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Originally published in Memoires de l'academie des sciences de St.-Petersbourg 5, 1815, 

pp. 24-44 .  Also see Opera Omnia: Series 1, Volume 16, pp. 178 – 199.  

Kristin Masters, Christopher Tippie and Thomas J Osler 

 

Translator’s Introduction 

 

 Kristin Masters teaches Latin and Christopher Tippie teaches mathematics at 

Millville Senior High School in New Jersey. Christopher is also a graduate student of 

mathematics at Rowan University, where Tom Osler is professor of mathematics. In this 

collaboration, we have attempted to provide not only an accurate translation, but to also 

comprehend and communicate Euler’s discoveries. To this end we kept careful notes as 

we pondered Euler’s ideas and filled in the missing details. These ideas are contained in 

our companion paper “Reflections and Notes on E745”. In addition we have  written a 

shorter “Synopsis of E745” to assist the reader. All of these can be found on the Euler 

Archive. 

 We thank Dominic Klyve and his Euler Archive for providing a home on the 

internet for this and other translations. 

 

(1) After William Brouncker found his memorable continual fraction for the quadrature 

of a circle, and after he shared it with John Wallace without an explanation, Wallis 

devoted more time to it so that he could uncover the source of Brouncker’s noted 

formula.  Wallis reckoned that there was a use for these extraordinary formulas, which he 

brought to light in his work Arithmetic of Infinities.  Then he produced, through a little 

too abstruse calculations, not only Brouncker’s continual fraction, but also even more 
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countless other ones like it, both of which (certainly including Brouncker’s expression) 

are deemed worthy to be rescued from oblivion. 

 

(2) However, the things which pertain to this from Wallis’ Arithmetic of Infinities, which 

were brought to light long before the Analysis of Infinities was discovered, are now able 

to be represented in such a way that when the limits of integral formulas are extended 

from x = 0 to x = 1, the following quadratures are produced: 

11
1 xx

xx
 

32

22

3

2

1

3

xx

xx
 

5432

4422

53

42

1

5

xx

xx
 

765432

664422

753

642

1

7

xx

xx
 

98765432

88664422

9753

8642

1

9

xx

xx
, etc… 

(3) I arranged these formulas in the third column in such a way that the denominators 

clearly allow interpolation.  And so it only remains that the numerators are transformed in 

such a way that they allow interpolation equally.  If such a series progresses according to 

the law of uniformity, (of course if it were investigated as A, B, C, D, E, F, etc.) it would 

become: 

AB = 1.1; BC = 2.2; CD=3.3; DE=4.4; etc 

This very thing Wallis revealed through the highest wisdom of his genius.  I will clear up 

this investigation much more generally, through a much easier calculation. 



 3 

 

(4) However, when this series of letters A, B, C, D, etc. is found, the whole business will 

have been completely settled.  For when as the following table reveals: 

,
1

1
1

1

A

Axx

xx
 

,
321

1

321

3 ABC

A

BC

xx

xx
 

,
54321

1

54321

5 ABCDE

A

BCDE

xx

xx
 

,
7654321

1

7654321

7 ABCDEFG

A

BCDEFG

xx

xx
 etc… 

Interpolation provides for us the following quadratures: 

,1
1

1 Axx

x
 

,
21

1

1

AB

Axx

xxx
 

,
4321

1

1

4 ABCD

Axx

xx
 

,
654321

1

1

6 ABCDEF

Axx

xx
etc… 

(5) Since now 
21 xx

x
 ,where  denotes the circumference of a circle whose 

diameter equals 1, whose value I write for the sake of brevity 
2

q , all values of the 

letters A, B, C, D, etc…for this quantity q will be expressed in the following manner: 

                                         Difference 
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636620,0
1

q
A  

                                        0,934176 

 570796,1qB   

        0,975683        

 546479,2
4

q
C      

        0,987813      

534292,3
4

9q
D   

                                        0,992782 

 527074,4
9

164

q
E     

       0,995257 

 522331,5
164

259
qF   

 

(6) Here I attached a third column, which exhibits the numeric values of these letters to 

show more clearly the extent that these numbers increase according to the law of 

uniformity.  This does not happen if I take a false value in the place of q. 

Now that these things have been explained, I will find, in a much easier manner, 

continued fractions for each individual letter.  What is more, I will arrange this 

investigation in much more generality while I resolve the following problem: 

Problem: 

To find a series of letters A, B, C, D, etc…progressing by the law of uniformity in such a 

way that AB =ff; BC=
2

af ; CD=
2

2af ; etc.. 

