Synopsis of E745

Synopsis of
De fractionibus continuis Wallisii

(On the continued fractions of Wallis)

Thomas J Osler, Christopher Tippie and Kristin Masters

Introduction to E745

In the year 1656 John Wallis published his “Arithmetica Infinitorum”, [6], in
which he displayed many ideas that were to lead to the integral calculus of Newton. In
this work we find the celebrated infinite product for 7,
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which we now call the “Wallis product”.

Using modern notation, we can say that Wallis knew the integration formula

2 jxpdx:

and could use it for values of p that were both integers and fractions. Wallis wanted to
find some convenient expression for the area bound by the unit circle “in terms of

integers”, and (again in modern notation), he wanted to evaluate the integral

V1-—x%dx.
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The binomial theorem for fractional exponents had not yet been discovered, and so
knowing only (2), Wallis had no direct way of evaluating the integral (3). Instead, Wallis

used an ingenious method of interpolation. He reasoned that the value of the integral (3)



1 1
was between the two integrals I(l— xz)odx and J.(l— xz)ldx, and, of course, he could
0 0

evaluate both of these. To achieve this interpolation, he created a table of values the

1
reciprocal integrals 1/](1— xHQ )de for values of P and Q that he could evaluate. (The
0

reason for the reciprocal was probably to obtain more integer values in the table.) A very

careful and ingenious study of this table lead Wallis to tease out his product (1).

1
Wallis’s Table of the Reciprocal Integral 1/ j (1— xHQ )de
0

P=0] P= |P=1|P= P=2 |P- P=3
1/2 3/2 5/2

Q=01 1.1‘ 1.2 1}§ 12& 11§§ 1gﬂ§
1 2 13 2 4 135 2 46

-\t |22 ),31224 |,385 12246 |,357
1/2 T 1 2 | 713 2 4 7 135 2 46
=1/t 13 |, 4135 |,46 1357 1,468
2 1 2 1213 2 4 2135 246

=L | A4, 51446 1,57 4468 1,579
3/2 3r 1 2 |37 13 2 4 37z 1 35 2 46
Q=21 |35 |, 6357 [,68 3579 |, 6810
8 1 2 1813 2 4 8135 24 6

-t |66 ,7 /668,79 |16 6810) 791
5/2 157 1 2 | 157 1 3 2 4 1524 1 3 5 246
Q=31 57 |, 8579 |, 81057911 |, 6 81012
8 1 2 1813 2 4 |8135 2 4 6

This table proved to be seminal for further research into the gamma function, beta

integral and continued fractions, especially the second row in which Q =1/2 . First Lord

Brouncker, a colleague of Wallis, used it to obtain a sequence of continued fractions:
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Unfortunately, Brouncker never published his method of determining this sequence. He
did give a partial explanation of his method of discovery to Wallis, and Wallis did
present this incomplete description in his “Arithmetica Infinitorum”.

It is here that Euler begins E745. Euler is inspired by both Wallis’s table as well
as the incomplete explanation of the continued fractions. Using both heavily, Euler then
gives us his own derivation of Brouncker’s sequence as well as a generalization of both

Brouncker’s continued fractions and Wallis’s product.

Section 1.

Euler refers to the book by John Wallis “Arithmetica Infinitorum” in which we
find a sequence of continued fractions due to Lord Brouncker. In Wallis, these are given
without a complete derivation and Euler wishes to provide this. Euler incorrectly states
that Brouncker discovered only the first fraction in this sequence, and Wallis found the
remaining. Modern investigations [5] give Brouncker credit for conjecturing the entire

sequence.



Section 2.

Inspired by Wallis’s table, Euler examines the list of integrals (all definite

integrals from O to 1).

J~ XOX
V11— xx

2_2:2
3 -3

I x3ox
V1-— XX

i Xox 2.4 2.2-4-4
J1-xx 35 2-3-4.5

| X'oX 2-4.6 2.2-4-4-6-6
JI—xx 357 2:3:4.5.6-7

etc...

J~X98x 2-4.6-8 2-2-4-4.6-6-8-8
Jl-xx 3.5-7-9 2.3-4.5.6-7-8.9°

Sections 3 and 4.

