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(1) After William Brouncker found his memorable continual fraction for the quadrature
of a circle, and after he shared it with John Wallace without an explanation, Wallis
devoted more time to it so that he could uncover the source of Brouncker’s noted
formula. Wallis reckoned that there was a use for these extraordinary formulas, which he

brought to light in his work Arithmetic of Infinities. Then he produced, through a little

too abstruse calculations, not only Brouncker’s continual fraction, but also even more



countless other ones like it, both of which (certainly including Brouncker’s expression)

are deemed worthy to be rescued from oblivion.

(2) However, the things which pertain to this from Wallis’ Arithmetic of Infinities, which
were brought to light long before the Analysis of Infinities was discovered, are now able
to be represented in such a way that when the limits of integral formulas are extended

from x = 0 to x = 1, the following quadratures are produced:

J- XOX
V11— Xx

_2_22
3 23

J‘ 38X
V1= Xxx

J- X°0x 2-4 2-2-4-4
Ji-xx 35 2-3-4.5

,[ xX'ox 246 2-2-4-4.6-6
Ji-xx 3:5-7 2-3-4.5-6-7

J-X96X 2:4.6-8 2-2-4-4.6-6-8-8

ete...
Jl-xx 3-5-7-9 2.3.4.5.6-7-8.9°

(3) I arranged these formulas in the third column in such a way that the denominators
clearly allow interpolation. And so it only remains that the numerators are transformed in
such a way that they allow interpolation equally. If such a series progresses according to
the law of uniformity, (of course if it were investigated as A, B, C, D, E, F, etc.) it would
become:

AB=1.1; BC=2.2; CD=3.3; DE=4.4; etc
This very thing Wallis revealed through the highest wisdom of his genius. 1 will clear up

this investigation much more generally, through a much easier calculation.



(4) However, when this series of letters A, B, C, D, etc. is found, the whole business will

have been completely settled. For when as the following table reveals:

RS
1— xx A1l
[ x*x _BC _1 ABC
JI-xx 2-3 A 1.2.3

J-xx 2-3-4.5 A 1.2.3.4.5

IXSGX _ BCDE 1 ABCDE

I BCDEFG _ 1 ABCDEFG
\/1 X 234567 A 1234567

Interpolation provides for us the following quadratures:

J‘ OX =£-1,
1-xx A
J-xxax _1 AB
Vi-xx A 1.2

I x*ox _1 ABCD
Ji-xx A 1.2.3.4’

x50x _ 1 ABCDEF ote
Ji—xx A 1.2.3.4.5.6" 7

(5) Since now I =— ,where 7z denotes the circumference of a circle whose

OX
V1—xx
diameter equals 1, whose value | write for the sake of brevity q = % , all values of the

letters A, B, C, D, etc...for this quantity g will be expressed in the following manner:

Difference



A= % =0,636620

0,934176
B=q=1570796
0,975683
c =2 _ 2546479
v
0,987813
D= %q = 3534292
0,992782
E = 4é—m = 4,527074
0,995257
9.25

F=224=5522331
4.16

(6) Here I attached a third column, which exhibits the numeric values of these letters to
show more clearly the extent that these numbers increase according to the law of
uniformity. This does not happen if | take a false value in the place of g.

Now that these things have been explained, I will find, in a much easier manner,
continued fractions for each individual letter. What is more, | will arrange this
investigation in much more generality while | resolve the following problem:

Problem:

To find a series of letters A, B, C, D, etc...progressing by the law of uniformity in such a
way that AB =ff; BC= ¢ +a >; CD= ¢ +2a >; etc..

(7) Solution:

It is immediately clear from this point that A was a function of that very f, as it ought to
be that B is a function of that very f+a, then moreover C is a function of f+2a; D is a

function of f+3a; and so on.



