mm–7m–7q and 2mm–7m+q+7, 

but if there are never any non-remainders, the proposition will be clear. But non-

remainders can be represented by negative squares, the doubles of which will be 

remainders by hypothesis; thus, let 

2mm–7m+q+7 = –2aa+8bq+7b, and make 

𝑞 =
2𝑎𝑎+2𝑚𝑚−7𝑚+7−7𝑏

8𝑏−1
 and 8𝑞 + 7 =

(4𝑎)2+(4𝑚−7)2

8𝑏−1
, 

and 8q+7 would be a divisor of (4a)2+(4m–7)2, but, since this cannot happen, it follows 

that no absurdity is to be deduced from 2 as a remainder, which would necessarily 

result if 2 was not a remainder. (*) 

 

(*) Written in the margin: If 2mm–7m+q is put = –aa, it makes 

8𝑞 + 7 =
2(2𝑎)2+(4𝑚−7)2

8𝑏−1
, 

now it remains to be demonstrated that 2xx+yy is never divisible by 8q+7. 
Another note, as it seems, pertinent here. 8xx–(2y+1)2 does not have prime 
divisors other than of the forms 8n–1 and 8n+1. 

8𝑥𝑥−1

7
 int.25 if x = 7a ± 1,   

8𝑥𝑥−1

23
 int. if x = 23a ± 7,   

8𝑥𝑥−1

31
 int. if x = 31a ± 2, 

8𝑥𝑥−1

47
  «   «  x = 47a ± 10,   

8𝑥𝑥−1

17
  «   «  x = 17a ± 7,   

8𝑥𝑥−1

41
  «    «  x = 41a ± 6. 

 

 
25 That is, “integer”. 



 Theorem. If the divisor [be] 12q+11, 3 will be a remainder. 

 Assume that 3 is a remainder and, if no absurdity follows from that, it should be 

taken for the truth. Therefore, –3 will be a non-remainder and all non-remainders will 

be –3aa. But, (2q+m)2 is a remainder and 12qq+12mq+3mm and, hence, 3mm–11q–11m, 

likewise 3mm+q–11m+11, which can never be a non-remainder –3aa: for, putting 

3mm–11m+11+q = –3aa+12bq+11b, we will have 

𝑞 =
3𝑎𝑎+3𝑚𝑚−11𝑚+11−11𝑏

12𝑏−1
, from which we obtain 12𝑞 + 11 =

(6𝑎)2+(6𝑚−11)2

12𝑏−1
, 

but, since that is absurd, 3mm–11m+11+q will never be contained amongst the non-

remainders. 

 

Or thus for the divisor 8q+7. 

 If 2 were a non-remainder, in general 2mm–7m–7q±α(8q+7) would be a non-

remainder; but in general the remainders are (4q+n)2 = 16qq+8nq+nn = 8nq+nn–14q = 

nn–14q–7n = nn+2q–7n+14±β(8q+7), thus all the numbers are contained in one or the 

other of these formulas: 

2mm–7m–7q±α(8q+7) 

nn–7n–14q±β(8q+7). 

If but a single number, not therein contained, can be determined, the demonstration 

would be complete; or if the same number were contained in both of them, which 

happens if, putting m = f+g, n = f+2g,  ff–2gg+7g+7q were divisible by 8q+7. 

 

 

 

Chapter XIV 

On Remainders Arising from the Division of 

Squares by Composite Numbers 

 

 502. Let 1, α, β, γ, δ, etc. be the remainders, which emerge from the 

division of squares by a prime number 2p+1, the number of which is = p; 

and also we may see first just what remainders arise, if the division is 

made by its double 2(2p+1), although here we exclude even squares; for, 

we will consider only those squares which are prime to the divisor. 

 

 503. But the multitude of squares, whose roots are less than the 

divisor, is = 2p, and because the squares aa and (4p+2–a)2 leave the same 



remainder, the multitude of distinct remainders cannot be greater than 

p; therefore, it will be either = p, or less than p. 

 

 504. Of course, it would be less if there were two squares aa and 

bb, which leave the same remainder and are such that it is not the case 

that b = 4p+2–a. But, then, were bb–aa = (b–a)(b+a) divisible by 2(2p+1), 

one factor would have to be divisible by 2 and the other by 2p+1. Yet, one 

being even, the other will likewise be even and, therefore, divisible by the 

whole divisor, whence we would have b = 2(2p+1)–a. 

 

 505. Therefore, the multitude of distinct remainders, which indeed 

arise from squares prime to the divisor, will be = p, just as many in 

number as are begotten from the prime divisor 2p+1. And also, if the 

remainders, arising from the divisor 2(2p+1), be 1, A, B, C, D, etc., their 

number will be = p and their products, two by two, will occur in the very 

same place. 

 

 506. There are, however, 2p numbers prime to this divisor and less 

than it, whence, since only half of them make up the remainders, the 

other half will give the class of non-remainders; letting them be 𝕬, 𝕭, 𝕮, 

𝕯, etc., their number will be = p, and their products two at a time will 

make remainders again. 

