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§. 1. A principle of this kind, that I taught about these curves in book II of
myMechanicae1, rests upon, what can’t be allowed in a resistant medium. There-
after, I tried to obtain the same argument from the first principles of Maxima and
Minima in my isoperimetric treatment; to such a great degree are they, which I
conducted there on the brachistochrone in a resistant medium, truly involved
in the excessively generalised analytic formulae, such that thence barely anyone
is able to pick out a true nature of those curves. On that account I decided to
expand this same argument in a bigger study here and to derive it clearly and
perspicuously from the first principles.

§. 2. From this principle I have consequently thereafter derived all brachis-
tochrones in resistant media too. However, after a more fruitful isoperimetric
theory was researched, I soon discovered that, which that principle in a resis-
tant medium could not allow, nor did any of those things, which I investigated,
studying all my mechanics work, yet concentrate on this defect, that I myself
however happily corrected in my treatment of the isoperimetric problems, and
I demonstrated determining the true brachistochrones for whichever resistant
medium so much.

§. 3. That error, which I frankly admit, is meanwhile still not so enormous,
that it can not only in a certain manner not be excused, but also united with
truth, if only the state of the question is only altered briefly. Because if among
all curves, over which a descending body acquires the same speed (of which the
amount in any case still is infinite), and that the body is allowed to be led over
from a higher end to a lower one, but only between them, intelligibly the one
is sought, over which the body arrives from the highest point all the way to
the lowest in the shortest time, then all brachistochrones, assigned by me and
derived from the told principle, will be agreeing with the truth.

1Opera Omnia, II vol 2 p.170 §376, p.332 §673. Consult in addition the dissertation E042 of
this volume, p.41
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§. 4. Where it becomes however clearer, under which condition this principle
has its place, and when it fails, I decide to develop a more accurate complete
theory of brachistochrones. Since I observed, that the forces of this kind, to
which this principle by no means can be adapted, can yet be presented, if also
only the motion in vacuum is considered; on this account I will draw your at-
tention away from all resistance here, since this argument is already sufficiently
and courteously studied in my little isoperimetric work. On this account, I will
not observe other forces, beyond such, that I called absolute, of which the action
depends on a single place, on which the body moves, nor does its speed bring
anything to the disturbing forces.

§. 5. This treatment is besides however divided in two parts, so that every
motion of the body is either solved in the same plane, or it moves out of the same
plane. Because for this distinction the method of finding brachistochrones should
certainly be extended to different situations, although in the former case two
coordinates, to introduce the calculus, suffice, in the latter inevitable case three
coordinates are required, which new case is so much straight forward; neither
do the brachistochrones, which don’t continue in the same plane, come anyone
to mind to investigate, as much as I indeed remember; on this account I will
propose the treatment following this differential sequence bipartite.

I. On the Brachistochrones
Existing in the same plane.
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§. 6. Therefore, it is also necessary that all these disturbing forces, existing
in the same plane, are, what I will however most generally consider. Let us
therefore pose the motion of a body in the same plane, enclosed in the figure,
and let Ay be the curve, over which the body moves, after it departed from the
point A, which curve we refer to the axis Ax and we call the both coordinates
Ax = x and xy = y, let us call yy′ in particular ds, such that thus, having posed
dy = pdx, ds = dx

√
1 + pp holds; whence if yO were the radius of curvature

of the curve, it will consistently hold that yO = dx(1+pp)
3
2

dp . The body is already
disturbed by whichever forces in y, and it’s always allowed to decompose them
into both yX and yY , although they have the same directions as the coordinates.
Let us therefore call these forces yX = X and yY = Y , and because the action
of those forces is assumed to depend on the unique locus of the body, y, it’s as
much allowed to consider that these letters X and Y are whichever functions of
both coordinates x and y. I then consider those forces, which appear, if the true
motoric forces are divided by the mass of the body and therefore are expressed
by absolute numbers, already as much to be accelerative, having denoted the
accelerative force of natural gravity, of which it’s possible to compare all other
forces, unit.
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§. 7. When, while the body descends over the curve Ay, it then consequently
sustains the action of the two forces yX = X and yY = Y in that place y,
these forces unbind according to the direction of motion, or into the tangent
yT and the direction normal to it yN , and the tangential force is found to be
yT = Xdx+Y dy

ds , while the other, the normal force is surely yN = Xdy−Y dx
ds , by

the former of which that motion of the body, proceding through the segment
yy′, will be accelerated, but the other normal force gives rise to the pressure,
that the body exerts on the curve, if it’s applied to the mass of the body, which,
if the mass of the body is denoted by M , will be M(Xdy−Y dx)

ds , to which thus,
according to the principle, which I established above, the centrifugal force, born
from the curvature, of the body should be equal for brachistochrones.