1
=s
. . 1 .
Once this rule has been observed, if we assume A= f —Ea + % it ought to also be

1
=S
1 .
assumed that B = f +Ea+2?' where the letters A’and B’ ought to hold the same ratio

between themselves. In this way B'should arise from A’if f+a is written in the place of

f.

Therefore, when these fractions are removed, since 2A=2f —a+ % and

2B=2f + a+% , the product of these formulas is equal to 4ff. Now this equation arises

from the fractions:

aaA'B'— A's(2f —a)—B's(2f +a)—ss=0.

Therefore let us assume that s=aa, and the equation, divided by aa, should be
AB -A'(2f —a)-B'(2f +a) =aa,

which is easily factored in the following way:

(A —2f —a)(B'—2f +a) = 4ff .

(8) Now, if both letters A"and B'are equal, the left part should be A'=B'=4f,

!

following the above pattern, we should find that A'=4f —2a +% and

!

B'=4f +2a+ % . When you substitute these, the final equation takes the form:

s’ s’
2f —3a+—)2f +3a+—)=4f1f.
( A,,)( B”)

When expanded and the fractions removed, the following equation arises:



9aaA'B" — A"s'(2f —3a) —B"s'(2f +3a)—s's'=0.
Therefore it is assumed here that s’ =9aa, and it follows that :
A'B"-A"(2f —3a)-B"(2f +3a) =9aa,

which again is able to be represented by factors as:

(A"—2f —3a)(B"—2f +3a) = 4ff .

(9) Now once again the *middle value* between A"and B" is 4f, furthermore let us

14 "

and B" = 4f +2a+—

m B "

assume that A" =4f —2a+ , and once this substitution is

> y2f +5a+—

made, we will get: (2f —ba+
Am BI”

)= 4ff .

When expanded it becomes:

25aaA"B" — A"s"(2f —5a) —B"s"(2f +5a)—s"s" =0.
Assume that s” = 25aa, and this equation will take on the form:
A"B"—A"(2f —5a)—B"(2f +5a) = 25aa,

which is factored as:

(A" —2f —5a)(B" — 2 +5a) = 4ff .

L4

(10) Again, as before, let it be assumed that A" =4f —2a + and

AIV

"

B"=4f +2a+ BV Once this substitution is made, we get

m m

(2f —7a+ )2f +7a+ =41f .

BlV

AlV
When this equation is manipulated, as before, we will get

AVB"Y = AV (2f —7a)-B" (2f +7a) = 49aa,



where of course we put s” =49aa. Then in factored form it will be
(AY —2f —7a)(B" —2f +7a) =4ff .

From here it is clear how these operations are to be continued further.

(11) When these things are reasoned, that s = aa, s’ =9aa,s” = 25aa,s"” =49aa, ctc...,
we obtain for 2a the following continued fraction:

aa

2A=2f —a+
9aa

4f —2a+

25aa
49aa
4f —2a+etc...

4f —2a+

4f —2a+

If we write in the place of f the series f+a, f+2a, f+3a, etc..., we will create similar

continued fractions for 2B, 2C, 2D, etc... which are:

2B=2f +a+ aa
9aa
4f +2a+
25aa
4f +2a+ 493
4f +2a+
4f +2a+etc...
2C=2f+3a+ aa
9aa
4f +6a+
25aa
4f +6a+ 49aa
4f +6a+
4f +6a+etc...
2D =2f +5a+ aa 5o
4f +10a+
2baa
4f +10a+
49aa
4f +10a+

4f +10a +etc...



(12) If now we put f=1 and a=1, we will produce the very case handled by Wallis. From
this Wallis found his continued fractions, when their values are expressed through the

quadrature of a circle, they will be the following:

WALLIS” CONTINUAL FRACTIONS

IA=1+ L _2_4
2+ J q9 7
2+L
94 49
1+ etc...
2B =3+ 19 =20=r,
6+6+ 55
64 49
6 + etc...
2C =5+ 19 _8_16
10+ 9 7
25
10+ 49
10+ ———
10+etc...
2D=7+ 19 =99=g£,
14+ 2 4
25
14+ 49
14

+7
14 + etc...