 

 507. We consider some examples, in which the remainders 

originate both from the prime divisor 2p+1 and from its double 2(2p+1), 

setting down at the same time the non-remainders prime to the divisor: 

 

divisor                    3      6        5         10           7             14 

remainders             1      1      1, 4      1, 9      1, 2, 4      1, 9, 11 

non-remainders      2      5      2, 3      3, 7      3, 5, 6      3, 5, 13 

 

divisor                        11                          22 

remainders          1, 3, 9, 5,   4      1,   9,   3,   5, 15 

non-remainders   2, 6, 7, 8, 10      7, 13, 17, 19, 21 

 

 

 



divisor                             13                              26 

remainders             1, 3, 4, 9, 10, 12      1, 3,   9, 17, 23, 25 

non-remainders      2, 5, 6, 7,   8, 11      5, 7, 11, 15, 19, 21 

 

divisor                                 17                                        34 

remainders           1, 2, 4, 8,   9, 13, 15, 16    1, 9, 13, 15, 19, 21, 25, 33 

non-remainders    3, 5, 6, 7, 10, 11, 12, 14    3, 5,   7, 11, 23, 27, 29, 31 

 

 508. We will represent things in general 

divisor                           2p+1                     2(2p+1) 

remainders             1, α, β, γ, δ, etc.      1, A, B, C, D, etc. 

non-remainders      𝖆, 𝖇, 𝖈, 𝖉, 𝖊, etc.      𝕬, 𝕭, 𝕮, 𝕯, 𝕰, etc. 

and we observe, in the first place, that all the remainders of the divisor 

2(2p+1), either they themselves, or reduced by the number 2p+1, make 

up the remainders of the divisor 2p+1. 

 

 509. Of course, either A or A–(2p+1) occurs in the remainders 1, α, 

β, γ, etc. For, since there is an odd square aa, such that aa–A is divisible 

by 2(2p+1), it will likewise be divisible by 2p+1, whence it is necessary 

that A, or A–(2p+1), if it be that A > 2p+1, also be found amongst the 

remainders of the divisor 2p+1. 

 

 510. Next, the odd numbers in the sequence 1, α, β, γ, etc. occur in 

the sequence 1, A, B, C, D, etc., but the even ones are not found there, 

but rather those same ones increased by the number 2p+1. For, let α be 

an odd number and, since aa–α is divisible by 2p+1, we will have aa–α = 

n(2p+1). Now, a is either even or odd. If it be odd, aa–α will be even and, 

because of this, n is also even and, thus, aa–α will be divisible by 2(2p+1). 

 

 511. But if a be even, 2p+1–a will be odd and, moreover, (2p+1–a)2–

α = n(2p+1), where n is even, so that this formula is likewise divisible by 

2(2p+1); whence, if α be an odd number, it will certainly be contained 

amongst the remainders 1, A, B, C, etc. 

 

 512. But if α be an even number, α+2p+1, which is odd, can be 

considered in its place amongst the remainders of the divisor 2p+1 and, 



for the reasons given [above], it must also be found amongst the 

remainders of the divisor 2(2p+1). 

 

 513. Given, therefore, the remainders 1, α, β, γ, etc. arising from the 

prime divisor 2p+1, the sequence of remainders 1, A, B, C, etc. arising 

from the double divisor 2(2p+1) can be immediately put together from 

them, putting, of course, those that are odd themselves, but increasing 

those that are even by the number 2p+1. 

 

 514. In like manner, the sequence of non-remainders answering to 

the divisor 2(2p+1) is fashioned from the sequence of non-remainders 𝖆, 

𝖇, 𝖈, 𝖉, 𝖊, etc. answering to the divisor 2p+1, provided that the odd ones 

themselves be taken and the even ones be increased by the number 2p+1. 

 

On the divisor d = 4(2p+1). 

 515. The multitude of numbers less than this divisor and prime to 

it is 2.1.2p = 4p and not only do the squares aa and (d–a)2 leave the same 

remainder, but there are in addition two others bb and (d–b)2. For, we 

can make bb–aa = (b–a)(b+a) = 4n(2p+1) by taking (b–a) = 2n and b+a = 

2(2p+1), whence we have b = 2(2p+1)–a and, thus, the roots of the four 

squares leaving the same remainder are: a, 2(2p+1)–a, 2(2p+1)+a, 

4(2p+1)–a. 

