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Summary

The general rules given for the solution of equations not being applicable for equations
that go beyond the fourth degree, it is of the utmost importance to distinguish those equa-
tions of higher orders that can be solved. Their number is infinitely large. Several Ge-
ometers, and particularly the Author himself of this Treatise, have previously cited some
solvable equations of all degrees, to say nothing of either equations that have rational roots
or of those which may be resolved into factors and reduced thus to the forms of equations
solvable by the general rules.

In the present Treatise, the late M. EULER has given again an infinite number of algebraic
equations of which all the roots can be assigned. All these equations are contained in the
following general form

xn = n′′ab

(
a− b
a− b

)
xn−2 + n′′′ab

(
a2 − b2

a− b

)
xn−3 + n′′′′ab

(
a3 − b3

a− b

)
xn−4 + etc.,

where the letters n′′, n′′′, n′′′′ etc. indicate the second, third, fourth etc. coefficient of the
binomial raised to the nth power 2; and one of the roots of this equation of the order n is

b n

√
a
b − a

1− n

√
a
b

,

Translation c©2014 T. Christine Stevens. All rights reserved.
1The translators have incorporated the footnotes by Paul Stäckel in the version that appears in Vol. I.6

of Euler’s Opera Omnia.
2Translators: That is, n′′ = n(n−1)

1·2 , which is the coefficient of xn−2 in the expansion of (1 + x)n; and

n′′′ = n(n−1)(n−2)
1·2·3 , which is the coefficient of xn−3 in that expansion; and so on.

1



2 LEONHARD EULER

where n
√

a
b admits n different values so that one will also obtain all the n roots of the

mentioned equation of the nth degree.
This truth is drawn from the consideration of this equation (a+xb+x )n = a

b ; for one extracts

thence a+x
b+x = n

√
a
b and proceeding

x =
b n

√
a
b − a

1− n

√
a
b

,

and developing thence the assumed equation

b(a+ x)n = a(b+ x)n

it will take the form expounded above

xn = n′′ab

(
a− b
a− b

)
xn−2 + n′′′ab

(
a2 − b2

a− b

)
xn−3 + etc.

One could conjecture that the consideration of this equation
(
f+x
g+x

)n
= a

b could lead to

some different and more general forms of resolvable equations; but the Author, to prevent
this error, shows that however different from a and b may be the quantities f and g, this
equation always allows itself to be reduced to the previous [one].

Finally, M. EULER observes in the forms of roots found for the equations contained in
his general equation, a new confirmation of the conjecture that he had formerly proposed,3

concerning the solution of equations in which the second term is absent, as for example, in
this

xn = pxn−2 + qxn−3 + rxn−4 + etc.,

while maintaining that any such equations were always solvable by means of a resolvent
equation4 of one degree lower of the form

yn−1 −Ayn−2 +Byn−3 − Cyn−4 + etc. = 0,

the form of the root being

x = n
√
α+ n

√
β + n

√
γ + n

√
δ + etc.,

where α, β, γ, δ etc. indicate the roots of the resolvent equation, which are n−1 in number.

3Stäckel points to E30.
4Translators: In translating the phrase as “a resolvent equation”, we have corrected a misprint in the

version of the summary that appears in Euler’s Opera Omnia, which reads “une équations résolvante”,
whereas the summary in Nova acta academiae scientiarum Petropolitanae reads “une équation résolvante”.
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Infinitely Many Forms of Equations of All Orders,
the Solution of Which Can Be Exhibited

1. Since general rules for the solution of equations do not extend beyond the fourth
degree, it will be of the greatest import to have noted, of equations of this type, the forms
that permit solutions. Here, however, I speak of equations of this type, which neither have
rational roots nor can be solved through factors into equations of lower degrees, since it
would be very easy to produce infinitely many solvable equations of this kind. For this
reason, the appearances of equations of this kind ought to be thought worthy of attention,
whose solution necessarily demands the extraction of roots of the same order as the equation
itself.