SE -9+ 19 :128:256.
18+ % 97
25
18+ 49
18+ ———
18+ etc...

The first of these is the very same continued fraction discovered by Brouncker.

(13) However, this is by no means similar to the roundabout way Brouncker came to his

formula. Instead | believe that he derived it from the consideration of his famous series:

This series is commonly accustomed to be attributed to Leibniz; however it was
discovered much earlier by Jacob Gregory. From Gregory’s work Brouncker was able to
derive it.

Of course it was possible to come about through sufficiently easy and accessible

operations in the following way:

When you insert... It becomes. ..
21w L R YA 11
4 T l-a -« 1+
a
a:l—ﬂ l_i_3+ i 3+ J 1
3 a 1-3p8 1-3p 3.t
B
,b’=£—7/ 1=i=5+ 25y 5. 25
5 B 1-5y 1-5y _5+E
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: : . 1
But if these recently found values are substituted in the place of —, ,etc...
o

X [P

1
ﬂ 1
Brouncker’s continued fraction is obtained

4 1
I
* 9

25
49

2 +etc...

2+

2+
2+

(14) Now, this brings me to my general solution of the problem. One can even express
the values of individual continued fractions through certain quadratures, which I will
show in the following problem:

Problem.
To investigate the values of the individual letters, expressed first (1) through continued
products, then (2) expressed through integral formulas, for the sequence A, B, C, D,

etc...that continues according to the law of uniformity in such a way that

AB = ff;BC = (f +a)?;CD = (f +2a)?;etc...

(15) Solution.

2 2
ThereforeletAzﬂ;B:(Ha) ;C:(f+2a) retc...
B C D
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When these values are substituted continuously, one finds that

A ff (f +2a)°(f +4a)*(f +6a)’(etc...
~(f +a)(f +3a)2(f +5a)2(etc...

, Infinitely.

Because a factor remains either in the denominator or in the numerator whenever (the
series) is broken off, no limiting value arises this way. This inconvenience, however, will
be removed if | arrange the simple factors in the following

f(f+aa) (f+2a)(f+4a) (f+4a)(f+6a)

way: A= f -
(f+a)(f+a) (f+3a)(f+3a) (f+5a)(f+5a)

In this way factors will continuously approach one, and infinitely they will equal one; and

thus this expression will certainly have a limiting value.

(16) However, when | will show how one ought to reduce the value to integral

expressions, | will call upon this *lemma* for help:

When integrals are evaluated from x=0 to x=1, we will get:

J- x"*ox _m+k m+k+n m+k+2n m+k+3n m+k+4n ,[ X“OX 1
Cx m m+n m+2n m +3n m+4n n(_xﬂwk'
A A

When | apply this lemma to my problem, since our members individual factors take an
increase of = 2a, thus it ought to be assumed that n=2a. Then when it is assumed that

m=f and k=a, we will have:

! There is a typographical error on the left hand side. The radical in the denominator should be

identical to the corresponding radical on the right hand side.
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X*0OX

I x "Lox _f+a f+3a f+5a

e f f+2a f+3a j\/

This expression, once adjusted, will yield previous factors of individual members. For
the next equations, let us assume that m=f+a, (and k remains =a), when this is done, we

get:

x'"ox f+2a f+4a f+6a J- XX

1_x» f+a f+3a f+5a" 2

X

(17) Itis now evident that the second formula, once it has been divided by the previous
formula, will show my continual product. When infinite integrals are cancelled out on

both sides, we get:

f+a lax f lax
A=
I N I N
Similarly, straightaway we find
f+2a—lax f+a-: laX
B=
J‘\/1 NG I\/
f+3a—1 f+2a 1
C_ J' OX j oX etc. . 2
\/1 X \/l x 22

But this investigation can still be generalized, as the following problem will show.