 

 516. But there cannot be more than four, whence, in this case, the 

number of remainders is only p, just as for the prime divisor 2p+1. But 

the number of non-remainders is 3p, as one may see from the subjoined 

examples: 

 

divisor                    3       12       5            20             7                  28 

remainders             1        1      1, 4        1,    9      1, 2, 4         1,   9, 25 

non-remainders      2      {
 5
 7
11

      2, 3      {
  3,     7,
11,   19
13,   17

      3, 5, 6      {  
3,   27,   19
5,   17,   13

11,   15,   23
 

 

 

 

 



divisor                            11                            44 

remainders             1, 3, 9, 5,   4         1,   9,  25,  5,  37 

non-remainders      2, 6, 7, 8, 10      {
  3,   27,   31,   15,   23
  7,   19,   43,   35,   39
13,   29,   17,   21,   41

 

 

divisor                              13                                   52 

remainders             1, 3, 4, 9, 10, 12        1,   9,  25, 49, 29, 17 

non-remainders      2, 5, 6, 7,   8, 11      {
3,   27,   23,   43,   35,   51
5,   45,   21,   37,   41,   33
7,   11,   19,   31,   47,   15.

 

 

 517. Let 1, α, β, γ, δ, etc. be the remainders for the divisor 2p+1 and 

1, A, B, C, D, etc. the remainders for the divisor 4(2p+1), equal in 

multitude; and, first of all, it is clear that those remainders found in the 

sequence 1, A, B, C, D, etc. that are less than 2p+1 are contained in the 

sequence 1, α, β, γ, δ, etc.; but those that are greater must be reduced by 

the number 2p+1, or its double, or its triple. 

 

 518. Next, I observe that no number of the form 4q–1 is contained 

amongst the remainders 1, A, B, C, D, etc. For, since the square aa, 

reduced by the number 4q–1, cannot be divisible by 4, aa–(4q–1) cannot 

be a multiple of 4(2p+1), whence the numbers 3, 7, 11, 15, 19, 23, are 

always amongst the non-remainders. 

 

 519. If an odd number of the form 4q+1 occurs in the sequence 1, 

α, β, γ, δ, etc., it will likewise occur in the sequence 1, A, B, C, D, etc.; for, 

if aa–(4q+1) be divisible by 2p+1, then (2p+1±a)2–(4q+1) will likewise be 

divisible; and, because one of the numbers a and 2p+1±a is certainly even 

and the other odd, a is taken as odd and aa–(4q+1) will be divisible by 4, 

whence also by 4(2p+1), so that 4q+1 will be a remainder for this divisor. 

 

 520. On the contrary, if an odd number 4q–1 be a remainder of the 

divisor 2p+1, it will not be a remainder of the divisor 4(2p+1), as we have 

already seen; but then 2(2p+1)+4q–1, because it reduces to the form 4r+1, 

will certainly be contained amongst the remainders of the divisor 4(2p+1). 

 



 521. If an even number 2q be a remainder of the divisor 2p+1, then 

either 

2q+2p+1,   or   2q+3(2p+1) 

will be a remainder of the divisor 4(2p+1), as either the former or the latter 

will be of the form 4r+1; the other one, being of the form 4r–1, is always 

excluded. 

 

 522. Of course, if it be that p = 2m and 4m+1 a prime number, if 

4q be a remainder of the divisor 4m+1, then 4q+4m+1 will be a remainder 

of the divisor 4(4m+1); but if 4q+2 be a remainder of the divisor 4m+1, 

then 4q+2+3(4m+1) will be a remainder of the divisor 4(4m+1). 

 

 523. Let p = 2m–1 and 4m–1 a prime number: If 4q be a remainder 

of the divisor 4m–1, then 4q+3(4m–1) will be a remainder of the divisor 

4(4m–1). But if 4q+2 be a remainder of the divisor 4m–1, then 4q+2+4m–

1 = 4q+4m+1 will be a remainder of the divisor 4(4m–1). 

 

 524. With the help of these rules, from the several remainders of 

the prime divisor 2p+1 the same number of remainders for the divisor 

4(2p+1) are found; for each one either itself, or increased by the number 

2p+1, or 2(2p+1), or 3(2p+1), produces a number of the form 4q+1 and 

will be a remainder of the divisor 4(2p+1). 

 

 525. Moreover, from any remainder of the divisor 2p+1, one non-

remainder, of the form 4q–1, for the divisor 4(2p+1) is elicited; and also, 

from each non-remainder of the divisor 2p+1, two non-remainders for the 

divisor 4(2p+1) are produced; for, if it be even, two non-remainders are 

obtained by adding 2p+1 and 3(2p+1),26 but if it be odd, adding 0 and 

2(2p+1). 

 

On the divisor d = 8(2p+1). 

 526. Here there are always eight numbers less than d, whose 

squares, divided by d, leave the same remainder, namely, one number 

being a, the other seven are 

 
26 Reading “3(2p+1)” for “2(2p+1)”. 



2(2p+1)±a, 4(2p+1)±a, 6(2p+1)±a, 8(2p+1)–a 

and neither can any more be produced. 

 

 527. Because of this, since the multitude of numbers less than d 

and prime to it is = 4.1.2p = 8p and of these the same remainder is 

furnished in groups of eight, it is clear that the number of remainders 

will be = p, but that of non-remainders = 7p. 