Euler now wishes to find expressions, A, B, C, D, E so that

AB =1?, BC =2%, CD =3%, DE =47, etc. Then he can write the above list of integrals

as

I XOX _1_£.é
1—xx A1l

I x’ox _BC _1 ABC
1— XX 3 A1.2-3



Jloxx 2345 A1.2.3.4.5

J- X°0x BCDE 1 ABCDE

Ix78x _ _BCDEFG _1 ABCDEFG
Ji—xx 2-3-4.5.6-7 A 1.2.3-4.5.6-7'

The above integrals have odd powers in the numerators. Euler now wishes to find
expressions for integrals with even powers. For this purpose, he studies the third column

of expressions above and “interpolates” to get

I OX =£'1,
1-xx A

[oox 1 A8
Ji-xx A 1.2

j x‘ox 1 ABCD
Ji—xx A 1.2.3.4

I x'ox__ 1 ABCDEF
JI-xx A 123456

This is a conjecture totally in the spirit of Wallis. For convenience, we also use the

modern notation L(0)=A, L() =B, L(2)=C, etc.

Section 5.

dx . .
7 He calls this value g. Euler lists these values

J1-x2 2

and there numerical equivalents in a table.

1
Euler knows that j
0

Difference



A= % =0,636620

0,934176
B=q=1570796
0,975683
c =2 _ 2546479
v
0,987813
D= %q = 3534292
0,992782
E= 4é—m = 4,527074
0,995257
9.25

F=224=5522331
4.16

Section 6.

Euler now hunts for A, B, C, D, E, etc. He states his problem in a more general

form:

Problem: Given numbers f and a we wish to find A, B, C, D, E, etc. such that AB = f 2,

BC =(f +a)?, CD =(f +2a)?, efc.

Section 7.

2
Euler begins by noticing that (f —%)(f +gj =f? _aT' Euler asks how he

might increase these two factors on the LHS so that the product is exactly f?. He starts

by trying

(7.0) A=f—§+$/—2, B=f+E+S/—2,
2 A 2 B

where s, A’ and B’ are to be determined. After a series of manipulations he obtains



(7.2) (2f—a+ij(2f+a+ij:4f2,
A B

(7.3) (A-2f —a)(B—2f +a)=4f?,

and

2 2

(7.4) 2A=2f —a+%,and 2B =2f +a+%.

Section 8.
Euler now seeks appropriate expressions for 4” and B’. He reasons that a good

start is

(8.1) A':4f—2a+i, and B':4f+2a+i,
AII BII
wheres’, 4”’, and B’ are to be found. He finds that
s' s' 9
(8.2) (2f—3a+—j{2f +3a+—j:4f ,
All Bll

(8.3) (A'—2f —3a)(B"—2f +3a)=4f?,

and

2,2 2,2

(84) A=4f_2a+>2  and B'=4f+2a+°2

Section 9 and 10.

Now Euler seeks expressions for 4°” and B’’. As he reasoned above to get (8.1) he

tries

9.1) A"=4f—2a+% and B"=4f+2a+%,

and obtains



9.2) (Zf —5a+s—j[2f +5a+s—j:4f 2
A B

and

2,2 2,2

9.3) A"=4f—2a+5A?I and B"=4f+2a+58ﬁ|.

Section 11.

The general pattern is now emerging and he can write the continued fractions as

a’ 3% 5232

2A=2f —a+ ..
4f -2a + 4f —-2a + 4f —2a +

a’ 3%2a? 52a2
Af +2a + Af +2a + 4f +2a +

2B=2f +a+

a’ 3%a’ 5232

2C=2f +3a+
4f +6a + 4f +6a + 4f +6a +

a’ 3%a? 5232

2D=2f +5a+
4f +10a + 4f +10a + 4f +10a +

a’ 3%a? 52a?
Af +14a + 4f +14a + 4f +14a +

2E=2f +7a+

and so forth.
Section 12.
The continued fractions of Brouncker, listed in the introduction, are obtained as
special cases from the above by writing f =a=1.
Section 13.