2. Equations of this type have previously been published by de Moivre5 for individual
orders, by means of which analytical knowledge should deservedly be thought to have been
amplified in no small measure; thereupon indeed I myself have brought to light more such
equations;6 recently, however, a method has occurred to me of eliciting countless other
equations of this kind, which I hope will be not at all unwelcome to Geometers.

3. Therefore, I shall propose these forms of equations, just as I have been led to them,
here in order.

I. If x2 = ab, it will be the case that x =
√
ab.

II. If x3 = 3abx+ ab(a+ b), it will be the case that x = 3
√
aab+ 3

√
abb.

III. If x4 = 6abxx+ 4ab(a+ b)x+ ab(aa+ ab+ bb), it will be the case that

x =
4
√
a3b+

4
√
aabb+

4
√
ab3.

IV. If

x5 = 10abx3 + 10ab(a+ b)xx+ 5ab(aa+ ab+ bb)x+ ab(a3 + aab+ abb+ b3),

it will be the case that

x =
5
√
a4b+

5
√
a3bb+

5
√
aab3 +

5
√
ab4.

V. If
x6 = 15abx4 + 20ab(a+ b)x3 + 15ab(aa+ ab+ bb)xx

+ 6ab(a3 + aab+ abb+ b3)x+ ab(a4 + a3b+ aabb+ ab3 + b4),

it will be the case that

x =
6
√
a5b+

6
√
a4bb+

6
√
a3b3 +

6
√
aab4 +

6
√
ab5.

VI. If

x7 = 21abx5 + 35ab(a+ b)x4 + 35ab(aa+ ab+ bb)x3 + 21ab(a3 + aab+ abb+ b3)xx

+ 7ab(a4 + a3b+ aabb+ ab3 + b4)x+ ab(a5 + a4b+ a3bb+ aab3 + ab4 + b5),

5Stäckel points to A. de Moivre’s Aequationum Quarundam Potestatis Tertiae, Quintae, Septimae, Nonae,
et Superiorum, ad Infinitum Usque Pergendo, in Terminis Finitis, ad Instar Regularum pro Cubicis Quae
Vocantur Cardani, Resolutio Analytica, Philosophical Transactions (London) 25, 1707, pp. 2368-2371.

6Stäckel points to §41 and the subsequent sections of E282.
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it will be the case that

x =
7
√
a6b+

7
√
a5bb+

7
√
a4b3 +

7
√
a3b4 +

7
√
aab5 +

7
√
ab6.

4. Hence it is now easily inferred that in general for any order

xn =
n(n− 1)

1 · 2
abxn−2 +

n(n− 1)(n− 2)

1 · 2 · 3
ab(a+ b)xn−3

+
n(n− 1)(n− 2)(n− 3)

1 · 2 · 3 · 4
ab(aa+ ab+ bb)xn−4

+
n(n− 1)(n− 2)(n− 3)(n− 4)

1 · 2 · 3 · 4 · 5
ab(a3 + aab+ abb+ b3)xn−5 + etc.

it will be the case that

x =
n
√
an−1b+

n
√
an−2bb+

n
√
an−3b3 +

n
√
an−4b4 + etc.

Or if we should write in place of those coefficients, for the sake of brevity, nII , nIII , nIV ,
nV , nV I etc., this general equation will be able to be more succinctly expressed as follows

xn = nIIab

(
a− b
a− b

)
xn−2 + nIIIab

(
a2 − b2

a− b

)
xn−3 + nIV ab

(
a3 − b3

a− b

)
xn−4

+ nV ab

(
a4 − b4

a− b

)
xn−5 + nV Iab

(
a5 − b5

a− b

)
xn−6 + etc.;

then indeed the root itself will also be able to be more elegantly expressed, so that it is the
case that

x =
a n
√
b− b n

√
a

n
√
a− n
√
b
,

which therefore is a general equation extending to all orders.

5. One may change these equations into another form whereby the artifice which has led
to that result is more concealed. Indeed let us set the product of the letters a and b, ab = p
and their sum a + b = s, and introduce these two letters p and s in place of a and b into
the computation; then, moreover, it will be the case that

a =
s+
√
ss− 4p

2
and b =

s−
√
ss− 4p

2
.