 

 528. Next, it is clear that any number of the form 4q–1, that is, of 

the form 8q–1 or 8q–5, cannot occur amongst the remainders; but neither 

can numbers of the form 8q+5 be amongst the remainders, because the 

form xx–(8q+5) can never be divided by 8 and therefore neither by 8(2p+1), 

because xx = 8n+1 on account of x being odd. 

 

 529. Therefore, there can be no other remainders, except for those 

of the form 8n+1 and, because the divisor is 16p+8, all the numbers from 

0 up to 2p can be taken for n. But, whenever either 2p+1, or 3(2p+1), or 

5(2p+1) or 7(2p+1) is of the form 8n+1, they are to be excluded, so that 

there are only 2p numbers of this kind left, only half of which make up 

the remainders. 

 

 530. However, from these numbers of the form 8n+1, whose 

multitude is 2p, if it be established that one is a non-remainder, the 

remaining p non-remainders are obtained by multiplying it by each 

remainder, and in addition the rest of the odd numbers, whether of the 

form 8n+3, or 8n+5 or 8n+7, supply the other 6p non-remainders27. 

 

 531. Therefore, the divisor 8(2p+1) produces the same number of 

remainders as the divisor 2p+1 and, if they be 1, α, β, γ, δ, etc., from each, 

one by one, the remainders of the divisor 8(2p+1) are elicited, by adding 

a multiple of 2p+1, so that the aggregate becomes of the form 8n+1, just 

as one may see from this example: 

 

 

 
27 Reading non-residua for residua. 



  For the divisor 13, remainders   1,    3,     4, 9,   10,  12 

                                           add   0, 6.13, 13, 0, 3.13, 13 

For the divisor 104, remainders   1,   81,  17, 9,   49,  25. 

 

532. If A be a remainder for the divisor 8(2p+1), Ap–1 will be 

divisible by 8(2p+1), and also, if this happens, A will in turn be a 

remainder of squares. Of course, if Ap–1 be divisible by 8(2p+1), it can 

always be assigned a square xx, such that xx–A be divisible by 8(2p+1). 

 

On the divisor d = 3(2p+1). 

 533. The multitude of numbers less than this divisor and prime to 

it is = 2.2p = 4p, amongst which there are at least two, whose squares 

leave the same remainder, namely a2 and (d–a)2, whence the number of 

distinct remainders cannot be greater than 2p. 

 

 534. In addition, since a is not divisible by 3, either 2p+1–2a, or 

2(2p+1)–2a, will be divisible by 3; let the quotient be = m, and the square 

of the number 3m+a will leave the same remainder, therefore either 2p+1–

a, or 2(2p+1)–a, and therefore also either 2(2p+1)+a, or 2p+1+a will 

likewise leave the same remainder.  

 

 535. In this way, since the squares always leave the same 

remainder in groups of four, the number of distinct remainders will only 

be = p and, therefore, will be the same as for the divisor 2p+1. However, 

any number of the form 3n–1 cannot be in the remainders, since no 

square, minus such number, can be divided by 3, and thus neither by 

3(2p+1). 

 

 536. Therefore, all the remainders of the divisor 3(2p+1) will be 

numbers of the form 3n+1, and, if the remainders of the divisor 2p+1 be 

1, α, β, γ, etc., each of them, either itself, or increased by either the 

number 2p+1, or 2(2p+1), by which a number of the form 3n+1 is 

produced, will be a remainder of the divisor 3(2p+1). 

 

 



For the divisor d = (2p+1)(2q+1). 

 537. Let the remainders for the divisor 2p+1 be 1, α, β, γ, δ, etc., in 

number = p, and the remainders for the divisor 2q+1 be 1, π, ρ, σ, τ, etc., 

in number = q, and the numbers common to each class will be remainders 

of the divisor d = (2p+1)(2q+1). 

 

 538. But the number m(2p+1)+α is reckoned to belong to the first 

class, where m can be so defined that it becomes equal to either n(2q+1)+1, 

or n(2q+1)+π, etc., and, so, q remainders of the divisor 2q+1 are produced 

from any remainder whatever of the divisor 2p+1, and, so, pq distinct 

remainders are obtained altogether for the divisor (2p+1)(2q+1). 

 

 539. Let 5.7 = 35 be the composite divisor of this kind and, since 1 

and 4 are the two remainders for 5, and 1, 2, 4 the three for 7, therefore, 

for the divisor 35, the remainders will be the 7n+1, 7n+2, 7n+4 that, of 

course, are contained in the form 5m+1, or 5m+4. Therefore, these 

remainders will be six in number: 1, 29; 9, 16; 4, 11. 

 

 540. Since there are only pq distinct remainders for the divisor 

(2p+1)(2q+1), four squares at a time will produce the same remainder, 

one of which, if it be = aa, will be the base of the other three: 

(2p+1)(2q+1)–a,   m(2p+1)–a,   n(2p+1)–a, 

taking the numbers m and n so that m(2p+1)–2a and n(2p+1)+2a can be 

divided by 2q+1, which, because 2p+1 and 2q+1 are prime to each other, 

can always be done in such a way that m and n are less than 2q+1. 

