
On a Geographic Projection of the Surface of
the Sphere∗

Leonhard Euler

1. In the previous work I have derived all possible methods of taking an
image of a spherical area in a plane, so that the smallest parts are reproduced
through similar figures. From this followed immediately the construction of
Mercator’s sea chart, as well as the maps of the northern and southern hemi-
sphere1But how today’s usual construction of hemispheres2, which appear as
upper and lower from an arbitrary point, follows from my formulas, was not
completely evident, although these maps too possess the above-mentioned
property. This has caused me to inquire more exactly how the last-named
method of representation is connected with the general formulas set forth
there, and how best it can be derived from them.

2. The general formulae, which I have for that kind of map sketch have
developed, are the following3. For any point on the sphere, let v be the
distance from the pole, t be the distance from a chosen meridian of origin
along the same latitude, and let x and y be the rectilinear coordinates which

∗Translation of Euler’s “de Proiectione Geographica Superficiei Sphaericae”. Transla-
tion date May 2008. (Opera Omnia, ser. 1, vol. 28, pp. 248–275) Translator’s name and
email address: George W. Heine, <gheine@mathnmaps.com>

1Euler refers to the polar stereographic projection, in which the origin is the geographic
north or south pole.

2The stereographic projection in which the origin is a point other than a pole.
Placing the origin on the equator was a commonly used projection for world maps
in the XVIIIth century. An example can be viewed in the Euler Archives at
<http://www.math.dartmouth.edu/ euler/atlas/map02.jpg>

3These are developed in Paragraph 44 of “De repraesentatione superficiei sphaericae
super plano”[E 490]
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the position of the corresponding point on the plane determines, so that

x = ∆
[
log cot(1

2
v) + t

√
−1

]
+ ∆

[
log cot(1

2
v)− t

√
−1

]
, (2.1)

y
√
−1 = ∆

[
log cot(1

2
v) + t

√
−1

]
−∆

[
log cot(1

2
v)− t

√
−1

]
. (2.2)

One can rewrite the first of these equations in the following manner 4:

x = ∆
[
cot(1

2
v)(cos t +

√
−1 sin t)

]
+ ∆

[
cot(1

2
v)(cos t−

√
−1 sin t)

]
(2.3)

and similarly with the second. Moreover one observes that

1

cot(1
2
v)(cos t±

√
−1 sin t)

= tan(1
2
v)(cos t∓

√
−1 sin t), (2.4)

so that the previous formulae can be given in the following form5:

x = ∆
[
tan(1

2
v)(cot t +

√
−1 sin t)

]
+ ∆

[
tan(1

2
v)(cot t−

√
−1 sin t)

]
,

(2.5)

y
√
−1 = ∆

[
tan(1

2
v)(cot t +

√
−1 sin t)

]
−∆

[
tan(1

2
v)(cot t−

√
−1 sin t)

]
.

(2.6)

We allow the sign ∆, which denotes an indeterminate function, to change
between these representations. The first pair of equations yield the formulae
for Sea Charts6, while the latter two yield the formulae for the maps of the
northern and southern hemisphere7.

3. Now in order to more easily establish, how also the above projections,
which are based on on the same principle, can be derived out of our formulae,
I wish to fully develop the main features of the projection, which one cus-
tomarily takes care to designate as stereographic. With this projection the
spherical surface is projected on to a tangent plane, as it appears, according
to the rules of perspective, to an observer located at the point on the sphere

4In (2.3), Euler uses the symbol ∆ to represent the composition of the function ∆
in (2.1) and (2.2) with the complex natural logarithm function, implicitly assuming the
argument is nonzero.

5In (2.5) and (2.6), Euler uses the symbol ∆ to represent the composition of the function
∆ in (2.3) with the multiplicative reciprocal function, implicitly assuming the argument
is nonzero

6Mercator’s projection
7Polar aspect of the stereographic projection
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opposite the point of tangency.8 Let the circle AMC of the sphere and the
line EF of the plane which the circle touches at C be represented. Then
the location of the observer is the point A, opposite to point C. Now on the
sphere we take arbitrarily the point M , and extend the straight line AMS,
which connects A with M , to meet the line EF in the point S, then S is the
projection of M . Furthermore, we set the radius of the circle =1, so that the
diameter AC=2, and designate the arc CM by z, so that the angle CAM =
1
2
z, and the distance