(7) Solution: 

It is immediately clear from this point that A was a function of that very f, as it ought to 

be that B is a function of that very f+a, then moreover C is a function of  f+2a; D is a 

function of f+3a; and so on. 
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Once this rule has been observed, if we assume 
A

s

afA 2

1

2

1
, it ought to also be 

assumed that 
B

s

afB 2

1

2

1
; where the letters A and B ought to hold the same ratio 

between themselves.  In this way B should arise from A if  f+a  is written in the place of 

f. 

Therefore, when these fractions are removed, since 
A

s
afA 22  and 

B

s
afB 22 , the product of these formulas is equal to 4ff.  Now this equation arises 

from the fractions: 

0)2()2( ssafsBafsABAaa . 

Therefore let us assume that s=aa, and the equation, divided by aa, should be 

aaafBafABA )2()2( , 

which  is easily factored in the following way: 

ffafBafA 4)2)(2( . 

 

(8) Now, if both letters A and B are equal, the left part should be fBA 4 , 

following the above pattern, we should find that 
A

s
afA 24  and 

B

s
afB 24 .  When you substitute these, the final equation takes the form: 

ff
B

s
af

A

s
af 4)32)(32( . 

When expanded and the fractions removed, the following equation arises: 
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0)32()32(9 ssafsBafsABAaa . 

Therefore it is assumed here that aas 9 , and it follows that : 

aaafBafABA 9)32()32( , 

 

which again is able to be represented by factors as: 

 

ffafBafA 4)32)(32( . 

(9) Now once again the *middle value* between A and B  is 4f, furthermore let us 

assume that 
A

s
afA 24  and 

B

s
afB 24 , and once this substitution is 

made, we will get:  ff
B

s
af

A

s
af 4)52)(52( . 

When expanded it becomes: 

0)52()52(25 ssafsBafsABAaa . 

Assume that aas 25 , and this equation will take on the form: 

aaafBafABA 25)52()52( , 

which is factored as:   

ffafBafA 4)52)(52( . 

(10)  Again, as before, let it be assumed that 
IVA

s
afA 24  and 

IVB

s
afB 24 .  Once this substitution is made, we get 

ff
B

s
af

A

s
af

IVIV
472)(72( . 

When this equation is manipulated,  as before, we will get 

aaafBafABA IVIVIVIV 49)72()72( , 
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where of course we put aas 49 .  Then in factored form it will be 

ffafBafA IVIV 4)72)(72( . 

From here it is clear how these operations are to be continued further. 

 

(11)  When these things are reasoned, that aasaasaasaas 49,25,9, , etc…, 

we obtain for 2a the following continued fraction: 

...24

49
24

25
24

9
24

22

etcaf

aa
af

aa
af

aa
af

aa
afA  

If we write in the place of f  the series f+a, f+2a, f+3a, etc…, we will create similar 

continued fractions for 2B, 2C, 2D, etc… which are: 

...24

49
24

25
24

9
24

22

etcaf

aa
af

aa
af

aa
af

aa
afB  

 

...64

49
64

25
64

9
64

322

etcaf

aa
af

aa
af

aa
af

aa
afC  

 

...104

49
104

25
104

9
104

522

etcaf

aa
af

aa
af

aa
af

aa
afD  
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(12) If now we put f=1 and a=1, we will produce the very case handled by Wallis.  From 

this Wallis found his continued fractions, when their values are expressed through the 

quadrature of a circle, they will be the following: 

 

WALLIS’ CONTINUAL FRACTIONS 

42

...1

49
2

25
2

9
2

1
12

q

etc

A ,        

q

etc

B 2

...6

49
6

25
6

9
6

1
32 , 

168

...10

49
10

25
10

9
10

1
52

q

etc

C  , 

 

4

9

2

9

...14

49
14

25
14

9
14

1
72

q

etc

D , 
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9

256

9

128

...18

49
18

25
18

9
18

1
92

q

etc

E . 

 

The first of these is the very same continued fraction discovered by Brouncker. 

 

(13) However, this is by no means similar to the roundabout way Brouncker came to his 

formula.  Instead I believe that he derived it from the consideration of his famous series:  

4
...

9

1

7

1

5

1

3

1
1 etc , 

This series is commonly accustomed to be attributed to Leibniz; however it was 

discovered much earlier by Jacob Gregory.  From Gregory’s work Brouncker was able to 

derive it. 