A MORE GENERAL PROBLEM

To find a series A, B, C, D, etc. that proceeds uniformly in such a way that

2 There is an error in each of the above three equations. The right hand sides should

be multiplied by f, f +a,and f +2a respectively. See section 27.
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AB = ff +¢;BC = (f +a)® +¢;CD = (f +2a)® +¢;DE = (f +3a)* +c;

Where the letter f is increased by a quantity a.

PREVIOUS SOLUTION FOR CONTINUED FRACTIONS

(18) Again, here it is evident that A is a function of f and B ought to be a function of f
+a; Cisa function of f + 2a; D is a function of f+ 3a, and so on. Therefore, when AB
=ff+c,if Aand B are equal, when c is omitted, A = B = f. If Ais considered less
than f, B ought to be considered greater than f. From here, when A =f—x, B will equal
f + x . Because A comes from B, if f+ a is written in the place of f, it ought to be that B
=f+ a—x. From here we conclude that x = %2 a ; and so the principal parts for A and B
will be

A=f- YaandB=f + % a,
or
2A=2f-aand 2B =2f +a.
Therefore for the following letters, we find
2C = 2f + 3a; 2D = 2f + 5a; 2E = 2f + 7a, etc.

(19) When these principal values have been found, we will consider that
S S
2A=2f —a+—;2B=2f +a+—;
A B’
But a suitable value will emerge for s . Therefore from here, we get:

4AB = 4ff —aa+— (2f +a) +—(2f —a) + —> = 4ff +4c.
A! B! A’BV

This equation, once the fractions are removed, will take on the form:

A'B'(aa+4c)— A's(2f —a)—-B's(2f +a)—ss=0.



Now let us assume that s = aa + 4c, and once division is made we get:
AB - A(2f —a)-B(2f +a) =aa+4c.
This equation can be expressed in factored form as:
(A'-2f —a)(B'-2f +a)=4ff +ac.
(20)  Similarly, as it can be recognized through deduction, if A’ and B’ are equal, the
member on the left would be
A’A’—4f4° =0, and therefore A* = B’ = 4f.
Because B’ ought to arise from 4, if f + a is written in the place of f, it is evident that
the principal parts are
A’ =4f—2a and B’ =4f+2a.

Therefore let us assume that

A=4f—2a+— and B'=4f +2a+——.
A” B"

From here, if these values are substituted, the preceding equation will take on this form

factors:
@2f —3a+%)(2f +3a+%) _ 4ff +4c

This equation, once the expansion has been made, will bring us to this equation:

[/

5SS _Aff +4c.
A”B”

(4ff —9aa)+;—,”(2f +3a)+;—,”(2f —3a)+
Once the fractions have been removed, we get:
A'B"(Qaa+4c)— A's'(2f —3a)—B"s'(2f +3a)—s's'=0.
Therefore, once it is assumed that s” = 9aa + 4c , and the division has been made, this

equation arises:

14

in
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A'B"—-A"(2f —3a)—-B"(2f +3a) =9%aa+4c.
This can be represented by factors in the following way:

(A"—2f —3a)(B"—-2f +3a) =4 ff +4c.

(21) Because this equation is similar to the previous one, again in thiscase if A" =B ",

we will get 4f . Furthermore, it is assumed that

14 14

and B"=4f +2a+ S

m B m"

A =4f —2a+ -

From here the final equation will be in factor form:

" 4

(2f —Ba+——)2f +5a+—

)= 4ff +4c
AW B”!

But once the expansion has been made, and the fractions have been removed, it will
produce:
A"B"(25aa+4c) — A"s"(2f —5a) — B"s"(2f +5a) —s"s" =0.
Therefore, by assuming that s’” = 25aa + 4c and by dividing by s, it will become:
A"B" — A"(2f —5a)— B"(2f +5a) = 25aa + 4c
or, in product form:
(A"-2f -5a)(B"—2f +5a) =4ff +4c.