With the introduction now of these new values the special equations above will take on the
following forms:

I. If x2 = p, it will be the case that x =
√
p.

II. If x3 = 3px+ ps, it will be the case that

x =
3
√
aab+

3
√
abb = 3

√
ap+ 3

√
bp.
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III. If x4 = 6pxx+ 4psx+ p(ss− p), it will be the case that

x = 4
√
aap+ 4

√
abp+ 4

√
bbp.

IV. If x5 = 10px3 + 10psxx+ 5p(ss− p)x+ p(s3 − 2sp), it will be the case that

x = 5
√
a3p+ 5

√
ap2 + 5

√
bp2 + 5

√
b3p.

V. If x6 = 15px4 + 20psx3 + 15p(ss− p)xx+ 6p(s3− 2ps)x+ p(s4− 3ps2 + pp), it will be
the case that

x = 6
√
a4p+ 6

√
aapp+ 6

√
p3 + 6

√
bbpp+ 6

√
b4p.

VI. If
x7 = 21px5 + 35psx4 + 35p(ss− p)x3 + 21p(s3 − 2ps)xx

+ 7p(s4 − 3pss+ pp)x+ p(s5 − 4ps3 + 3pps),

it will be the case that

x = 7
√
a5p+ 7

√
a3pp+ 7

√
ap3 + 7

√
bp3 + 7

√
b3pp+ 7

√
b5p

etc.

6. So that we may now restore this general form, we must observe that the new coefficients
contained in the letters p and s constitute a recurrent series whose scale of relation7 is s,
−p. For if we set

Q =
aλ − bλ

a− b
, Q′ =

aλ+1 − bλ+1

a− b
and Q′′ =

aλ+2 − bλ+2

a− b
,

it will clearly be the case that

Q′′ = sQ′ − pQ;

for because s = a+ b, it will be the case that

sQ′ =
aλ+2 + baλ+1 − abλ+1 − bλ+2

a− b
,

but because p = ab, it will be the case that

pQ =
aλ+1b− abλ+1

a− b
,

which form having been subtracted from the previous one, what remains will be

7Translators: That is, if Q, Q′, and Q′′ are consecutive terms in the sequence {a
λ−bλ

a−b
}, then Euler claims

that Q′′ can be obtained from the two preceding terms by means of the equation Q′′ = sQ′−pQ. Regarding
recurrent series and indices or scales of relations, Stäckel refers the reader to two works by A. de Moivre
(1667-1754): De fractionibus algebraicis radicalitate immunibus ad fractiones simpliciores reducendis, deque
summandis terminis quarumdam serierum aequali intervallo a se distantibus, Philosophical Transactions
(London) 32 (1722/3), 1724, numb. 373, p. 162, especially p. 176; and Miscellanea analytica de seriebus
et quadraturis, London, 1730, p. 27. Stäckel also cites Vol. 1 of Euler’s Introductio in analysin infinitorum
[E101], Chapters IV, XIII, and XVII.
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sQ′ − pQ =
aλ+2 − bλ+2

a− b
.

Thus, having observed this law, we shall have the following transformations:

a−b
a−b=1, a5−b5

a−b =s4 − 3pss+ pp,

a2−b2
a−b =s, a6−b6

a−b =s5 − 4ps3 + 3pps,

a3−b3
a−b =ss− p, a7−b7

a−b =s6 − 5ps4 + 6ppss− p3,

a4−b4
a−b =s3 − 2sp, a8−b8

a−b =s7 − 6ps5 + 10pps3 − 4p3s

etc.

7. The order by which these formulae progress is now sufficiently clear. For first the
powers of this s decrease constantly by two, whereas the powers of this p increase by one
with alternating signs;8 moreover, the numeric coefficients of each term coincide with those
which the same terms would have9 in the development of the binomial, or what amounts to
the same thing, they indicate all permutations of the letters p and s, so that the coefficient
of the term pαsβ is

=
1 · 2 · 3 · · · (α+ β)

1 · 2 · 3 · · ·α · 1 · 2 · 3 · · ·β
.