§. 8. Let us now denote the speed, with which the body traverses the segment
yy′, with the letter v, which expresses the space, which will be traversed by this
speed in a common second; and where we refer everything to the to be measured
determinates, let g denote the altitude through which the mass firstly falls for a
common second, and from the principles of motion it holds that vdv = 2gTds,
if accordingly T denotes the tangential force, which was Xdx+Y dy

ds , from which
this equation follows: vdv = 2g (Xdx + Y dy); whence the determination of
the speed depends on the integration of this formula, because it holds that vv =
4g

∫
(Xdx + Y dy).

§. 9. Because if the letters X and Y will already be such functions of x, y, that
this formula permits integration, which happens, as is the case, if dX

dy = dY
dx will

hold; then the speed of the body, v, will be a function directly determined by
both variables x and y, and therefore it will depend on the sole location of the
body, y. But if however this condition doesn’t take place, then the speed will fur-
thermore not depend on the sole location y, but besides involve the whole track,
of the already traversed curve Ay, according to the values, which the formula
receives through the whole traversed curve Ay by Xdx and Y dy; hence these
two cases, to very carefully be mutually distinguished by each other, occur, such
that naturally the integration formula Xdx + Y dy is wide ranging. Soon the
principle, told above, will however be accessible to take place in the sole former
case, but it can surely by no means be evoked to be used in the other case.

§. 10. Because the tiny amount of time, in which the segment of the curve
yy′ = ds = dx

√
1 + pp is traversed, truly is so, such that the time through

the curve Ay turns out to be minimal, or such that that curve is a true brachis-
tochrone, it is necessary that the integral formula

∫
ds
v =

∫ dx
√

1+pp
v obtains its
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minimal value between all curves, that are able to lead from the point A to the
point y. In my isoperimetric treatment I however showed, if whichever integral
formula

∫
V dx should be either the maximum or the minimum, where V does

not only depend on both those coordinates x and y in whichever way, but also on
the relation between the differentials of those, and of which ordinate dy = pdx
holds, like already posed , as we already did, further dp = qdx, dq = rdx, dr =
sdx, etc. and it will hold that

dV = Mdx + Ndy + Pdp + Qdq + Rdr + etc.

when for the case of the maximum or minimum this equation always takes place:

N − dP

dx
+

ddQ

dx2
− d3R

dx3
+ etc. = 0

which equation then only thus takes place, when V will be a function of the
quantities x, y, p, q, r, etc., that is, when its value only depends on the sole point
y and the segment of the curve in that locus. When however the function V
furthermore involves whichever integral formulae, then, too, the ends, hence
depending on that equation, should be added, in which case all the calculus de-
mands most large digressions, which I will however not undertake here, but I
will only stick to the equation, provided here.

§. 11. Hence it’s then consequently apparent, that that equation of maximum
or minimum can not take place, if the speed v isn’t a function, determined by
both x and y, or if the formula

∫
(Xdx + Y dy) actually admits integration,

which case I will therefore consider more accurately here. Because then con-
sequently for our brachistochrones

∫
V dx should become

∫ dx
√

1+pp
v , and thus

V =
√

1+pp
v , dV will be −dv

vv

√
1 + pp + pdp

v
√

1+pp
, where instead of v it is thus

necessary to substitute its value by x and y. Above, however, we had this
equation: vdv = 2g (Xdx + Y dy), whence dv is 2g

v (Xdx + Y dy), and just
like that v is partly expressed by x and partly by y; on that account, if this
value is substituted and a comparison is done with the general form, told above:
dV = Mdx + Ndy + Pdp + Qdq + etc. becomes