Euler reminds us how he previously derived the continued fraction

2 2 2
2A:1+1— 5 ---:i from the Gregory Leibniz series z:1—1+1—l+---.
2+ 2+ 2 + T 4 3 5 7



Section 14.

Euler now poses the a second problem:

Problem: Find representations for 4, B, C, ..., as infinite products and as definite

integrals.

Section 15.

2 2 2
Since A:f—, B:(f+a) ,C:M,etc., Euler gets
B C D
_f_z_ f2  f’c _ f? (f+2a)
B (f+a)* (f+a)?® (f+a?® D

C

Continuing in this way he finds the infinite product

f(f+a) (f+2a)(f +4a) (f+4a)(f+6a)
(f+a)(f+a) (f +3a)(f +3a) (f+5a)(f+5a)

Section 16.
Euler has previously derived the following lemma:

Integrating from 0 to 1 we have

J~ ) _m+k m+k+n m+k+2n m+k+3n
n (1_Xn)nfk m m+n m+2n m+3n

m+k+4nJ- X" OX
m+4n n(l_xn)n’k.
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(There seems to be a problem here. On the RHS, the factors in the infinite product

approach one as they should, however the product itself diverges to infinity. The integral

approaches zero because of x”in the numerator.)

Next Euler lets n=2a, m=f and k =a in (16.2) to get

x""ox f+a f+3a f+5a J- X" OX

Im f f+2a f+da™d [ =

Next Euler replaces f by f +a in the last expression to get

x""ox _f+2a f+d4a f+6a J- X" OX

1 x20 " ftra f+3a f+5a 1 x8

—X

(Here we see eighteenth century mathematics. In all three of the above expressions, the
infinite products on the RHSs all diverge to infinity while the integrals tend to zero. No
doubt Euler is aware of this, and the results he will obtain in the end are valid. In the

notes to this paper we present a modern explanation.)
Section 17.

By simply dividing the infinite products obtained above, Euler gets the ratios of

integrals

f+a-1 f-1
A f X OX : X' TOX .
[l_XZa [1_X2a
f+2a-1 f+a-1
B=(f+a).|.x oX ¢ X OX

[1_X2a . Il_XZa
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f+3aflax . Xf+2aflax
1_ XZa \/1_ X2a

(We note that the factors f, f + a, and f + 2a are incorrectly omitted by Euler in his

etc...

C=(f+2a)]"
J

paper; a rare typographical omission. Later in section 27 when he generalizes this result,
he has it corrected.)
Euler ends this section by stating his third problem:

Generalized Problem: Find expressions A, B, C, D, etc., such that AB = f? +¢c;
BC =(f +a)>+c; CD=(f +2a)’ +c; etc.
Section 18.
The solution is an alteration on the previous work. The following sections 19 to
23 are a very minor variation on sections 7 to 11.
Section 109.
Euler starts with
(19.1) AB=f?+c,
and assume that the desired increase is given by

A:f—g+5/—2, B:f+E+S/—2,
2 A 2 B

where s, 4’ and B’ are to be determined. Euler obains after some manipulation
S S )
(Zf —a+—](2f +a+—} =4f° +4c,
A B

(A-2f —a)(B'-2f +a)=4f? +4c,
and

a’+4c a’+4c

2A=2f —a+ , and 2B=2f +a+

Section 20.
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Euler now wishes to determine appropriate expressions for A” and B’ and starts

with
. s' . g'
A=4f -2a+—, and B'=4f +2a+—,
A" B"
wheres’, 4”’, and B’ are to be found. He obtains

(Zf —3a+ij(2f +3a+ij=4f2 +4c,
A" B"

(A"-2f —3a)(B"—2f +3a) =4f2 +4c,
and

2,2 2,2
A':4f—2a+%, and B':4f+2a+3a—:r4c.

Section 21 and 22.