Hence then we have deduced the following general transformation

aλ+1 − bλ+1

a− b
= sλ − λ− 1

1
psλ−2 +

(λ− 2)(λ− 3)

1 · 2
ppsλ−4

− (λ− 3)(λ− 4)(λ− 5)

1 · 2 · 3
p3sλ−6 +

(λ− 4)(λ− 5)(λ− 6)(λ− 7)

1 · 2 · 3 · 4
p4sλ−8

− (λ− 5)(λ− 6)(λ− 7)(λ− 8)(λ− 9)

1 · 2 · 3 · 4 · 5
p5sλ−10 + etc.

8. But if then we should substitute these values in the general equation given in §4
above,10 the general equation whose solution one may display by this method will have such
a form as this

8Translators: That is, as one moves from one term to the next in the expression for aλ−bλ

a−b
, the power of

s goes down by 2 and the power of p increases by 1, with the signs of the terms alternating.
9Translators: We translate “essent habiturae” as if the Latin were “essent habituri,” to agree with “iidem

termini”.
10Translators: That is, substitute the values for aλ−bλ

a−b
into the second form of the general equation in

§4.
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xn =
n(n− 1)

1 · 2
pxn−2 +

n(n− 1)(n− 2)

1 · 2 · 3
psxn−3 +

n(n− 1)(n− 2)(n− 3)

1 · 2 · 3 · 4
p(ss− p)xn−4

+
n(n− 1)(n− 2)(n− 3)(n− 4)

1 · 2 · 3 · 4 · 5
p(s3 − 2ps)xn−5

+
n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)

1 · 2 · 3 · 4 · 5 · 6
p(s4 − 3pss+ pp)xn−6

+
n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)(n− 6)

1 · 2 · 3 · 4 · 5 · 6 · 7
p(s5 − 4ps3 + 3pps)xn−7 + etc.

Clearly the solution of this equation, whatever numbers may be taken for p and s, will
always be possible, for indeed its root, after these have been derived from the numbers p
and s

a =
s+
√
ss− 4p

2
and b =

s−
√
ss− 4p

2
,

will be expressed so that

x =
a n
√
b− b n

√
a

n
√
a− n
√
b
.

9. Indeed this formula gives us a single root of the proposed equation, but yet all roots of
the same equation clearly are easily deduced from it, the number of which is = n. For first,
letting b = ak, that root will be restored to a single radical sign, since hereby it becomes

x =
a n
√
k − b

1− n
√
k
.

Now in fact that root, namely n
√
k, admits distinct values numbering n, just as also the root

of the power n of unity, namely n
√

1, receives as many different values, of which one value
is always equal to unity itself. Whence if any of these values be designated by the letter ρ,
so that ρn = 1, that letter ρ will include n different values, any one of which one may join
with the formula n

√
k, namely by writing in its place ρ n

√
k, wherefore plainly all the roots

of the proposed equation will be contained in this formula

x =
ρa n
√
k − b

1− ρ n
√
k

or x =
ρa n
√
b− b n

√
a

n
√
a− ρ n

√
b

;

then truly if this formula be developed by division, the following expression will result

x = ρ
n
√
an−1b+ ρ2

n
√
an−2bb+ ρ3

n
√
an−3b3 + etc.,

of which expression the number of terms is n− 1, with the last being ρn−1
n
√
abn−1.

10. It will be worth the effort to have illustrated this matter with an example. Let us
then suppose n = 5, s = 1 and p = −1, so that this equation of the fifth degree is proposed

x5 = −10x3 − 10xx− 10x− 3
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or

x5 + 10x3 + 10xx+ 10x+ 3 = 0.

Thus to discover the roots of this equation, let these values be taken

a =
1 +
√

5

2
and b =

1−
√

5

2
,

upon the discovery of which, any root will be

x =
ρa 5
√
b− b 5

√
a

5
√
a− ρ 5

√
b
,

or, by introducing the letter k = b
a = −3+

√
5

2 , the result will be

x =
ρa 5
√
k − b

1− ρ 5
√
k
.