M = −2gX
√

1 + pp

v3
;N = −2gY

√
1 + pp

v3
;P = − p

v
√

1 + pp
;Q = 0;R = 0; etc.

and just like that we will now have this simple equation for the brachistochrone:
N−dP

dx = 0, orNdx = dP , such that the value of that P should therefore already
again be differentiated. dP will moreover be −dv

vv ·
p√

1+pp
+ 1

vd ·
p√

1+pp
, and for
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that reason dP = −2g(Xdx+Y dy)
v3

· p√
1+pp

+ 1
vd ·

p√
1+pp

, to which expression the

quantity Ndx = −2gY dx
√

1+pp
v3

should be equal, from which equation further is
acquired, that will hold: 1

vd ·
p√

1+pp
= 2gXdx

v3
· p√

1+pp
− 2gY dx

v3
√

1+pp
or 1

vd ·
p√

1+pp
=

2g
v3
√

1+pp
(Xdy − Y dx).

§. 12. Moveover we invented above, that the normal force, to be born from the
disturbing forces and pressing along yN , is Xdy−Y dx

ds , which equation of ours, if
it’s called Θ, such that Θ = Xdy−Y dx

dx
√

1+pp
, will be discovered 1

vd ·
p√

1+pp
= 2gΘdx

v3
,

and thus Θ will be vv
2gdxd ·

p√
1+pp

. Truly, it holds d · p√
1+pp

= dp

(1+pp)
3
2
, and

thus Θ will become vv
2gdx ·

dp

(1+pp)
3
2
. We saw however further that the radius of

curvature in the point y is dx(1+pp)
3
2

dp , which, if it’s called r, will make Θ = vv
2gr .

It is moreover further true that this formula vv
2gr expresses the centrifugal force,

with which the curve in the point y is pressed by a body, descending along that
curvature, which force we thus now observe to be equal to the normal force
Θ, whenever the formula

∫
(Xdx + Y dy) permits integration, contrary to that

the equation for a brachistochrone must otherwise surely very much have itself,
and of which the determination requires most intricate calculi. Conveniently
however, it comes with experience, whenever a body is disturbed by real forces,
of which kind gravity is, and whichever centripetal forces and however many,
disturbing according to whichever functions of distance, such that the formula∫

(Xdx + Y dy) permits integration and for that reason the principle established
above actually takes place. Only imaginary forces are certainly excluded, which
indeed can find whichever place in the nature of matters.

II. On the Brachistochrones
Not existing in the same plane.
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§. 13. This case occurs, when forces, by which a body is simultaneously dis-
turbed, won’t be situated in the same plane. Let henceforth the curve Az be
the sought brachistochrone, over which a body will begin to be moved from the
point A. Let us therefore determine whichever its point z by the three coordi-
nates, which are Ax = x;xy = y; yz = z; let a segment of the curve verily be
called zz′ = ds; such that so ds2 is dx2 + dy2 + dz2. Moreover, the disturbing
forces, whenever they will be compared, are decomposed in the same three fixed
directions and are called zX = X; zY = Y ; zZ = Z; which quantities thus can
be whichever functions of the three variables x, y, z.

§. 14. To already define the motion of the curve, let’s define the whole matter
from the first principles of motion, and, after posing a segment of time = dt, the
determination of the motion of the body is contained in these three formulae:

1 °)
ddx

dt2
= 2gX; 2 °)

ddy

dt2
= 2gY ; 3 °)

ddz

dt2
= 2gZ;

where g again describes the altitude of the fall of a mass in the first common
second since we want to express the time t in common seconds. Now, the first
of these equations multiplied by dx, the second by dy, the third by dz and inte-
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grated, they yield:

dx2 + dy2 + dz2

dt2
= 4g

∫
(Xdx + Y dy + Zdz)

which equation, on account of dx2 + dy2 + dz2 = ds2, is reduced to this:

ds2

dt2
= 4g

∫
(Xdx + Y dy + Zdz)

Hence, because ds
dt expresses the speed, with which the body traverses the seg-

ment zz′, if it is posed = v, we will have this determination for it: vv =
4g

∫
(Xdx + Y dy + Zdz), whence it follows that this will hold:

vdv = 2g (Xdx + Y dy + Zdz)