Next Euler seeks appropriate expressions for 4’ and B’’. He tries

A'=4f —2a+s— and B'"'=4f +2a+s—.
A" B'"'
and obtains
s" s" )
(Zf —5a+—j(2f +5a+—j:4f +4c,
A B
and by a similar reasoning
5°a’ +4c 5%a’ +4c

A'=4f —2a+T and B"=4f +2a+

Summarizing he has

2 2
2A=2f —a+2 % and 2B-2f+a+? ;4(;,

2,2 2,2
N=4f 22432 T4 ang B=4f 420458 TAC



2,42 2,42
A'=4f 224> 2 T4 aAlf4C and B'=4f +2a+> 2 T4C

Section 23.

The general pattern is now emerging and he can easily combine the above to get

a’+4c 3%a’+4c 5%°a’+4c

2A=2f —a+
4f —2a + 4f —-2a + 4f -2a +

a’+4c 3%a’+4c 5%a’+4c
4f +2a + 4f +2a + 4f+2a +

2B=2f +a+

a’+4c 3%a’+4c  5%a’+4c

2C=2f +3a+
A4f +6a + 4f +6a + 4f +6a +

a’+4c 3%a’+4c  5%a’+4c
4f +10a + 4f +10a + 4f +10a +

2D=2f +5a+

a’+4c 3%a’+4c 5%°a’+4c

2E=2f +7a+
4f +14a + 4f +14a + 4f +14a +

and so forth.

Section 24.

With AB+ f?+c, BC=(f +a)>+cCD=(f +2a)’* +c, DE =(f +3a)* +c¢

Euler has
2 2 2
A:f +c' B:(f+a) +c’C:(f+2a) +C,etc.,so
B D
A_f2+c_ f?+c _ (f°’+c)C _ (f?+c) (f+2a)’+c
B (f+a)’+c (f+a)’+c ((f+a)’+c) '
C
Section 25.

The product emerging is



_ (f?+c) (f+2a)°+c (f+4a)+c (f+6a)°+c
((f+a)?+c) (f+3a)’+c (f+5a)°+c (f+7a)+c

This product will not converge as written. Squaring we can write

(ff +c)((f +2a)° +c) ((f +2a)° +c)((f +4a)’ +c) etc

A% = (ff +c)- 5 5 5 5
((f+a) +c)(f+a)°+c) ((f+3a)°+c)((f+3a)°+c)

which does converge.

Case 1 in whichc=-bb
Section 26.
Replacing ¢ by —b? in the previous general continued fraction Euler gets

a’—-4b*> 3?a®*-4b®> 5%°a’-4b’

2A=2f —a+
4f -2a + 4f-2a + 4f-2a +

which can also be written as

(a+2b)(a—2b)

(3a+ 2b)(3a—2b)
(5a + 2b)(5a — 2b)

a4 (7a+2b)(7a—2b)
4f —2a+eftc...

2A=2f —a+
4f —2a+

4f —2a+

4f -2

In a similar way the infinite product becomes

_(f+b)(f+2a-b) (f+2a-b)(f+da-b)
(f +a+b)(f +a—b) (f+3a+b)(f +3a—-b)

A=(f-b)

o (f+2a+b)(f +4a-b)

There is a misprint in the last factor._It should .
(f +3a+b)(f +3a—h)

Section 27.

This section is a slight variation on section 16. Euler obtains

f+a+b f+3a+b f+5a+b J- X" OX _J-x”b‘lax

f+b f+2a+b f+da+h [a=x=) ‘V1-x=

14
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And

f +2a-— b f +4a— b f +6a— b

J. X" OX _I Ha_b_l@x
f+a-b f+3a-b f+5a-b + fi_

\/1x

Dividing these he gets

f +a—b—16X f +b—1aX
~b)- j

JI-x2 A 1-x®
Note that this time he has the correct factor (f —b) which he neglected in section 17
when b =0.
Section 28.

Euler exhibits the special case of

a’—-4b*> 3?a®*-4b®> 5%°a’-4b?

2A=2f —a+
4f -2a + 4f -2a + 4f-2a +

From section 26 with f =2, a=b=1, he gets

oA=3_> 2 2L 45 1

6+6+6+6+6+
He can also write the infinite product

133 5-5 7-7 9-9
2.4 4.6 6-8 810

He also writes A as a ratio of integrals.
(The remaining sections of this paper may have been included to show the
usefulness of complex variables.)
Case 2 in which c =+ bb

Section 29.

