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§. 1. Having recently revealed that the nature of curves can very adequately be expressed by the

relationship between the arc length of the curve itself and its amplitude, it occurred tome that Imight

apply this same reasoning to the equilateral hyperbola, which may be expressed by the equation

yy = xx − 1. Therefore let CB be the axis of this hyperbola, with point C its center and A its vertex,

and let CA = 1 be the semiaxis. Now from the point M of the curve, draw the ordinate MP, so that

CP = x is the abscissa and PM = y the ordinate, and that y =
√
xx − 1. From now on let the line CV

be the asymptote of this hyperbola, with the axis establishing an angle with the semirectum, from

which an ordinate from PM to the asymptote at S is induced at every point, so that PS = CP = x

and CS = x
√
2.

§. 2. Now, further, let AM = s be the arc of the hyperbola, draw the normal to the curveMN , and

let the angle ANM = ϕ be called the amplitude of the arc AM. Now since y∂y = x∂x, PN = x = CP
is the subnormal, and from this we see that tan ϕ = y

x =
√

xx−1
x , from which the amplitude may be

expressed by the quantity x, so that xx = cos2 ϕ
cos2 ϕ−sin2 ϕ . And so x = cosϕ

√

cos2ϕ
, from which it is deduced

that ∂x = ∂ϕ(cos ϕ sin 2ϕ−sin ϕ cos 2ϕ)
cos 2ϕ

√

cos 2ϕ
. Therefore since ∂x

∂s = sin ϕ then ∂s = ∂x
sin ϕ , and so ∂s =

∂ϕ
cos 2ϕ

√

cos 2ϕ
,

which is the differential equation between an arc of the curve s and its amplitude ϕ.

1Translator’s note: The original paper includes typesetting instruction for a figure, but no figure is included in the pub-

lication. The figure included here is an attempted recreation of the missing illustration.
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§. 3. I can now easily express the length of the arc s by its amplitude ϕ. I set

s = z√
cos 2ϕ

, and so ∂s = ∂z cos 2ϕ + z∂ϕ sin 2ϕ
cos 2ϕ

√
cos 2ϕ

,

whence the quantity z can be isolated from this equation:

∂ϕ = ∂z cos 2ϕ + z∂ϕ sin 2ϕ

through the integration of which I produce this series:

z = A sin 2ϕ + B sin 6ϕ + C sin 10ϕ + etc.

Indeed, it will soon be made clear that the angle must first be increased by 4ϕ. Since it must be that

1 = ∂z
∂ϕ

cos 2ϕ + z sin 2ϕ ,

we must first have that

∂z
∂ϕ
= 2Acos 2ϕ + 6B cos 6ϕ + 10C cos 10ϕ + etc.

from which, together with

cos 2ϕ cos nϕ = 1
2
cos (n − 2) ϕ + 1

2
cos (n + 2) ϕ ,

we see that
∂z
∂ϕ cos 2ϕ = A+ Acos 4ϕ + 3B cos 8ϕ + 5C cos 12ϕ

+ 3B + 5C + 7D
etc.

In the same way by putting

sin 2ϕ sin nϕ = 1
2
cos (n − 2)ϕ − 1

2
cos (n + 2)ϕ

we recover
z sin 2ϕ = 1

2A−
1
2Acos 4ϕ − 1

2B cos 8ϕ −
1
2C cos 12ϕ

+ 1
2B + 1

2C + 1
2D

etc.

and therefore adding these series will produce another series with the equation:

1 = 3
2A+ (

1
2A+

7
2B) cos 4ϕ + (

5
2B +

11
2 C) cos 8ϕ

+ ( 92C +
15
2 D) cos 12ϕ + (

13
2 D +

19
2 E) cos 16ϕ + etc.
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§. 4. Thus the ordered sequence of coefficients is duly given by equality:

A = 2
3
, B = − 1

7
A,C = − 5

11
B,D = − 9

15
C , E = − 13

19
D, etc.

and by the substitution of these values we stumble upon this equation:

z = A(sin 2ϕ − 1
7
sin 6ϕ + 1

7
⋅ 5
11
sin 10ϕ − 1

7
⋅ 5
11
⋅ 9
15
sin 14ϕ + etc.)