 

 

 

Chapter XV 

On Divisors of Numbers of the Form xx+yy 

 

 541. First of all, the case in which the numbers x and y have a 

common divisor is excluded; for, if the maximum common divisor were = 

φ and x = pφ and y = qφ, so that p and q be prime to each other, we would 



have xx+yy = (pp+qq)φφ, and discovering the divisors would reduce to that 

of the form pp+qq. 

 

 542. Therefore, let x and y be prime to each other, and it can also 

happen that xx+yy become a prime number, for the testing of which but 

a single case, the simplest of which is 2, may suffice. However, for xx+yy 

to become a prime number, the case in which both the numbers x and y 

are odd is immediately excluded. 

 

 543. One is, therefore, supposed to be even, the other odd, and it 

is evident that all prime numbers xx+yy must be contained in the form 

4n+1 and, thus, no number of the form 4n–1 can be the sum of two 

squares. 

 

 544. But, on the contrary, if x and y be odd numbers, that is, if x = 

2p+1 and y = 2q+1, it will be possible that its half 
𝑥𝑥+𝑦𝑦

2
 = 

2pp+2p+2qq+2q+1 become a prime number. And also,  

2pp+2p+2qq+2q+1 = (p+q+1)2+(p–q)2 

is again the sum of two squares, of which one is even, the other odd, on 

account of the odd sum of the roots, 2p+1. 

 

 545. If a sum of two squares aa+bb be multiplied by another sum 

of two squares cc+dd, the product (aa+bb)(cc+dd) will again be a sum of 

two squares, since it is = (ac±bd)2+(ad∓bc)2, which, because of the 

ambiguity of the signs, can happen in two ways. 

 

 546. Here the reciprocal proposition presents itself: if a sum of two 

squares pp+qq admits of division by a sum of two squares aa+bb, the 

quotient will also be a sum of two squares, the truth of which, however, 

does not follow thereupon, but requires a special demonstration. 

 

 547. In order to demonstrate this, I stipulate that the form pp+qq 

be divisible by aa+bb; then, whatever numbers p and q may be, they can 

always be reduced to numbers less than aa+bb, and even less than 

½(aa+bb), since, if pp+qq be divisible by aa+bb,  

(±α(aa+bb)±p)2+(±β(aa+bb)±q)2 



also turns out to be divisible. 

 

 548. But if 
𝑝𝑝+𝑞𝑞

𝑎𝑎+𝑏𝑏
 be the sum of the two squares cc+dd, or if p = 

ac+bd and q = ad–bc, taking p = ac+bd+α(aa+bb) and q = ad–bc +β(aa+bb), 

then pp+qq certainly admits of division by aa+bb and the quotient will be 

= cc+dd+2α(ac+bd)+2β(ad–bc)+(αα+ββ)(aa+bb), 

which is also a sum of two squares (c+αa–βb)2+(d+αb+βa)2. 

 

 549. The truth of these things should be investigated more deeply; 

I assert, first of all, that, if the divisor aa+bb be a prime number, by which 

some form pp+qq is divisible, the quotient is the sum of two squares; yet, 

this is true in general, even when aa+bb is a composite number, the 

demonstration of which is seen to be derived from this case. 

 

 550. Since a and b are numbers prime to each other, p can be so 

related to them that p = ma–nb, and that in an infinite number of ways; 

now, if it were that q = na+mb, we would certainly have 
𝑝𝑝+𝑞𝑞

𝑎𝑎+𝑏𝑏
 = mm+nn; 

but if it not be that q = na+mb, we may put q = na+mb+s, and we will 

have 

pp+qq = (aa+bb)(mm+nn)+2s(na+mb)+ss. 

 

 551. Since, therefore, 2s(na+mb)+ss is divisible by aa+bb, it is 

necessary that either s, or s+2(na+mb) is divisible. In the first case, 

putting s = t(aa+bb), we will have 

   
𝑝𝑝+𝑞𝑞

𝑎𝑎+𝑏𝑏
 = mm+nn+t(t(aa+bb)+2(na+mb)) 

= mm+2mbt+ttbb+nn+2nat+aatt = (m+bt)2+(n+at)2, 

and, therefore, the sum of two squares. 

 

 552. In the other case, putting s+2(na+mb) = t(aa+bb), we will have 

s = t(aa+bb)–2(na+mb), and therefore 
𝑝𝑝+𝑞𝑞

𝑎𝑎+𝑏𝑏
 = mm+nn+tt(aa+bb)–2t(na+mb) 

= (m–bt)2+(n–at)2, so that in both cases the quotient is a sum of two 

squares. 

 

 553. Therefore, if pp+qq be divisible by the prime number aa+bb, it 

is demonstrated that the quotient is likewise a sum of two squares. Hence, 



if the quotient were not a sum of two squares, the divisor would not be a 

prime number of the form aa+bb, that is, either, if it were prime, it would 

not be of the form aa+bb, or, if it were of the form aa+bb, it would not be 

prime; moreover, the words quotient and divisor may be interchanged. 