Now Euler sets ¢ =b? in
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a’+4c 3%a’+4c 5%°a’+4c
4f —2a + 4f-2a + 4f-2a + '

2A=2f —a+

to get

a?+4b®> 3%a’+4b* 5%a’+4b? N
4f —2a + 4f-2a + 4f-2a +

(29.1) 2A=2f-a+

In the infinite product from section 26

). (f+D)(F+2a-b) (f+2a-b)(f+da-b)

A=(f -
(f +a+b)(f +a—b) (f +3a+b)(f +3a—h)

etc...

he can replace b by either +bi or —bi to get

(29.2)

e o (FHbV=D)(f +2a-bV=1) (f +2a+bJ-1)(f +4a-bV-1)
A=(f-by-1) (f +a+bv=1)(f +a—bv=1) (f +3a+bvy-1)(f +3a—bv-1) ete-

and

(29.3)

~ —  (f —bJ=1)(f +2a+bV=1) (f +2a-bJ=1)(f +4a+bJ-1)
A=(f b)) (f +a—byvy-1)(f +a+bv=1) (f +3a—bv-1)(f +3a+bv/-1) et
Multiplying (29.2) times (29.3) he gets

(ff +bb)((f +22)° +bb)  ((f +2a)° +bb)((f +4a) +bb)
((f +a)? +bb)((f +a)2 +bb ((f +3a)2 +bb)((f +3a)2+bb)

A? = (ff +bb)
which is the same as his product in section 25 with ¢ =b?”.
Section 30.

Euler replaces b by bi in

X f+a—b—lax . X f+b—1ax
Ji-x%2 7 1-x®

A=(f-b)-|



from section 27 and he gets

f—1+b\/jlax

f+a—1—b\/jlax . X

(30.4) A=(f ~b/-D)[*

1_ X2a ) 1_ X2a )
Next he replaces b by —bi to get

f+a-1+bv-1 8X f-1-byv/-1 8X

}1_ X2a ) [1_X2a )

(302) A=(f +b/=D)[*

Section 31.

Euler multiplies (30.1) times (30.2) to get,

f+a-1-b/—1 ox X f+a—l+b\/jléx

X
2 _ 1-x? V1-—x*
(31.1) A° =(ff +bb) M ET Y=o Yy,

[1_X2a . [1_X2a

Section 32.

In the denominator of (31.1) Euler sets X X _4v and gets

/1_ X2a

jx*bﬁav -Ix’bﬁav_
Now he makes the substitutions
The sum: j(xbﬁ +x TV = p
Difference: j(be1 —x eV =g
and gets
(32.1) [(x"ov [x oV = @

Section 33.

Euler sets x = exp(logx) in p and q of the previous section to get

17



D :J'(eblogx\/z +e—blogxﬁ)av’

q=[ (" —e oy,

Using the identities

e? L ye 1 =2cosg and et —e L =24/~ 1sing
with ¢ =blogxhe has

p= 2j8V cos¢ and q = 2\/—_1jav sing.
Using (32.1) he gets

(33.1) @ = (JV cosp)? + ([ oV sing)?

which is the denominator of (31.1).

Section 34.
The same argument with numerator of (31.1) would have given Euler
(jxaav cos@)® + (jxaav sing)®

and thus (31.1) can be expressed as

(| x*aV cosg)? + (| x*aV sing)?
(Jov cosg)® +(jav sing)?

(34.1) A% = (ff +bb)

x ox

/l_ XZa

where we recall oV = and ¢ =Dblogx.

Section 35.

Euler remarks briefly on the integrals

f-1 f-1 .
J~x oxcos(blogx) and _[X oxsin(blogx)

ll_XZa /1_X2a

Section 36.
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Using integration by parts Euler gets

Xf
ff +bb

(36.1) [x'"oxcosblx= (f cos(ologx) + bsin(blogx));.

and

f
(36.2) Ixf’laxsin(b logx) = X—(f sin(blogx) —bcos(blogx))
ff +bb
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