Of course it was possible to come about through sufficiently easy and accessible 

operations in the following way: 

When you insert…                  It becomes… 

1
4

                               
1

1

1
1

1
1

1

14
 

3

1
                              

1
3

9
3

31

9
3

31

31
 

5

1
                              

1
5

25
5

51

25
5

51

51
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7

1
                              

1
7

49
7

71

49
7

71

71
 

 

But if these recently found values are substituted in the place of ...,
1

,
1

,
1

etc  

Brouncker’s continued fraction is obtained 

...2

49
2

25
2

9
2

1
1

4

etc

 

 

(14)  Now, this brings me to my general solution of the problem.  One can even express 

the values of individual continued fractions through certain quadratures, which I will 

show in the following problem: 

Problem. 

To investigate the values of the individual letters, expressed first (1) through continued 

products, then (2) expressed through integral formulas, for the sequence A, B, C, D, 

etc…that continues according to the law of uniformity in such a way that 

...;)2(;)(; 22 etcafCDafBCffAB  

 

(15)   Solution. 

Therefore let ...;
)2(

;
)(

;
22

etc
D

af
C

C

af
B

B

ff
A  
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When these values are substituted continuously, one finds that 

...()5()3()(

...()6()4()2(
222

222

etcafafaf

etcafafafff
A , infinitely. 

Because a factor remains either in the denominator or in the numerator whenever (the 

series) is broken off, no limiting value arises this way.  This inconvenience, however, will 

be removed if I arrange the simple factors in the following 

way: ...
)5)(5(

)6)(4(

)3)(3(

)4)(2(

))((

)(
etc

afaf

afaf

afaf

afaf

afaf

aaff
fA  

In this way factors will continuously approach one, and infinitely they will equal one; and 

thus this expression will certainly have a limiting value. 

 

(16)  However, when I will show how one ought to reduce the value to integral 

expressions, I will call upon this *lemma* for help: 

 

When integrals are evaluated from x=0 to x=1, we will get: 

.

1

...
4

4

3

3

2

2

1

1

n knnknn

m

x

xx

nm

nkm

nm

nkm

nm

nkm

nm

nkm

m

km

x

xx 1
 

When I apply this lemma to my problem, since our members individual factors take an 

increase of a2 , thus it ought to be assumed that an 2 .  Then  when it is assumed that 

m=f and k=a, we will have: 

                                                 
1
 There is a typographical error on the left hand side. The radical in the denominator should be 

identical to the corresponding radical on the right hand side. 
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aa

f

x

xx

af

af

af

af

f

af

x

xx

22

1

1
...

3

5

2

3

1

, 

This expression, once adjusted, will yield previous factors of individual members.  For 

the next equations, let us assume that m=f+a, (and k remains =a), when this is done, we 

get: 

.

1

...
5

6

3

42

1 22

1

aa

af

x

xx

af

af

af

af

af

af

x

xx
 

 

(17) It is now evident that the second formula, once it has been divided by the previous 

formula,  will show my continual product.  When infinite integrals are cancelled out on 

both sides, we get: 

a

f

a

af

x

xx

x

xx
A

2

1

2

1

1
:

1
.  

 Similarly, straightaway we find  

a

af

a

af

x

xx

x

xx
B

2

1

2

12

1
:

1
      

  
a

af

a

af

x

xx

x

xx
C

2

12

2

13

1
:

1
  etc…

2
 

 

But this investigation can still be generalized, as the following problem will show. 

 

A MORE GENERAL PROBLEM 

 

To find a series A, B, C, D, etc. that proceeds uniformly in such a way that  

                                                 
2
 There is an error in each of the above three equations. The right hand sides should 

be multiplied by f, af , and  af 2  respectively. See section 27. 
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;)3(;)2(;)(; 222 cafDEcafCDcafBCcffAB  

Where the letter  f  is increased by a quantity  a. 

 

PREVIOUS SOLUTION FOR CONTINUED FRACTIONS 

 

 (18)  Again, here it is evident that A is a function of  f  and B ought to be a function of f 

+ a ; C is a function of f + 2a ; D is a function of  f + 3a , and so on. Therefore, when AB 

= ff + c , if A and B are equal, when c is omitted, A  =  B  =  f .  If A is considered less 

than f , B ought to be considered greater than  f .  From here, when A = f – x , B will equal 

f + x . Because A comes from B, if  f + a is written in the place of f , it ought to be that B 

= f + a – x . From here we conclude that x = ½ a ; and so the principal parts for A and B 

will be   

A = f -  ½ a  and B = f  +  ½ a ,  

or  

2 A = 2 f – a and 2 B = 2f + a.   

Therefore for the following letters, we find  

2C = 2f + 3a; 2D = 2f + 5a; 2E = 2f + 7a, etc. 