where I have factored A = 2
3 . This series is rendered z = 0 by the vanishing of ϕ, so that s = 0

by its very nature. On the other hand if this curve is extended to infinity, so that the curve might

be confused with its asymptote, the amplitude will be ϕ = 45○, from which sin 2ϕ = 1, sin 6ϕ =
−1, sin 10ϕ = 1, sin 14ϕ = −1, and so on. This being the case, the equation for z becomes:

z = A(1 + 1
7
+ 1
7
⋅ 5
11
+ 1
7
⋅ 5
11
⋅ 9
15
+ 1
7
⋅ 5
11
⋅ 9
15
⋅ 13
19
+ etc.)

the sum of which is clearly finite, yet the denominator goes to zero so that the arc s itself will have

infinite magnitude, which is made evident from the equation s = z
√

cos 2ϕ
since cos 2ϕ = cos 90○ = 0.

§. 5. Refer now in the figure to the point E at the infinite end of the hyperbola, which corresponds

asymptotically to the point V.The entire arc is given byAE = z
√

cos 2ϕ
, extending the amplitude so that

2ϕ = 90○, and thus the interval CS = x
√
2 = cos ϕ

√

2
√

cos 2ϕ
is asymptotic as ϕ = 45○, and CV = 1

√

cos 2ϕ
will

be infinite in length. On the other hand it is well known that the difference between the curve AME

and the line CV is finite, and the curve AE is obviously less than the line CV , and (if a perpendicular

AD is drawn from A to CV ) greater than the line VD. Therefore let CV − AE = ∆, where it suffices

to know that ∆ is a finite quantity. Therefore this gives 1−z
√

cos 2ϕ
= ∆, and so z = 1 − ∆

√
cos 2ϕ and

consequently, since
√
cos 2ϕ = 0, we have z = 1. From this we may conclude, having discovered the

sum of the series for z in the case that ϕ = 45○, that z is precisely 1. So now multiplying through by
3
2 we have

1 + 1
7
+ 1
7
⋅ 5
11
+ 1
7
⋅ 5
11
⋅ 9
15
+ etc. = 3

2
,

and thus subtracting 1 from both sides gives

1
7
+ 1
7
⋅ 5
11
+ 1
7
⋅ 5
11
⋅ 9
15
+ etc. = 1

2
,

a series which I do not recall ever having seen committed to record.
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§. 6.Therefore to verify the series arising from this summation, I carefully employed the following

familiar method. I put

s = 1
7
x7 + 1

7
⋅ 5
11
x11 + 1

7
⋅ 5
11
⋅ 9
15
x15 + etc.

so that putting x = 1 results in the above series. Therefore by differentiating we get:

∂s
∂x
= x6 + 1

7
⋅ 5x10 + 1

7
⋅ 5
11
⋅ x14 + etc.

Next it is true that
s
xx
= 1
7
x5 + 1

7
⋅ 5
11
x9 + 1

7
⋅ 5
11
⋅ 9
15
x13 + etc.

and likewise by differentiating

1
∂x
⋅ ∂ ⋅ s

xx
= 5
7
x4 + 1

7
⋅ 5
11
⋅ 9x8 + 1

7
⋅ 5
11
⋅ 9
15
⋅ 13x12 + etc.

which series, drawn to x6 and subtracted from the former differentiated series yields ∂s
∂x −

x6
∂x ⋅∂ ⋅

x
xx =

x6. It follows that the equation is finite, from which the value of s itself may be obtained.

§. 7. Following this fact produces the sum of this differential equation:

∂s − x4∂s + 2x3s∂x = x6∂x .

Dividing this equation by s (1 − x4) thus produces

∂s
s
+ 2x3∂x
1 − x4 =

x6∂x
s (1 − x4) ,

which as an equation of the prior type is integrable. Indeed, the integral is

log s − 1
2
log 1 − x4 = log s√

1 − x4
,

which is obtained because:

∂ log
s√

1 − x4
= x6∂x
s (1 − x4) .