CS = 2 tan(1
2
z) =

2 sin z

1 + cos z
+ 2

√
1− cos z

1 + cos z
. (3.1)

4. From M to AC drop the perpendicular MP so that MP=sin z (Fig.
1). Now one lets the plane figure rotate about the axis AC, so that M
describes a circle, whose plane is parallel to the tangent plane and whose
radius is = sin z; to this circle corresponds, in the tangent plane, a described
circle with radius CS = 2 tan(1

2
z). The radius of the circle on the sphere is

thus to the radius of its projection as PM to CS, or as AP to AC, or finally
as AM to AS. Furthermore, a central angle in the described circle of radius
PM on the sphere is equal to the central angle of its projection on the plane.

5. Now we consider a point m on the sphere very near the point M ,
whose projection is s, so that the small arc Mm corresponds to the small
segment Ss. Then we ask, how the elements Mm and Ss are related. To this
end we next observe that the angle ASC = 90◦− 1

2
z = AsC. Furthermore, the

measure of the angle AMm is half of the arc AM ; that is, AMm = 90◦− 1
2
z

and therefore equal to the angle AsC. It follows that the triangles AMm
and AsS are similar, and therefore

Mm : Ss = AM : AS, that is, = AP : AC.

This proportion is the same as that which we found between the radius PM
on the circle described on the sphere and the radius CS of the corresponding
circle on the plane. Thus the arc elements are related as the radii of these

8The projective plane can also be taken as any plane, not containing the observation
point, which is parallel to the tangent plane described by Euler. A common choice, used by
Ptolemy and others, was to take the equatorial plane which passes through the great circle
with pole at the observation point. The only effect is to scale everything by a constant.
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Figure 1: A copy of Euler’s original Figure 1

circles. From this it follows, if we conceive of Mm as an infinitely small piece
of the spherical surface, the projection of the same observed piece is similar.
The projection follows with it the same rule from which I have derived my
general formulae.

6. As before, let the circle AGC (Fig. 2) represent the sphere, whose
surface is to be projected on to the plane tangent at C. Let a pole of the
earth lie at the point G. The point H on the plane corresponds to this pole.
The distance H from C is

CH = 2 tan(1
2
g), (6.1)

where g is the arc CG. An arbitrary point M on the sphere is separated
from the pole be the distance GM = v, while the angle CGM = t is the
longitude of the point M , relative to the meridian GC considered as the
meridian of origin. Finally we consider the great circle containing CM . Now
S is that point of the projection which corresponds to the point M , so that
CS = 2 tan(1

2
CM) and the angle ECS equals the angle GCM . To determine

the position of the point S must one calculate the side CM and the angle
GCM of the spherical triangle GCM .
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Figure 2: A modified version of Euler’s original Figure 2. Modifications
include: shifting the point S to the left, to better render the drawing in
perspective, and adding the labels v (the arc GM), t (the spherical angle
CGM), and g (the arc GM).
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7. In the spherical triangle CGM there are known two sides, CG = g
and GM = v and their enclosed angle, MGC = t. The basic formula of
spherical trigonometry therefore yields

cos CM = cos g cos v + sin g sin v cos t, (7.1)

and since9

CS = 2 tan(1
2
CM) =

2 sin CM

1 + cos CM
= 2

√
1− cos CM

1 + cos CM
(7.2)

we obtain

CS = 2

√
1− cos g cos v − sin g sin v cos t

1 + cos g cos v + sin g sin v cos t
. (7.3)

Furthermore the equation

tan GCM =
sin v sin t

cos v sin g − sin v cos g cos t
(7.4)

yields at the same time the angle ECS of the projection.

8. Now, from the point S of the projection, we drop the perpendicular
SX onto the baseline EF , wherein lies the pole H, and denote the coordinates
CX and SX by x and y, respectively. Then since

CS =
2 sin CM

1 + cos CM
, (8.1)

we have that

x =
2 sin CM · cos GCM

1 + cos CM
, y =

2 sin CM · sin GCM

1 + cos CM
, (8.2)

and from this it follows that

x

y
= tan GCM =

sin v sin t

cos v sin g − sin v cos g cos t
. (8.3)

Moreover it follows from the equations found above10 that:

x2 + y2 = CS2 =
4(1− cos v cos g − sin v sin g cos t)

1 + cos v cos g + sin v sin g cos t
. (8.4)

With this one has two different expressions for calculating the coordinates x
and y.