(19) When these principal values have been found, we will consider that  

B

s
afB

A

s
afA 22;22 ; 

But a suitable value will emerge for s .  Therefore from here, we get:     

cff
BA

ss
af

B

s
af

A

s
aaffAB 44)2()2(44 . 

This equation, once the fractions are removed, will take on the form: 

.0)2()2()4( ssafsBafsAcaaBA  
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Now let us assume that   s   =  aa + 4c , and once division is made we get: 

.4)2()2( caaafBafABA  

This equation can be expressed in factored form as: 

.4)2)(2( acffafBafA  

(20) Similarly, as it can be recognized through deduction, if A’ and B’ are equal, the 

member on the left would be 

 A’A’ – 4fA’ = 0, and therefore A’ = B’ = 4f . 

 Because B’ ought to arise from A’, if  f + a is written in the place of f , it is evident that 

the principal parts are   

A’  = 4f – 2a  and    B’ = 4f + 2a.   

Therefore let us assume that  

A

s
afA 24  and 

B

s
afB 24 .   

From here, if these values are substituted, the preceding equation will take on this form in 

factors: 

cff
B

s
af

A

s
af 44)32)(32(  

This equation, once the expansion has been made, will bring us to this equation: 

cff
BA

ss
af

B

s
af

A

s
aaff 44)32()32()94( . 

Once the fractions have been removed, we get: 

.0)32()32()49( ssafsBafsAcaaBA  

Therefore, once it is assumed that s’ = 9aa + 4c , and the division has been made, this 

equation arises: 
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.49)32()32( caaafBafABA  

 This can be represented by factors in the following way: 

.44)32)(32( cffafBafA  

 

(21) Because this equation is similar to the previous one, again in this case if A’’ = B’’, 

we will get 4f .  Furthermore, it is assumed that  

A

s
afA 24  and 

B

s
afB 24 .   

From here the final equation will be in factor form:  

.44)52)(52( cff
B

s
af

A

s
af  

But once the expansion has been made, and the fractions have been removed, it will 

produce: 

.0)52()52()425( ssafsBafsAcaaBA  

Therefore, by assuming that  s’’ = 25aa + 4c and by dividing by s’’, it will become: 

caaafBafABA 425)52()52(  

or, in product form:   

cffafBafA 44)52)(52( . 

(22)  Furthermore it will be established that   

)4(
24

A

s
afA  and  

)4(
24

B

s
afB  ,  

and when these values are substituted, the preceding equation will be in product form:   

cff
B

s
af

A

s
af 44)72)(72(

)4()4(
.   
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When these same operations have been repeated, and when it has been assumed that 

caas 449 , this equation is reduced to the following:  

caaafBafABA 449)72()72( )4()4()4()4( .   

Or, in factored form, it will be:   

cffafBafA 44)72)(72( )4()4( .   

From this it is now abundantly clear how the final calculation ought to proceed. 

 

(23)  Therefore once these values are successively substituted, because   

;449;425;49;4 caascaascaascaas  etc., we obtain the following 

continued fraction for A: 

...24

449
24

425
24

49
24

4
22

etcaf

caa
af

caa
af

caa
af

caa
afA  

 

Similarly, 

 

...24

449
24

425
24

49
24

4
22

etcaf

caa
af

caa
af

caa
af

caa
afB  

 

...64

449
64

425
64

49
64

4
322

etcaf

caa
af

caa
af

caa
af

caa
afC  
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...104

449
104

425
104

49
104

4
522

etcaf

caa
af

caa
af

caa
af

caa
afD  

 

 

ANOTHER SOLUTION FOR CONTINUED PRODUCTS 

 

(24) When 

...;)3(;)2(;)(; 222 etccafDEcafCDcafBCcffAB ,we get:  

...))()5)(()3)(()((

...))()6)(()4)(()2)(((
222

222

etccafcafcaf

etccafcafcafcff
A . 