This integrable equation can then be multiplied by s
√

1−x4
, whose right hand side may likewise be

integrated. Thus we have
s√

1 − x4
∂ log

s√
1 − x4

= x6∂x

(1 − x4)
3
2
,
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which equation, by putting for brevity s
√

1−x4
= v, is of this form:

d∂ ⋅ log v = ∂v = x6∂x

(1 − x4)
3
2
,

whence therefore

v = s√
1 − x4

= ∫
x6∂x

(1 − x4)
3
2
.

§. 8. However it is easy to see that this last integral does not admit an algebraic solution. How-

ever in the mean time this equation reduces to a simpler form by employing the following method.

Namely we put

∫
x6∂x

(1 − x4)
3
2
= αx3√

1 − x4
+ β∫

xx∂x√
1 − x4

,

and differentiating gives

∫
x6∂x

(1 − x4)
3
2
= 3αxx∂x√

1 − x4
+ 2αx6∂x

(1 − x4)
3
2
+ βxx∂x√

1 − x4
,

which equation multiplied through by

(1 − x4)
3
2

produces

x6 = (3αβ) xx − (α + β) x6 ,

whence it is easily seen that we ought to set α + β = −1 and 3α + β = 0, yielding α = 1
2 and β = − 3

2 ,

and thus we have

∫
x6∂x

(1 − x4)
3
2
= x3

2
√
1 − x4

− 3
2 ∫

xx∂x√
1 − x4

,

and so

s = 1
2
x3 − 3

2
√
1 − x4∫

xx∂x√
1 − x4

.

§. 9. Nevertheless this last integral ∫ xx∂x
√

1−x4
cannot be obtained. However, it is easy to see that

for such an integral, for the case x = 1, the value must be finite, which suffices for our present

situation. Therefore let this finite value be given by the formula ∫ xx∂x
√

1−x4
= ∆, and by putting x = 1

the discovered equation will give s = 1
2 , which is the sum that our earlier series supplied.

§. 10. Therefore a similar operation may be employed to extend this method to many other sum-

mations of more general series, so we undetake the following problem:
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Problem.
To find the sum of the following infinite series:

a
b
+ a
b
⋅ a + θ
b + θ +

a
b
⋅ a + θ
b + θ ⋅

a + 2θ
b + 2θ + etc.

Solution.
§. 11. We state as before

s = a
b
xb + a

b
⋅ a + θ
b + θ x

b+θ + a
b
⋅ a + θ
b + θ ⋅

a + 2θ
b + 2θ x

b+2θ + etc.

in which, therefore, we examine the case x = 1. Now truly when differentiated this series will give

∂s
∂x
= axb−1 + a

b
⋅ (a + θ) xb+θ−1 + a

b
⋅ a + θ
b + θ ⋅ (a + 2θ) x

b+2θ−1 + etc.

Then multiply the series itself by xa−b+θ , giving

xa−b+θ ⋅ s = a
b
xa+θ + a

b
⋅ a + θ
b + θ x

a+2θ + a
b
⋅ a + θ
b + θ ⋅

a + 2θ
b + 2θ x

a+3θ + etc.

which by differentiating yields:

1
∂x

∂⋅xa−b+θ ⋅s = a
b
(a + θ) xa+θ−1+ a

b
⋅ a + θ
b + θ (a + 2θ) x

a+2θ−1+ a
b
⋅ a + θ
b + θ ⋅

a + 2θ
b + 2θ (a + 3θ) x

a+3θ−1+etc.

Multiplying by xb−a and subtracting from the above eliminates all of the terms of this series after

the first; giving
∂s
∂x
− xb−a

∂x
∂ ⋅ xa−b+θ ⋅ s = axb−1 ,

which is, therefore, a finite equation, from which the unknown s may be obtained.