9(3.1)
10(7.3)
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9. We can find the value of these coordinates even more easily in the
following way. From the equality

sin t : sin CM = sin GCM : sin v (9.1)

it follows that
sin CM · sin GCM = sin v · sin t. (9.2)

Using this equation together with the previously introduced value11

tan GCM =
sin GCM

cos GCM
=

sin CM · sin GCM

cos v sin g − sin v cos g cos t
, (9.3)

whence
sin CM · cos GCM = cos v sin g − sin v cos g cos t, (9.4)

from which we obtain12 the values

x =
2(cos v sin g − sin v cos g cos t)

1 + cos CM
, y =

2 sin v sin t

1 + cos CM
. (9.5)

Finally we substitute the value13,

cos CM = cos g cos v + sin g sin v cos t, (9.6)

so that we obtain the following expressions for the coordinates:

x =
2(cos v sin g − sin v cos g cos t)

1 + cos g cos v + sin g sin v cos t
, (9.7)

y =
2 sin v sin t

1 + cos g cos v + sin g sin v cos t
. (9.8)

10. Setting v = 0 in these formulae, one gets the the coordinates of the
point which the pole H of the projection takes on. For this,

x =
2 sin g

1 + cos g
= 2 tan(1

2
g) = CH, y = 0. (10.1)

11(7.4)
12using (8.2)
13(7.1)

7



Also the place of the other pole can easily be indicated; it is only necessary
to set v = 180◦. For this case, one gets

x =
−2 sin g

1− cos g
, y = 0. (10.2)

Let K be this second pole; then

CK =
2 sin g

1− cos g
= 2 cot(1

2
g). (10.3)

Furthermore, taking CE = CF = 2, EF becomes the diameter of the circle
inside of which the entire half-sphere centered about C is depicted. The
diameter of this circle is 4, i.e., twice as large as the diameter of the sphere.

11. In order to find the Equator in our Projection, we take v = 90◦;
then x and y represent a point on the equator of the map, and14

x =
−2 cos g cos t

1 + sin g cos t
, y =

2 sin t

1 + sin g cos t
. (11.1)

From the formula established above15,

x2 + y2 =
4(1− sin g cos t)

1 + sin g cos t
, (11.2)

and therefore
x

x2 + y2
=

− cos g cos t

2(1− sin g cos t)
, (11.3)

thus

cos t =
2x

2x sin g − (x2 + y2) cos g
; (11.4)

setting this value in the equation for x16, one gets

4x sin g − (x2 + y2) cos g = −4 cos g. (11.5)

Thus we have

x2 + y2 =
4(x sin g + cos g)

cos g
(11.6)

14From (9.6) and (9.7)
15(8.4)
16first equality in (11.1)
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and also

y2 + (2 tan g − x)2 =
4

cos2 g
. (11.7)

From this one sees that on the map the equator becomes a circle of radius
2

cos g
. In order to find the center of this circle, one marks off (Fig. 3) the

distance CJ = 2 tan g on the x axis, whereby JX = 2 tan g − x, so that17

XS2 + JX2 =
4

cos2 g
. (11.8)

It follows that JS = 2/ cos g; thus the length JS is constant18. The point J
becomes the center of the circle corresponding to the equator,so that CJ =
2 tan g. Now erect at C the perpendicular CD = 2, and that19 JD = 2/ cos g.
Thus one obtains the equator on the map by describing a circle around J of
radius JD.

12. Now we wish to determine the Circles of Parallel on our map. In
order to avoid some tedium in the calculation, the following abbreviations
are given:

a = 2 sin g cos α, b = 2 cos g sin α,

c = 1 + cos g cos α, d = sin g sin α,

e = 4− 4 cos g cos α.