But in this expression, whenever you stop, there will be a factor left either in the 

numerator or in the denominator. This will become clearer if we substitute in the letter  F 

as follows .
1

)4(
)3(

)2(

)(

2

2

2

2 F
caf

caf

caf

caf

cff
A  

However, when we substitute in the following letter G, it will become:  

.,
)5(

)4(

)3(

)2(

)( 2

2

2

2

2
G

caf

caf

caf

caf

caf

cff
A  

 

(25)  But if therefore these two expressions are continued infinitely and are calculated 

into themselves, the final letter factor, which here is  
F

G
, will equal one.  Since in this 

case the number leaves a factor in the numerator of one, I will write its first factor apart 

in the front part, and the product will be expressed in the following way:    
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...
))3)(()3((

))4)(()2((

)))(()((

))2)(((
)(

22

22

22

2
2 etc

cafcaf

cafcaf

cafcaf

cafcff
cffA  

Now the factors near infinity approach one, and thus this expression proceeds according 

to the law of uniformity.  Here, however, it is fitting to distinguish between two cases:  if 

c is a positive or a negative number. 

 

Case # 1:  Where c  =  - bb 

 

(26) In the first case any factor allows itself to be resolved in two ways.  Therefore if we  

first establish that c = -bb , the continued fraction can be expressed in the following way: 

 

...24

)27)(27(
24

)25)(25(
24

)23)(23(
24

)2)(2(
22

etcaf

baba
af

baba
af

baba
af

baba
afA  

and in the place of this expression, we now have a sequence in continued factors; for the 

simple letter A, it is:   

...
)3)(3(

)4)(2(

))((

)2)((
)( etc

bafbaf

bafbaf

bafbaf

bafbf
bfA

3
 

 

Anywhere in the main factors of this expression, the sum of the factors in the numerator 

is equal to the sum factor in the denominator.  Because of this, these factors are able to be 

expressed in an integral formula. 

                                                 

3
 There is a misprint in the last factor. It should be 

)3)(3(

)4)(2(

bafbaf

bafbaf
. 
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(27) It is agreed that, if this integral formula:  ,
)1(

1

n knn

m

x

xx
 is evaluated from x = 0 to 

x = 1, the value is reduced to the following infinite product:  

.
)1(2

2

n knnx

xx

nm

nkm

nm

nkm

m

km
  Therefore, when we apply this 

formula to our expression, since single factors are increased in the following factor by the 

quantity  2a , one can assume that n = 2a . However, when it is assumed that   m = f + b    

and   k = a,, it is found to be:  

.
1)1(4

5

2

3

2

1

2 a

bf

a x

xx

x

xx

baf

baf

baf

baf

bf

baf
   

This expression, once inverted, contains the previous factors of its members.  For the 

latter ones, however, if it remains that n = 2a, it is assumed that   m = f + a – b   and   k = 

a. 

Once this is done, it will create this equation:  

.
115

6

3

42

2

1

2 a

baf

a x

xx

x

xx

baf

baf

baf

baf

baf

baf
  

 If, therefore, this equation is divided by the preceding one, later integral factors cancel 

each other out, and  it will produce an infinite product, giving the value A, that is 

expressed by two integrals as: 
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  .
1

:
1

)(
2

1

2

1

a

bf

a

baf

x

xx

x

xx
bfA

4
 

 

 

(28) Let me show this by the following example.  If I assume that f  =  2 , a  =  1,  b  =  

1,  we get these values:   AB = 3,  BC = 8, CD  = 15, DE   = 24, etc…  In this case our 

continued fraction is:  

...6

77
6

45
6

21
6

5
6

3
32

etc

A  

But it will be this in continued products:  ...
108

99

86

77

64

55

42

33
etcA  

Then it will be this way in integral formulas:  .
1

:
1 xx

xxx

xx

xx
A  

It is agreed that for my limits of integration (from x  =  0 to x  = 1 ), it is   1
1 xx

xx
, 

and 
41 xx

xxx
.  From here A is seen to be 

4
.  This fits splendidly with Wallis’ 

product, where ...
75

66

53

44

31

22

2
etc  

 

CASE # 2:  Where   c = + bb 

 

                                                 
4
 Note that this time he has the correct factor )( bf  which he neglected in  section 

17 when .0b  
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(29) Let us solve now another case, c = + bb , whose continual fraction takes on this 

form:  

...24

449
24

425
24

49
24

4
22

etcaf

bbaa
af

bbaa
af

bbaa
af

bbaa
afA  

However, when 1b  is written in the place of b, in the previous continued product the 

new form is expressed imaginarily: 