 

 554. Indicating, for the sake of brevity, prime numbers of the form 

aa+bb by the letters A, B, C, D, etc., if the sum of two squares pp+qq be 

divisible by the product ABC of such numbers, the quotient will likewise 

be a sum of two squares. For, we have 
𝑝𝑝+𝑞𝑞

𝐴
 = rr+ss, then also  

𝑟𝑟+𝑠𝑠

𝐵
 = tt+uu, and also 

𝑡𝑡+𝑢𝑢

𝐶
 = xx+yy, whence we have 

𝑝𝑝+𝑞𝑞

𝐴𝐵𝐶
 = xx+yy. 

 

 555. If, therefore, the sum of two squares pp+qq were divisible by a 

number not the sum of two squares, the quotient, if it were prime, would 

not be a sum of two squares and, if it were composite, it would not be a 

product of prime numbers of such a kind, that is, each of which is a sum 

of two squares. 

 

 556. Because of this, if the sum of two squares pp+qq have one 

factor that is not a sum of two squares, it is necessary that there be found, 

amongst the remaining prime factors, at least one that is also not a sum 

of two squares. 

 

 557. Now let’s investigate whether the sum of two squares pp+qq, 

prime to each other, can be divided by any number 𝕬 that is not a sum 

of two squares. In order to do this, we may suppose pp+qq to be divisible 

by such a number 𝕬, and then (p–m𝕬)2+(q–n𝕬)2 will also be divisible by 

𝕬 (*). 

 

(*) Written in the margin: The roots of which, if p and q be prime to each other, 
will also be prime to each other. 

 

 558. Therefore, a sum of two squares pp+qq can be produced, the 

roots p and q of which are less than 𝕬, even less than ½𝕬; indeed, if p 

and q were greater than it, since (𝕬–p)2+(𝕬–q)2 must admit of the division, 

the roots of these squares will be less than ½𝕬. 

 



 559. Therefore, there will be a sum of two squares pp+qq less than 

½𝕬𝕬 (since it be that p < ½𝕬 and q < ½𝕬) and divisible by the number 

𝕬; putting the quotient = 𝕭, either it itself will not be a sum of two squares, 

or it will have a factor of that kind, and we will have 𝕭 < ½𝕬.  

 

 560. Now, since pp+qq be divisible by 𝕭, a sum of two squares rr+ss, 

less than ½𝕭𝕭 and divisible by 𝕭, can be produced, and the quotient 𝕮, 

which will be less than ½𝕭, will equally not be a sum of two squares, but 

since rr+ss be divisible by the latter, there will be a tt+uu < ½𝕮𝕮 and 

divisible by 𝕮, and the quotient 𝕯 < ½𝕮 in the same way will not be a 

sum of two squares. 

 

 561. In this way, we finally arrive at a sum of two squares as small 

as you like, which is divisible by a number that is not a sum of two 

squares, from which, since this is absurd, it necessarily follows that a 

sum of two squares, prime to each other, is not divisible by any number 

that is not itself a sum of two squares. 

 

 562. Moreover, given any prime number whatever of the form 4n+1, 

because –1, or 4n, is amongst the remainders of the squares, a sum of 

two squares divisible by it can always be produced, whence it follows that 

all prime numbers of the form 4n+1 are sums of two squares. 

 

 563. Further, since numbers of the form 4n–1 can never be a sum 

of two squares, no sum of two squats prime to each other can be divisible 

by any number of the kind 4n–1. 

 

 564. If, however, a more concise demonstration be wanted, which 

proves that, if the sum of two squares pp+qq be divisible by the sum of 

two squares aa+bb, the quotient is necessarily likewise a sum of two 

squares, we may try to accomplish this by the following argument. 

 

 565. We may suppose that the numbers a and b in the divisor 

aa+bb are prime to each other; for, if they were not prime to each other, 

they will be rendered such by taking out the common factor; therefore, 



aa+bb will be prime to both a and b. Whence, p and q being any numbers 

whatever, they can be represented suchly: 

p = m(aa+bb)±fa   and   q = n(aa+bb)±gb, 

and this can be done in an infinite number of ways. 

 

 566. Therefore, since pp+qq is divisible by aa+bb, then ffaa+ggbb 

will also be divisible by aa+bb, and, because of those infinite resolutions, 

it must happen in all the cases in which ffaa+ggbb is divisible by aa+bb, 

therefore it also happens in the case g = f, because the division is 

successful. (*) 

 

(*) Written in the margin: Here it may be doubtful whether the case g = f 
necessarily follows from the divisibility of the formula pp+qq. This doubt is 
confirmed, for, letting 

a = 7, b = 4, p = 17, q = 6, we will have aa+bb = 65, pp+qq = 325; 
however, it cannot happen that 17 = 65m±7f at the same time 6 = 65n±4f, 
whence the latter demonstration should be rejected. 