But if however we should wish to develop this form, because ab = p = −1, we shall find
that

x = −ρ 5
√
a3 + ρ2

5
√
a+ ρ3

5
√
b− ρ4 5

√
b3,

which expression, when completely developed in numbers, produces

x = −ρ 5

√
2 +
√

5 + ρ2
5

√
1 +
√

5

2
+ ρ3

5

√
1−
√

5

2
− ρ4 5

√
2−
√

5.

A DEMONSTRATION OF THE FORMULAE GIVEN ABOVE

11. The analysis that has led to these equations is very much accessible, such that it
seems to have scarcely anything mysterious about it; for it has been entirely derived from
this very simple equation

(a+ x)n

(b+ x)n
=
a

b
.

For since from this it turns out that

a+ x

b+ x
= n

√
a

b
,

thence is deduced the unknown 11

x =
a− b n

√
a
b

n
√

a
b − 1

=
a n
√
b− b n

√
a

n
√
a− n
√
b
,

which is the very root that we have assigned for the equations above.

11Translators: The x on the left side of this equation appears in the paper as published in Nova acta
academiae scientiarum Petropolitanae but was omitted in the version in Euler’s Opera Omnia.
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12. But if truly we should develop this assumed equation, since thence it ought to become
a(x+ b)n = b(x+ a)n or a(x+ b)n − b(x+ a)n = 0, from this the following equation will be
derived

axn +
n

1
abxn−1 +

n(n− 1)

1 · 2
abbxn−2 +

n(n− 1)(n− 2)

1 · 2 · 3
ab3xn−3 + etc.

−bxn − n

1
abxn−1 − n(n− 1)

1 · 2
aabxn−2 − n(n− 1)(n− 2)

1 · 2 · 3
a3bxn−3 − etc.

 = 0,

where the second members are mutually removed.12 Now because the first member is
affected by a − b, the remaining members may be transferred into the other part and
divided by a− b, and so the following equation will emerge13

xn =
n(n− 1)

1 · 2
ab

(
a− b
a− b

)
xn−2 +

n(n− 1)(n− 2)

1 · 2 · 3
ab

(
aa− bb
a− b

)
xn−3

+
n(n− 1)(n− 2)(n− 3)

1 · 2 · 3 · 4
ab

(
a3 − b3

a− b

)
xn−4 + etc.,

which is the very general equation treated above, whose root then is

x =
a n
√
b− b n

√
a

n
√
a− n
√
b
.

13. Hence perhaps someone might be able to expect that equations of this kind that are
more general can be obtained in a similar way, if in place of that very simple formula, this
more widely extending formula

(f + x)n

(g + x)n
=
a

b
should be established as a basis, if indeed here four arbitrary quantities a, b, f and g are
introduced into the calculation, whereas previously only two a and b were present; but yet
in whatever way the letters f and g, different from a and b, may be taken, nevertheless the
situation always can be reduced to the previous, more simple [one]. To demonstrate this
let us assume x = α+ βz and our equation will become

(α+f+βz)n

(α+g+βz)n = a
b or

(α+f
β +z)n

(α+g
β +z)n

= a
b ;

and now it is clear that the quantities α and β always can be taken in such a way that it
happens that

α+f
β = a and

α+g
β = b,

12Translators: That is, the terms containing xn−1 cancel each other out.
13Translators: In other words, divide the previous equation by the coefficient of xn, which is a− b, and

then solve for xn.
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since indeed from this is deduced

α = bf−ag
a−b and therefore β = f−g

a−b .

And thus that formula, which seemed much more general, can always be restored to that
very simple one treated above nor then is anything new to be expected from it.

ANNOTATION ON THE EQUATIONS DEVELOPED ABOVE

14. If we should consider more carefully the forms that we have assigned for the roots
of these equations above, all these things are discovered to conform excellently with that

conjecture that I once14 ventured to offer publicly, at the time when I asserted, for the
solution of an equation of any degree, in which the second term is missing, as for instance

xn = pxn−2 + qxn−3 + rxn−4 + etc.,

that there was always given a resolvent equation, lower by one degree, of this form

yn−1 −Ayn−2 +Byn−3 − Cyn−4 +Dyn−5 − etc. = 0,

if the roots of which, numbering n− 1, are α, β, γ, δ, ε etc., the result would be

x = n
√
α+ n

√
β + n

√
γ + n

√
δ + n

√
ε+ etc.