...
)13)(13(

)14)(12(

)1)(1(

)12)(1(
)1( etc

bafbaf

bafbaf

bafbaf

bafbf
bfA

 

However it is evident that when (paragraph 26) is applied to the same expression that 

1b  can be written in the place of b, from which we get:  

...
)13)(13(

)14)(12(

)1)(1(

)12)(1(
)1( etc

bafbaf

bafbaf

bafbaf

bafbf
bfA

 

Therefore the product of these two expressions becomes real, it will be: 

...
))3)(()3((

))4)(()2((

))(()((

))2)(((
)(

22

22

22

2
2 etc

bbafbbaf

bbafbbaf

bbafbbaf

bbafbbff
bbffA  

This expression is congruous with the previous one found in paragraph 25. 

 

(30) But this expression becomes imaginary through integral formulas.  For if 1b  is 

written in the place of  b  in the formula in paragraph 27 , the following expression arises: 

.
1

:
1

)1(
2

11

2

11

a

bf

a

baf

x

xx

x

xx
bfA  

However, once the sign of the imaginary numbers have been changed, it becomes: 
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.
1

:
1

)1(
2

11

2

11

a

bf

a

baf

x

xx

x

xx
bfA  

Here there is no doubt that in both expressions the imaginary numbers cancel each other 

out, although there is no apparent method to show the mutual cancellation of imaginary 

numbers. 

 

(31)  However, if both expressions are brought together, then this cancellation can be 

shown easily.  Then the product is 

a

bf

a

bf

a

baf

a

baf

x

xx

x

xx

x

xx

x

xx

bbffA

2

11

2

11

2

11

2

11

2

11

11
)(  

It can be demonstrated that imaginary numbers cancel out in both the numerator and the 

denominator.  Because it is sufficient to have shown this for the denominator, since the 

numerator arises from it by writing f + a in the place of f. 

 

(32) So that this demonstration can be dealt with more succinctly, let us assume (for the 

sake of brevity) that V
x

xx

a

f

2

1

1
.  When this has been done and once the imaginary 

numbers have been dealt with, the denominator of my expression will be 

.11 VxVx bb
 

Now let us assume the  factors: 

The sum:  pVxx bb 11(  

Difference:  qVxx bb 11(  
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And it is noted that the proposed product will be:  
4

( 11 qqpp
VxVx bb  

Now I will show how both  pp  and  qq  can be reduced to real quantities. 

 

(33) In this evaluation in the place of  x in possible imaginary numbers, let us write ixe ,  

so it becomes  

,)( 11 Veep bixbix ,)( 11 Veeq bixbix
 

(Here Euler writes lx for our xlog .)   

Since we know that  

cos211 ee  and sin1211 ee . 

 

Assume, for the sake of clarity, that bix  , and get 

cos2 Vp  and sin12 Vq . 

From here the denominator becomes:   

22 )sin()cos(
4

VV
qqpp

 

which clearly is a real expression. 

 

(34) Here the value of the numerator easily is brought together to become: 

22 )sin()cos( VxVx aa , 
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In such a way that our expression, where the imaginary numbers have been removed,  

is represented  in real numbers in the following way:  

22

22

2

)sin()cos(

)sin()cos(
)(

VV

VxVx
bbffA

aa

 

We get :  blxand
x

xx
V

a

f

2

1

1
. 

 

(35) In  Analysis, however, a method is still missing for dealing with integrating formulas 

of this kind:  
a

f

x

blxxx

2

1

1

cos
and 

a

f

x

blxxx

2

1

1

sin
.
5
 

Meanwhile, however, if the denominator is absent, both formulas are able to be 

integrated, which a jewel of my work shows in the following way. 

 

(36) For this can be exhibited with the help of a famous reduction, PQPQQP .  

If blxP cos and xxQ f 1
 is assumed for the  previous formula, we get: 

 blxxx
f

b
blx

f

x
blxxx f

f
f sincoscos 11

. 

However, for the other formula, if bixP sin and xxQ f 1
 is assumed, it will be 

blxxx
f

b
blx

f

x
blxxx f

f
f cossinsin 11

. 

From here we get by substituting 

                                                 
5
 Recall that Euler uses xlx log . 
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);sincos(cos1 blxbblxf
bbff

x
blxxx

f
f  

)cossin(sin1 blxbblxf
bbff

x
blxxx

f
f . 

However, when including the denominator, nothing else is known except to express  the 

integral as a kind of transcendental quantity that is still unknown. 

 