(22) Furthermore it will be established that

m m

mo_ S mo_ S
A —4f—2a+Wand B —4f+2a+W ,

and when these values are substituted, the preceding equation will be in product form:

m m

S
)2f +7a+ 5@

Qf —Ta+—

"G ) = 41f +4c.
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When these same operations have been repeated, and when it has been assumed that
s” =49aa+ 4c, this equation is reduced to the following:
AYBW AW (2f —7a)-B®W(2f +7a) =49%a+4c.
Or, in factored form, it will be:
(AW —2f —7a)(B® —2f +7a) =4ff +4c.

From this it is now abundantly clear how the final calculation ought to proceed.

(23) Therefore once these values are successively substituted, because
s=aa+4c;s' =9aa+4c;s" = 25aa+4c;s"” = 49aa + 4c; etc., we obtain the following

continued fraction for A:

2A=2f—a+ aa+4c
9aa+4c
4f —2a+
25aa+4c
At -2a+ 49aa + 4¢c
4f —2a+ *
4f —2a+eftc...
Similarly,
2B=2f +a+ aa+ 4c
9aa+4c
4f +2a+
25aa+4c
4f +2a+ 4983 1 4¢
4f +2a+ *
4f +2a+etc..
2C =2f +3a+ aa+4c
9aa+4c
4f +6a+
25aa+4c
4t +6a+ 49aa + 4c
4f +6a+

4f +6a+etc...
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aa-+4c
Qaa+4c
25aa + 4c
49aa+4c

4f +10a +etc...

2D =2f +5a+

4f +10a+
4f +10a+

4f +10a+

ANOTHER SOLUTION FOR CONTINUED PRODUCTS

(24) When

AB = ff +¢;BC = (f +a)” +c;CD = (f +2a)® +¢;DE = (f +3a)° +c;etc... ,we get:

A (ff +c)((f +2a)* +c)((f +4a)® +c)((f +6a)” +c)(etc...)
T (fra)+o)(f+3a)% +0)((f +5a) +c)(etc.)

But in this expression, whenever you stop, there will be a factor left either in the

numerator or in the denominator. This will become clearer if we substitute in the letter F

ff+c  (f+2a)°+c
(f +a)’+c (f +3a)*+c

as follows A= (f+4a)2+c-é.

However, when we substitute in the following letter G, it will become:

_ ff+c  (f+2a)+c (f+4a)’ +c
(f +a)®>+c (f+3a)’+c (f+5a)’+c’

(25) But if therefore these two expressions are continued infinitely and are calculated
into themselves, the final letter factor, which here is %,will equal one. Since in this

case the number leaves a factor in the numerator of one, | will write its first factor apart

in the front part, and the product will be expressed in the following way:
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(ff +c)((f +2a)2 +C) . ((f +2a)2 +c)((f +4a)2 +C) etc
((f +a)* +c)((f +a)®> +c) ((f +3a)* +c)((f +3a)* +c¢)

A? = (ff +c)-

Now the factors near infinity approach one, and thus this expression proceeds according

to the law of uniformity. Here, however, it is fitting to distinguish between two cases: if

c is a positive or a negative number.

Case# 1: Wherec = -bb

(26) In the first case any factor allows itself to be resolved in two ways. Therefore if we

first establish that ¢ = -bb , the continued fraction can be expressed in the following way:

(a+ 2b)(a - 2b)

2A=2f-a+ (3a+ 2b)(3a—2b)
4f —2a+
4t _oa,  (5a+2b)(Ea—2b)
4t om (72+20)(7a-2D)

4f —2a+etc..
and in the place of this expression, we now have a sequence in continued factors; for the
simple letter A, it is:

(f +b)(f +2a—b) (f+2a-b)(f+4a-b) 4

(f+a+b)(f+a—b) (f +3a+b)(f +3a-Db)

A=(f -b)- etc...