172+62

72+42  =12+22, although in no way is 17 = 1.7±2.4,28 or 17 = 2.7±1.4. 

 

 567. This being granted, we will have p = m(aa+bb)±fa and q = 

n(aa+bb)±fb; whence we have 

𝑝𝑝+𝑞𝑞

𝑎𝑎+𝑏𝑏
= {

𝑚𝑚(𝑎𝑎 + 𝑏𝑏) ± 2𝑓𝑚𝑎
𝑛𝑛(𝑎𝑎 + 𝑏𝑏) ± 2𝑓𝑛𝑏

+ 𝑓𝑓, 

which expression is = (f±ma±nb)2+(±na∓mb)2 and, therefore, the sum of 

two squares. 

 

 568. Thus, it follows immediately from this that, if the quotient be 

not a sum of two squares, neither can the divisor be of such a kind, 

neither, therefore, can the product of two numbers, one of which is the 

sum of two squares, the other not, be a sum of two squares. 

 

 569. Together with what was proposed in §558 and the following, 

it is conclusively proved that the sum of two squares, prime to each other, 

have no divisors, except those that are themselves a sum of two squares 

and, also, that all prime numbers of the form 4n+1 are sums of two 

squares. 

 

 
28 Reading “2.4” for “2 4”. 



 570. If any number N whatever be a sum of two squares in two 

ways, that is 

N = aa+bb = cc+dd, 

then it is not prime. For, since it be that aa–cc = dd–bb, we will have d+b 

= 
𝑚(𝑎+𝑐)

𝑛
 and d–b = 

𝑛(𝑎−𝑐)

𝑚
, whence b = 

𝑚(𝑎+𝑐)

2𝑛
 – 

𝑛(𝑎−𝑐)

2𝑚
; hence, 

N = aa+bb = 
(𝑚𝑚+𝑛𝑛)

4𝑚𝑚𝑛𝑛
(nn(a–c)2+mm(a+c)2) = 

(𝑚𝑚+𝑛𝑛)

4𝑚𝑚
((a–c)2+(b+d)2), 

where the factor in the denominator cannot be cancelled. (*) 

 

(*) Written in the margin: (a+c)(a–c) = (b+d)(d–b) = pqrs, a+c = pq, a–c = rs, b+d = 

pr, d–b = qs; a = 
𝑝𝑞+𝑟𝑠

2
, b = 

𝑝𝑟−𝑞𝑠

2
, aa+bb = 

1

4
(pp+ss)(qq+rr). 

 

 

 

 

 

Chapter XVI 

On Divisors of Numbers of the Form xx+2yy 

 

 571. Taking x an y prime to each other, either both are odd, or only 

one or the other even, therefore, either x, or y, will be even; it will be 

helpful to investigate the three cases that result from this and to carefully 

consider by what conditions even and odd numbers may be produced. 

 

 572. If both numbers x and y be odd, their squares will be numbers 

of the form 8n+1 and xx+2yy is made into a number of the form 8n+3; 

but if x is odd and y even, because 

xx = 8m+1   and   2yy = 2.4n, 

xx+2yy is made into a number of the form 8n+1. 

 

 573. If x be even and y odd, putting x = 2z, it makes xx+2yy = 

2(2zz+yy); now, since y is odd, according as z may be either even or odd, 

we will have either 

xx+2yy = 2(8n+1)   or   xx+2yy = 2(8n+3). 

 



 574. Therefore, all the numbers contained in the form xx+2yy, 

provided that x and y be prime to each other, or at least not both even, if 

they be odd, will belong either to the form 8n+1, or to 8n+3; but if these 

numbers be even, they should be assigned either to the form 2(8n+1) or 

2(8n+3), and in the latter case their halves, that is 2zz+yy, are also 

numbers of the form xx+2yy. 

 

 575. Odd numbers, therefore, that are of the form 8n+5, or of the 

form 8n+7, certainly are not numbers of the form xx+2yy, neither are the 

doubles of their forms contained in that one, whence there are an infinity 

of numbers not contained in the form xx+2yy. 

 

 576. Moreover, the product of two numbers of this form are 

contained in the same form; for, we have (aa+2bb)(cc+2dd) = 

(ac±2bd)2+2(ad∓bc)2, it is at once clear that such products are contained 

in this form in two ways. 

 

 577. Now, it should be demonstrated that, if the number pp+2qq 

can be divided by aa+2bb, the quotient will also be of this form. Observe 

that, because a and b are prime to aa+2bb,  

p = m(aa+2bb)±fa   and   q = n(aa+2bb)±gb 

can be realized in an infinite number of ways, and hence ffaa+2ggbb will 

be divisible by aa+2bb. 