§. 12. Therefore the fact may be reduced to this differential equation:

∂s (1 − x) − (a − b + θ) sxθ−1∂x = axb−1∂x ,

which we divide by s (1 − xθ), so that we might obtain

∂s
s
− (a − b + θ) x

θ−1∂x
(1 − xθ)

= axb−1∂x
s (1 − xθ)

,

where the integral of the left term is

log s + a − b + θ
θ

log (1 − xθ) , or
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log s − b − a − θ
θ

log (1 − xθ) .

We will soon see that the sum of this series will not be finite, unless b > a + θ. To this end we put

s

(1 − xθ)
b−a−θ

θ

= v

so that the left member gives ∂ log v , and the equation becomes

∂ ⋅ log v = axb−1∂x
s (1 − xθ)

,

which multiplied by v avoids the integration, giving

v ⋅ ∂ log v = ∂v = axb−1∂x

(1 − xθ)
b−a
θ

,

of which the integral is

v = s

(1 − xθ)
b−a−θ

θ

= a∫
xb−1∂x

(1 − xθ)
b−a
θ

.

§. 13. For the sake of brevity we put b−a−θ
θ = n, so that b = nθ + a + θ , or a = b − θ − nθ, and thus

our equation becomes
s

(1 − xθ)n
= a∫

xb−1∂x
(1 − xθ)n+1

.

Now we may employ the reasoning seized upon above, putting

∫
xb−1∂x
(1 − xθ)n+1

= αxb−θ

(1 − xθ)n
+ β∫

xb−θ−1∂x
(1 − xθ)n

,

which by differentiating gives

xb−1

(1 − xθ)n+1
= α (b − θ) xb−θ−1

(1 − xθ)n
+ nαθxb−1

(1 − xθ)n+1
+ βxb−θ−1

(1 − xθ)n
,

which equation, multiplied by (1 − xθ)n+1, gives:

xb−1 = [α (b − θ) + β] xb−θ−1 − [α (b − θ) − nαθ + β] xb−1 ,

from which it follows that we ought to let α = 1
nθ and β = − b−θ

nθ . Thus this equation for x, multiplied

by (1 − xθ)n+1, will give

s = a
nθ

xb−θ − a (b − θ)
nθ

(1 − xθ)n ∫
xb−θ−1∂x
(1 − xθ)n

.
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§. 14. On the other hand because this is true for the right hand side, even though the summation

cannot be determined, because it has (1 − xθ)n in the denominator of the differential it is certain

that in the integral, as one can show, the denominator will contain (1 − xθ)n−1, which obviously

has power one less than the preceding. So one is safe to assume that the integral will have the form
Q

(1−xθ)n−1
, where it suffices to know that the denominator inQ does not contain anymore than 1−xθ .

By the substitution of this value we have:

s = a
nθ

xb−θ − a (b − θ)
nθ

(1 − xθ)Q .

§. 15. Now having examined the sum of the series more generally, we will coax the sum of the

proposed series, by letting x = 1. Moreover it will be shown that s = a
nθ , so that the unknown

quantity Q utterly disappears. Therefore for the sake of brevity we let n = b−a−θ
θ , so that the sum of

our series = α
b−a−θ , from which we deduce the following

Theorem.
If this infinite series be proposed:

a
b
+ a
b
⋅ a + θ
b + θ +

a
b
⋅ a + θ
b + θ ⋅

a + 2θ
b + 2θ + etc.

its sum is always = a
b−a−θ ; from which it follows, unless it be that b > a + θ, that this series does not

have a finite sum, but will be infinite.

§. 16. Therefore, with this sum having been broadly stated, it is helpful to observe that it contains

a most well-known series, namely that which is born from the expansion of the binomial. If we

expand the binomial (1 − x)
a
b , and let b > a, it will form the following series:

(1 − x)
a
b = 1 − a

b
x + a (b − a)

b ⋅ 2b x2 − a (b − a) (2b − a)
b ⋅ 2b ⋅ 3b x3 + etc.

Thus if we let x = 1, we obtain this series

1 = a
b
+ a
b
⋅ b − a

2b
+ a
b
⋅ b − a

2b
⋅ 2b − a

3b
+ etc.

which agrees remarkably well with our theorem. If we multiply it by b
a , it will give

b
a
= 1 + b − a

2b
+ b − a

2b
⋅ 2b − a

3b
+ etc. ,
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and therefore
b
a
− 1 = b − a

2b
+ b − a

2b
⋅ 2b − a

3b
+ etc.