Anywhere in the main factors of this expression, the sum of the factors in the numerator

is equal to the sum factor in the denominator. Because of this, these factors are able to be

expressed in an integral formula.

(f +2a+b)(f +4a—b)
(f +3a+b)(f +3a—-b)’

® There is a misprint in the last factor._It should be
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m-1
(27) 1t is agreed that, if this integral formula: jx—&( is evaluated from x =0 to

1_ Xn)n—k

X =1, the value is reduced to the following infinite product:

m+k m+k+n m+k+2n X7 OX .
. LR A j . Therefore, when we apply this
m m+n m+2n n/ 1—x")"*

formula to our expression, since single factors are increased in the following factor by the
quantity 2a, one can assume that n = 2a . However, when it is assumed that m=f+Db

and k=a,, itis found to be:

f+a+b f+3a+b f+5a+b I X*OX _[ f+blax

f+b f+2a+b f+da+b [(1-x%)

This expression, once inverted, contains the previous factors of its members. For the
latter ones, however, if it remains that n = 2a, itisassumedthat m=f+a—-b and k=
a.

Once this is done, it will create this equation:

f+2a—b’f+4a—b'f+6a—b J X”OX —J f+a—b—1ax
f+a-b f+3a-b f+5a-b Ji- J1_ 2

If, therefore, this equation is divided by the preceding one, later integral factors cancel

each other out, and it will produce an infinite product, giving the value A, that is

expressed by two integrals as:
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b f+a-b-: laX f+b 16x 4
) j\/l— _X2a'

(28) Let me show this by the following example. If l assumethatf = 2,a = 1, b =
1, we get these values: AB =3, BC=8,CD =15, DE =24, etc... Inthis case our

3
)
21
45
77

6 +etc...

continued fraction is;: 2A=3-
6+

6+
6+
6+

3-:3 5.5 7-7 9.9
-etc

But it will be this in continued products: A=
2.4 4.6 6-8 8-10

XXOX
Ji- XX

Then it will be this way in integral formulas: A= IJl _[
XX

XOX

V1—xX

It is agreed that for my limits of integration (fromx = Otox =1),itis I =1,

XXOX T . T g . .
d ==—. From here A is seen to be —. This fits splendidly with Wallis’
I VJ1-xx 4

product, where ~ = 2:2 4466 6.
2 1.3 3.5 5.7

CASE #2: Where c=+hbb

* Note that this time he has the correct factor (f —b) which he neglected in section

17 when b =0.
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(29) Let us solve now another case, ¢ = + bb , whose continual fraction takes on this

aa+ 4bb
Qaa + 4bb
25aa + 4bb
4F —2a+ 49aa + 4bb
4f —2a+etc...

form: 2A=2f —a+
4f —2a+

4f —2a+

However, when b+/—1 is written in the place of b, in the previous continued product the

new form is expressed imaginarily:

A= (f —byT). (f +bV=1)(f +2a—bv-1) (f +2a+bV-1)(f +4a— b\/_l)

(f +a+byV—1)(f +a-bv—1) (f+3a+bJ—1)(f +3a— b\/_l)
However it is evident that when (paragraph 26) is applied to the same expression that
—b+/=1 can be written in the place of b, from which we get:

_(f+byony U= —bV=1)(f +2a+bV=1) (f+2a-bV-I)(f +da+by=1)
ra-bJ-1)(f +a+bvy=1) (f+3a- b\/_)(f+3a+b\/_1)

Therefore the product of these two expressions becomes real, it will be:

(ff +bb)((f +2a)° +bb)  ((f +2a)° +bb)((f +4a)° +bb) _

A? = (ff +Dbb)
((f +a)? +bb)((f +a)? +bb ((f +3a)? +bb)((f +3a)? +bb)

This expression is congruous with the previous one found in paragraph 25.