 

 578. In this way, if it be granted that all formulas ffaa+2ggbb are 

to be held divisible by aa+2bb, the case gg = ff, that is g = ±f, will also be 

contained there, which gives raise to 

𝑝𝑝+2𝑞𝑞

𝑎𝑎+2𝑏𝑏
= {

𝑚𝑚(𝑎𝑎 + 2𝑏𝑏) ± 2𝑚𝑓𝑎
2𝑛𝑛(𝑎𝑎 + 2𝑏𝑏) ± 4𝑛𝑔𝑏

+ 𝑓𝑓 = (𝑓 ± 𝑚𝑎 ± 2𝑛𝑏)2 + 2(𝑚𝑏 ∓ 𝑛𝑎)2. 

 

 579. But, that which I requested that should granted can be proved. 

Let 1, α, β, γ, δ, etc. be the remainders, which arise from the division of 

squares by the number aa+2bb, and also all the squares, –2bb and –2, 

or all the negative double squares, that is –2, –2α, –2β, –2γ, etc., will be 

contained in these remainders. 

 



 580. Now, any square qq whatever, divided by aa+2bb, leaves a 

remainder that can be exhibited by ggbb, since it is possible to put q = 

n(aa+2bb)±gb, and the remainder, arising from the division of 2qq, by 

2ggbb; therefore, the square pp, divided by aa+2bb must leave –2ggbb; in 

the place of which can be put aagg, and thus the squares pp and aagg 

leave equal remainders, and thus we can make  

p = m(aa+2bb)±ag. 

  

 581. But this demonstration should be rejected unless aa+2bb be 

a prime number, for, if it be prime, because ffaa+2ggbb and ggaa+2ggbb 

are divisible by aa+2bb, it is necessary that ff–gg and, therefore, either f–

g, or f+g, be divisible; but in whichever case you please, because aa+2bb 

is already contained in one or the other of the parts, we have either g = 

+f, or g = –f; the conclusion does not follow if aa+2bb be a composite 

number, since then f–g can be divisible by one of the factors and f+g by 

the other. 

 

 582. If the number pp+2qq can be divided by the number 𝕬, which 

is not of the form xx+2yy, the quotient will not be a prime number of the 

form xx+2yy, because of which, if the quotient be prime, it will not be of 

the form xx+2yy; and, if it be composite, not all its prime factors, at any 

rate, will be of this form. 

 

 583. For, let A, B, C, D, etc. indicate prime numbers of the form 

xx+2yy, and, if pp+2qq were divisible by ABCD etc., the quotient would 

certainly be of the form xx+2yy; therefore, if the quotient, that is one 

multiplier, be not of the form xx+2yy, it cannot happen that the other 

factor be a product of prime numbers of this kind. 

 

 584. Because if this, if pp+2qq can be divided by a number 𝕬 

excluded from the form xx+2yy, the quotient, if it be prime, will not be of 

this form, or, if it be composite, will certainly have a factor not of this 

form. (*) 

 



(*) Written in the margin: Therefore, pp+2qq cannot be divided by any prime 
number of the forms 8n+5 and 8n+7; whence, if squares be divided by such 
numbers, –2 will be amongst the non-remainders.  

If 
𝑥𝑥+𝑛𝑦𝑦

𝑎𝑎+𝑛𝑏𝑏
 = an integer, we will have 

𝑏𝑏𝑥𝑥−𝑎𝑎𝑦𝑦

𝑎𝑎+𝑛𝑏𝑏
 = int.29 and 

𝑎𝑎𝑥𝑥−𝑛𝑛𝑏𝑏𝑦𝑦

𝑎𝑎+𝑛𝑏𝑏
 = int. 

 

 585. Let 𝕬, 𝕭, 𝕮, 𝕯, etc. indicate prime numbers excluded from the 

form xx+2yy, and we saw that pp+2qq cannot be A𝕬, nor AB𝕬, nor ABC𝕬, 

because of which it is certain that either no numbers, or at least two 𝕬, 

𝕭 are contained amongst the prime factors of the numbers pp+2qq. 

 

 586. From this, however, it cannot yet be concluded that, if one 

factor, even if it be composite, of pp+2qq be of the form xx+2yy, the other 

will also be of this form. It remains to be demonstrated that a number 

pp+2qq cannot be either of the form 𝕬𝕭, or A𝕬𝕭, or AB𝕬𝕭, because if it were, 

𝕬𝕭 would by all means be a number of this form. 

 

 587. In order to see whether pp+2qq can be divided by a number 𝕬 

not of the form xx+2yy, with respect to which, if it could happen, we 

would have p < ½𝕬 and q< ½𝕬, whence pp+2qq < ¾𝕬𝕬, and the quotient 

< ¾𝕬, which would either itself not be a number xx+2yy, or would have 

a factor 𝕭 such that, since it would also be a factor of pp+2qq, it could be 

imputed to be the smallest number 𝕭 of this kind which is a divisor of 

some form xx+2yy; but because this cannot happen, the numbers pp+2qq 

have no prime divisors, which are not themselves of the form xx+2yy. 

 

 

 

 

 

 

 

 

 

 

 
29 Integer. 