15. Since therefore for the general form that we have treated above, a root has been
found

x =
n
√
an−1b+

n
√
an−2bb+

n
√
an−3b3 + · · ·+ n

√
abn−1,

from this it follows that the roots of the resolvent equation of order n− 1 will be

an−1b, an−2bb, an−3b3, an−4b4, . . . abn−1,

which therefore will be the values of that very y. Wherefore since the coefficient A is the
sum of all these roots, it will be the case that

A =
ab(an−1 − bn−1)

a− b
;

moreover, the final member of this equation, in absolute value, will be the product of all
these roots, which then will be

= a
nn−n

2 b
nn−n

2 .

For the rest of the terms let us run though the particular equations explained above.

I. For an equation of the third degree

14Stäckel points the reader to E30 and E282.
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x3 = 3abx+ ab(a+ b),

where the root was

x =
3
√
aab+

3
√
abb.

Here, if the resolvent equation should be assumed to be

yy −Ay +B = 0,

its roots will be aab and abb and therefore

A = ab(a+ b)

and

B = a3b3.

II. For an equation of the fourth degree

x4 = 6abxx+ 4ab(a+ b)x+ ab(aa+ ab+ bb).

Here the root is

x =
4
√
a3b+

4
√
aabb+

4
√
ab3;

whence, if the resolvent equation should be assumed to be

y3 −Ayy +By − C = 0,

its roots will be a3b, aabb, ab3, wherefore we shall have

A = ab(aa+ ab+ bb),

B = a3b3(aa+ ab+ bb) and

C = a6b6.

III. For an equation of the fifth degree

x5 = 10abx3 + 10ab(a+ b)xx+ 5ab(aa+ ab+ bb)x+ ab(a3 + aab+ abb+ b3).

Here therefore it will be the case that

x =
5
√
a4b+

5
√
a3bb+

5
√
aab3 +

5
√
ab4;

whence if the resolvent equation should be assumed to be

y4 −Ay3 +Byy − Cy +D = 0,

its roots will be a4b, a3bb, aab3, ab4, whence it is concluded that it will be the case that



12 LEONHARD EULER

A = ab(a3 + aab+ abb+ b3),

B = a3b3(a4 + a3b+ 2aabb+ ab3 + b4),

C = a6bb(a3 + aab+ abb+ b3),

D = a10b10.

IV. For an equation of the sixth degree

x6 = 15abx4 + 20ab(a+ b)x3 + 15ab(aa+ ab+ bb)xx

+ 6ab(a3 + aab+ abb+ b3)x+ ab(a4 + a3b+ aabb+ ab3 + b4).

Here then it will be held that

x =
6
√
a5b+

6
√
a4bb+

6
√
a3b3 +

6
√
aab4 +

6
√
ab5;

whence if the resolvent equation should be assumed to be

y5 −Ay4 +By3 − Cyy +Dy − E = 0,

its roots will be a5b, a4bb, a3b3, aab4, ab5, whence it is concluded that it will be the case
that

A = ab(a4 + a3b+ aabb+ ab3 + b4),

B = a3b3(a6 + a5b+ 2a4bb+ 2a3b3 + 2aab4 + ab5 + b6),

C = a6b6(a6 + a5b+ 2a4bb+ 2a3b3 + 2aab4 + ab5 + b6),

D = a10b10(a4 + a3b+ aabb+ ab3 + b4),

E = a15b15,

where the middle formulae B and C can be more elegantly expressed in this way

B = a3b3(aa+ bb)(a4 + a3b+ aabb+ ab3 + b4) and

C = a6b6(aa+ bb)(a4 + a3b+ aabb+ ab3 + b4),

which conclusions perhaps can shed some light on treating the general solution of equations
with a more fortunate outcome.

Translated by: Henry J. Stevens, Portsmouth, Rhode Island
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