(30) But this expression becomes imaginary through integral formulas. For if bv/~1 is
written in the place of b in the formula in paragraph 27 , the following expression arises:

f+a—l bfax f—1+bﬁax

X

A= (f—bJ_)j

_X2a 1_X2a

However, once the sign of the imaginary numbers have been changed, it becomes:
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f+a-1+bv-1 OX

[

Here there is no doubt that in both expressions the imaginary numbers cancel each other

f-1-b/-1 ax

A=(f +bv=1) [*

1_X2a 1_X2a '

out, although there is no apparent method to show the mutual cancellation of imaginary

numbers.

(31) However, if both expressions are brought together, then this cancellation can be

X f+a—1—bﬁax X f+a—1+bﬁax
[ 2a . [ 2a
shown easily. Then the product is A* = (ff +bb) 1-x 1-x
X f—1+bv/—1 X X fflfb\/jlax

\/1_ X2a \/1_ X2a
It can be demonstrated that imaginary numbers cancel out in both the numerator and the

denominator. Because it is sufficient to have shown this for the denominator, since the

numerator arises from it by writing f + a in the place of f.

(32) So that this demonstration can be dealt with more succinctly, let us assume (for the

x "ox

/1_ X2a

numbers have been dealt with, the denominator of my expression will be

jx*bﬁav : jx-bﬁav.

sake of brevity) that =0V . When this has been done and once the imaginary

Now let us assume the factors:

The sum: I(xbﬁ +x v = p

Difference: I(xwf1 —xov = g
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And it is noted that the proposed product will be: j(xbﬁav -J.X‘bﬂaV = _pp;qq

Now I will show how both pp and gq can be reduced to real quantities.

(33) In this evaluation in the place of x in possible imaginary numbers, let us write e™,

so it becomes
p — I(ebix«/q + e—bixﬁ)av’ q — J.(ebiXH _e—bixﬁ)évy

(Here Euler writes Ix for our logx.)

Since we know that

e’ e =2cosg and et —e ' = 2/ 1sing.

Assume, for the sake of clarity, that bix=¢ , and get
p=2[aV cosg and q=2v-1 [V sing.
From here the denominator becomes:
PP—QQq _ 2 N2
- (jav COSQ)~ + (jav sing)

which clearly is a real expression.

(34) Here the value of the numerator easily is brought together to become:

(jxaav cos¢)® + (jxaav sing)?,
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In such a way that our expression, where the imaginary numbers have been removed, 4

is represented in real numbers in the following way:

(jxaav cosg)® + (jxaav sing)®

A? = (ff +bb
(ff +b6) (I@Vcos¢)2+(jaVsin¢)2

x "tox

/1_ X2a

We get: 8V =

andg = blx.

(35) In Analysis, however, a method is still missing for dealing with integrating formulas

f-1 f-1 H
of this Kind: J~x oxcosblx and IX axsmblx.g,

[1_ X2a ll_XZa

Meanwhile, however, if the denominator is absent, both formulas are able to be

integrated, which a jewel of my work shows in the following way.

(36) For this can be exhibited with the help of a famous reduction, IP&Q =PQ - anP .
If P = cosblxand 6Q = x"™'ox is assumed for the previous formula, we get:

f
.[x "1ox cosblx = XTcosbe+$ Ix Loxsinblx.

However, for the other formula, if P =sinbixand 6Q = x'ox is assumed, it will be
f

_[xf‘laxsin blx = XTsin be—% Ixf‘laxcosblx.

From here we get by substituting

> Recall that Euler uses Ix = logx.



25

f

Ixf‘laxcosblx: ffx (f cosblx+bsinblx);

+bb

Xf

jxf‘laxsinblx:
ff +bb

(f sinblx—Dbcosblx) .

However, when including the denominator, nothing else is known except to express the

integral as a kind of transcendental quantity that is still unknown.