If we compare this series with our general one, we see that ours had a where this has b − a, where
ours had b this has ab, and where ours had θ this has b. Further when our sum had a

b−a−θ , the

present sum has now b−a
a , which agrees most beautifully.

§. 17. Moreover this can be applied to the sum of more general series, in which an infinite number

of variables occur, as I will show in the following theorem.

GeneralTheorem.
If the variables a, b, c, d , etc. with θ denote as many values as are needed by this series, whether it

runs on infinitely, or terminates at any point:

a
b + θ +

a
b + θ ⋅

b
c + θ +

a
b + θ ⋅

b
c + θ ⋅

c
d + θ + etc.

the sum is always a
θ .

Truly that method shown above is in no way permitted by Analysis; however from the princi-

ples of common Algebra will I exhibit two proofs: the former from the composition of the series

itself, whence I will derive the expression a
θ as the sum of the proposed series, and the other from a

consideration of the sum of the series.

First Proof.
§18. This proof is most obviously obtained from the following considerations. Namely put:

I○. a
θ =

a
b+θ +

p
θ , which gives p = ab

b+θ ,

II○. p
θ =

p
c+θ +

q
θ , which gives q = cp

c+θ ,

III○. q
θ =

q
d+θ +

r
θ , which gives r = dq

d+θ ,

etc.

proceeding in this way as long as needed.

§. 19. Now if we here substitute for the constant p, we will have this equation: a
θ =

a
b+θ +

a
b+θ ⋅

b
θ .

Further, if we substitute for the constant q, it gives p
θ =

p
c+θ +

cp
(c+θ)θ , so that

a
θ
= a
b + θ +

a
b + θ ⋅

b
c + θ +

a
b + θ ⋅

b
c + θ ⋅

c
θ
.
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If still further we substitute for the constant r it gives:

a
θ
= a
b + θ +

a
b + θ ⋅

b
c + θ +

a
b + θ ⋅

b
c + θ ⋅

c
d + θ +

a
b + θ ⋅

b
c + θ ⋅

c
d + θ ⋅

d
θ

and so on. From this it is clear that the sum, continued even to an infinite number of terms, will

always have a value. Indeed this is so, since the final term differs from the residue by such a small

amount that this infinitessimal term clearly should not be counted. For, since all the factors in the

numerator are smaller than those in the denominator, it is obvious that the value of the infinitessimal

term all but disappears.

Alternate Proof.
§. 20. Now I seek to examine the sum of this series, which = s. To this end I split the final factors

of each term into two parts, in the following manner:

I○. a
b+θ =

a
θ −

ab
(b+θ)θ ,

II○. b
c+θ =

b
θ −

bc
(c+θ)θ ,

III○. c
d+θ =

c
θ −

cd
(d+θ)θ ,

etc.

§. 212. Now if I introduce values in place of the final terms of our series by dividing them into two

factors, I obtain the following:

s = a
θ + a

b+θ ⋅
b
θ + a

b+θ ⋅
b

c+θ ⋅
c
θ etc.

− ab
(b+θ)θ −

a
b+θ ⋅

bc
(c+θ)θ −

a
b+θ ⋅

b
c+θ ⋅

cd
(d+θ)θ

where clearly each negative term is cancelled by a positive, so that the first positive and final negative

term are all that remain. However if this series is carried through to infinity, in the manner I have

observed, the final term will go to zero, the numerator being infinitely less than the denominator.

Therefore the entire sum can be rewritten as s = a
θ .

§. 22. This final sum I recall having already posed to my rivals: however I cannot remember it

ever having been released to the public. Indeed in an exchange of letters forty years ago with the late

honorable Goldbach III, thesematters frequently arose, wherefore I do not doubt but that geometers

will find this discovery benign.

2Translator’s note: In the original manuscript, this section is mistakenly numbered as 20.
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