§. 15. Moreover, from these differentio-differential formulae it will too follow
that this integrand derives: yddx−xddy

dt2
= 2g (yX − xY ) of which the integral

will be ydx−xdy
dt = 2g

∫
(yX − xY ) dt. Because we just discovered ds2

dt2
= vv,

we write ds2

vv instead of dt2, and it holds that ydx−xdy
ds = 2g

v

∫
(Xy − Y x) ds

v .
In the same way we will learn that zdx−xdz

ds = 2g
v

∫
(Xz − Zx) ds

v , and lastly
zdy−ydz

ds = 2g
v

∫
(Y z − Zy) ds

v . And it will help to have noted these formulae in
the following one.

§. 16. Already having invented the speed of a body, such relation between the
three coordinates x, y and z must be investigated, that the time, in which the arc
of the curveAz is traversed, becomes minimal for all. In this matter thus wemust
return to the isoperimetric method. But this method is verily accommodated to
only two variables, like how I truly managed it; meanwhile this question, too is
yet able to be reduced to the case of two variables, since we call those to help,
which are taught from the projections of the curves, that aren’t situated in the
same plane.
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§. 17. Let us then consequently consider the projection of our curve Az, made
in the plane of the table, which is Ay, of which thus the nature is expressed by
an equation between both variables x and y, for which we state dy = pdx and it
will hold that an element of this projection = dx

√
1 + pp. Let in a similar way

Av be the projection of our curve, constructed in the plane, normal to the table,
above the axis Ax, of which the nature is expressed by an equation between both
variables Ax = x and xv = yz = z, for which we pose dz = qdx, such that an
element of this projection is dx

√
1 + qq. Moreover, it is evident that an element

of the true curve Az will be = ds = dx
√

1 + pp + qq. Let us call the prior
projection Ay ‘lying’, and the other Av ‘upright’.

§. 18. It is however manifest that, if both these projections will be found, from
joining them the same curve Az can most easily be determined. Because the
abscissa Ax = x is truly common to both projections, if we erect yz, itself being
equal to xv, perpendicular from the point y, the point z will be in this same
sought curve. Yet, one of those projections doesn’t accomplish a matter by any
means, because as the lying projection is able to meet together with infinitely
many curves, so does the upright one.
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§. 19. Having noted this well, the whole question of the minimum sought
will be thus established bipartite. Let us first of course observe the upright pro-
jection as given, and between all curves, to which the same upright projection
responds, we seek the one, in which the integral formula

∫
ds
v obtains the mini-

mum value, that which by only two coordinates will be possible to be provided.
Because truly the upright projection Axv is observed as given, it will be possible
to consider it, applied to its z, as a function of the abscissa x, and in the same
way the quantity q = dx

dz too will be a function of that x, and if we apply the
isoperimetric precept to this case, we will discover that one, for which the for-
mula

∫
ds
v obtains a minimum value, between all curves, having the same upright

projection.

§. 20. In the same way, the lying projection Axy will be considered as noted,
and between all curves that have this projection in common, the one, for which
the same formula

∫
ds
v obtains a minimum value, is sought by the same method

of maxima and minima, and now in this investigation, both y and p = dy
dx can be

had for functions of x, such as thus only both remaining x and z should already
be counted as variables again, and the calculus by the same precept and before
will be possible to be procured, if we just write z instead of y and q instead of p.

§. 21. But if in this way already we invented a curve of minimum both between
all curves having the same upright projection, and between all curves having the
same lying one, since for the former a certain equation came forth between x
and y, for the other surely an equation between x and z, these two determina-
tions, taken together, will provide a true brachistochrone, between all intelligibly
possible curves.