Here we use the letter α in place of the earlier letter v, so that α denotes the
distance from the pole of the Parallel Circle under consideration. Then our
equations20 take the form

x =
a− b cos t

c + d cos t
, x2 + y2 =

e− 4d cos t

c + d cos t
. (12.1)

From the first follows

cos t =
a− cx

b + dx
, (12.2)

17As noted at the beginning of par. 8, y represents the distance XS.
18not dependent on the longitude t
19the angle JDC = g and therefore
20(9.7) and (8.4)
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Figure 3: A copy of Euler’s original Figure 3
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and substituting this into the second equation,

x2 + y2 =
d(e + 4c)x + be− 4ad

bc + ad
(12.3)

Expressing a, b, c, d again in terms of g and α, one obtains

x2 + y2 =
4[x sin g + cos g − cos α]

cos g + cos α
. (12.4)

Bringing this equation into the form

y2 +

(
2 sin g

cos g + cos α
− x

)2

=
4 sin2 α

(cos g + cos α)2
, (12.5)

and from this one recognizes that the Parallel Circle under consideration is

a circle of radius
2 sin α

cos g + cos α
, with center on the axis EF at the point L,

and whose distance from the point C is

CL =
2 sin g

cos g + cos α
. (12.6)

13. Now we wish to investigate the Projections of all Meridians (Fig.
2). In the first place, t = 0 whenever y = 0; that is, the straight line
HK represents the principal Meridian, from which the other longitudes are
counted. Furthermore, let β be the inclination of the desired Meridian with
respect to the principal Meridian, so that t = β and our equations 21 become

x =
2(sin g cos v − cos β cos g sin v)

1 + cos g cos v + cos β sin g sin v
, (13.1)

y =
2 sin β sin v

1 + cos g cos v + cos β sin g sin v
, (13.2)

x2 + y2 =
4(1− cos g cos v − cos β sin g sin v)

1 + cos g cos v + cos β sin g sin v
; (13.3)

and from these equations the quantity v is to be eliminated. To this end, we
divide the first two, so that

y

x
=

sin β sin v

sin g cos v − cos β cos g sin v
=

sin β tan v

sin g − cos β cos g tan v
, (13.4)

21(9.6),(9.7), and (8.4)

11



and from this it follows that

tan v =
y sin g

x sin β + y cos β cos g
. (13.5)

14. Now in order to most easily use this value in the remaining equations,
we construct the following:

4− x2 − y2 =
8 cos g cos v + 8 cos β sin g sin v

1 + cos g cos v + cos β sin g sin v
; (14.1)

dividing through by y, we obtain

4− x2 − y2

y
=

4 cos g cos v + 4 cos β sin g sin v

sin β sin v
(14.2)

=
4 cos g + 4 cos β sin g tan v

sin β tan v
(14.3)

Here we replace tan v by the value obtained above 22, to obtain

4− x2 − y2

y
=

4y cos β + 4x sin β cos g

y sin β sin g
, (14.4)

and from this it follows that

x2 + y2 = 4− 4y cos β + 4x sin β cos g

sin β sin g
, (14.5)

which is the equation of a circle. With this one can conclude in the same
manner that all great circles on the sphere are represented as circular arcs,
or straight lines, on the map.

15. Now in order to ascertain (Fig 4) the center as well as the radius
of each Meridian assigned by our projection, we recast the equation in the
following form:(

2 cos g

sin g
+ x

)2

+

(
2 cos β

sin β sin g
+ y

)2

=
4

sin2 β sin2 g
. (15.1)

22(13.5)
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If therefore, the points H and K are poles on the map, then

CH = 2 tan(1
2
g) =

2 sin g

1 + cos g
, (15.2)

CK = 2 cot(1
2
g) =

2 sin g

1− cos g
, (15.3)

so that the whole distance is

HK =
4

sin g
, 1

2
HK =

2

sin g
, (15.4)

and if O is the midpoint of HK, then

CO =
2 cos g

sin g
; (15.5)

furthermore, since CX was designated as x,

OX =
2 cos g

sin g
+ x. (15.6)

From the point O on the axis, the perpendicular

ON =
2 cos β

sin β sin g
, (15.7)

and setting XL = ON , we have

SL =
2 cos β

sin β sin g
+ y. (15.8)

Therefore,

OX2 + LS2 = LN2 + SL2 = NS2 =
4

sin2 β
sin2 g, (15.9)

that is,

NS =
2

sin β sin g
. (15.10)