§. 22. According to that precept it will already be easy to pick out brachis-
tochrones, or those curves, in which the formula

∫ dx
√

1+pp+qq
v assumes a min-

imum value. Moreover, like before, it is necessary, that v is a function deter-
mined by the variables x, y, z, that which is unable to occur, if the formula∫

(Xdx + Y dy + Zdz) = vv
4g does not allow integration; on that account we

here treat only those cases. Then hence consequently vdv will be 2g (Xdx + Y dy + Zdz),
and for that reason dv = 2g

v (Xdx + Y dy + Zdz). Let us thus first observe the
upright projection as given, such that therefore both z and q are functions of
only x; whence if we pose

d ·
√

1 + pp + qq

v
= Mdx + Ndy + Pdp
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The equation for the sought curve will beNdx−dP = 0, where it conveniently
occurs, that the quantity M does not enter in that equation.

§. 23. Since we therefore do not engage in the quantity M , only two variables
come in the computation in this differentiation, of course y and p, since z and
q are had for functions of x, and the differentials of these are contained in the
portion Mdx, which we’re allowed to remove. By these means it is necessary
that the values of the lettersN and P are sought by differentiation, and since the
quantity p does not enter in the speed v, for the portion Pdp, whence at once
P = p

v
√

1+pp+qq
appears.

§. 24. Then consequently the variable v rests, which is possible to be consid-
ered as a function of only that y, and just like that for our present use dv will
be 2gY dy

v , and for that reason d · 1
v = −2gY dy

v3
, and thus N will be −2gY

v3
·√

1 + pp + qq. Hence the sought equation is thus elicited:

+
2gY dx

v3

√
1 + pp + qq + d · p

v
√

1 + pp + qq
= 0

§. 25. In a similar way, if we assume the lying projection for known, such that
y and p are already functions of only that x, the equation discovered before is
transfered to this case, if only the letters y and z and likewise p and q are mutually
permuted. In this way this equation comes forth:

2gZdx

v3

√
1 + pp + qq + d · q

v
√

1 + pp + qq
= 0

which equation, connected with the previous, will determine the same sought
brachistochrone, seeing that its determination requires two equations, for that
reason, because both remaining y and z should be defined by the abscissa x any-
where.

§. 26. Behold, thus the resolution to our problem is contained in these two
equations:

2gY dx

v3
·
√

1 + pp + qq + d · p

v
√

1 + pp + qq
= 0

2gZdx

v3
·
√

1 + pp + qq + d · q

v
√

1 + pp + qq
= 0
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where all quantities for the variables must be already intelligibly had. Moreover,
it fits that the posterior formulae here evolved somewhat more with help of this
reduction:

d · p

v
√

1 + pp + qq
= −dv

vv
· p√

1 + pp + qq
+

1

v
d · p√

1 + pp + qq

Nowmoreover on account of dv = 2g(Xdx+Y dy+Zdz)
v

dv
vv will be +2g(Xdx+Y dy+Zdz)

v3
,

and hence our two equations assume the following forms.

2gY dx

v3

√
1 + pp + qq−2g (Xdx + Y dy + Zdz)

v3
· p√

1 + pp + qq
+

1

v
d· p√

1 + pp + qq
= 0

2gZdx

v3

√
1 + pp + qq−2g (Xdx + Y dy + Zdz)

v3
· q√

1 + pp + qq
+

1

v
d· q√

1 + pp + qq
= 0

These equations are multiplied by v3

2g and the parts, reduced prior to the denom-
inator

√
1 + pp + qq, are restored in the following way:

(Y (1 + qq)− pX) dx− pZdz√
1 + pp + qq

+
vv

2g
d · p√

1 + pp + qq
= 0

(Z (1 + pp)− qX) dx− qY dy√
1 + pp + qq

+
vv

2g
d · q√

1 + pp + qq
= 0

which equations onwards, on account of dy = pdx and dz = qdx, will in this
way be transformed:

Y (1 + qq)− pX − pqZ√
1 + pp + qq

+
vv

2gdx
d · p√

1 + pp + qq
= 0

Z (1 + pp)− qX − pqY√
1 + pp + qq

+
vv

2gdx
d · q√

1 + pp + qq
= 0

Because, if we delete the terms, containing z and q, here, the equation, invented
for the preceding case, appears from the prior evident equation, from it surely
produces:

Xp− Y√
1 + pp

=
vv

2g
d · p√

1 + pp

which equation excellently convenes with the above discovered; the posterior
equation verily intelligibly disappears in this case.

~~~~~~

12