Now, since this radius equals exactly NH, One recognizes from this, that the
point N is the center of the Meridian on the map, its radius is 2 sin β sin g,
and NH has exactly the same length. Since the Meridian was arbitrary, we
have shown that the representations of all meridian circle pass through the
two poles.
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Figure 4: A copy of Euler’s original Figure 4
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Derivation of the Projection from the General Formulae

16. The question is now asked, which form one must give the function
∆ (§2) in order that the Projection under consideration be obtained. First
of all, one recognizes that higher powers than the first (of the arguments)
can not occur; otherwise, multiple values of the angles t and v would appear.
Therefore the said function must be a fraction, that yields, as above23, frac-
tions for the expressions of x and y. Therefore we want ∆(z) to take the
following general form:

∆(z) =
a + bz

c + dz
, (16.1)

while we choose for z the last of the above indicated forms24, namely

z = tan(
1

2
v) · (cos t±

√
−1 sin t). (16.2)

Accordingly, we consider the function

a + b tan(1
2
v) · (cos t±

√
−1 sin t)

c + d tan(1
2
v) · (cos t±

√
−1 sin t)

(16.3)

and replace in it tan(1
2
v) by sin v/(1 + cos v), so that it takes the following

form:
a(1 + cos v) + b sin v · (cos t±

√
−1 sin t)

c(1 + cos v) + d sin v · (cos t±
√
−1 sin t)

. (16.4)

17. In order to fashion the calculation more clearly, we write the pre-
ceding fraction more simply as

P ±Q
√
−1

R± S
√
−1

,

where

P = a(1 + cos v) + b sin v cos t, Q = b sin v sin t, (17.1)

R = c(1 + cos v) + d sin v cos t, S = d sin v sin t. (17.2)

23(9.6) and (9.7)
24(2.5) and (2.6)
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Then, for the coordinates x, y we have the following expressions:

x =
P + Q

√
−1

R + S
√
−1

+
P −Q

√
−1

R− S
√
−1

, (17.3)

y
√
−1 =

P + Q
√
−1

R + S
√
−1

− P −Q
√
−1

R− S
√
−1

. (17.4)

This yields

x =
2PR + 2QS

R2 + S2
, y =

2QR− 2PS

R2 + S2
. (17.5)

18. Now we replace again P, Q, R, S with their values, and obtain for
the common denominator:

R2 + S2 = c2(1 + cos v)2 − 2cd(1 + cos v) sin v cos t + d2 sin2 v (18.1)

= (1 + cos v)[c2(1 + cos v) + 2cd sin v cos t + d2(1− cos v)]. (18.2)

The factors in the numerators of x and y become

PR + QS = (1 + cos v)[ac(1 + cos v) + (bc + ad) sin v cos t + bd(1− cos v)],
(18.3)

QR− PS = (1 + cos v)(bc− ad) sin v sin t. (18.4)

With this we obtain the following expressions for the coordinates:

x =
2ac(1 + cos v) + 2(bc + ad) sin v cos t + 2bd(1− cos v)

c2(1 + cos v) + 2cd sin v cos t + d2(1− cos v)
, (18.5)

y =
2(bc− ad) sin v sin t

c2(1 + cos v) + 2cd sin v cos t + d2(1− cos v)
. (18.6)

19. We compare these formulae25 with those which we found above26,
that is

x =
2(cos v sin g − sin v cos g cos t)

1 + cos g cos v + sin g sin v cos t
,

y =
2 sin v sin t

1 + cos g cos v + sin g sin v cos t
,

25(18.5) and (18.6)
26(9.7) and (9.8)
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and thus we see, that the latter forms agree with the former, and one can
now easily discover the values which one must join to the constants a, b, c, d,
in order to complete the agreement. In order that the denominators be
identical, we must have

c2 + d2 = 1, c2 − d2 = cos g, 2cd = sin g. (19.1)

From the first two of these equations are obtained

c2 =
1 + cos g

2
= cos2(1

2
g), d2 =

1− cos g

2
= sin2(1

2
g); (19.2)

that is,
c = cos(1

2
g), d = sin(1

2
g), (19.3)

and the third equation is automatically fulfilled:

2cd = 2 sin(1
2
g) cos(1

2
g) = sin g. (19.4)

In order that the numerators in the two expressions for x be identical, it is
necessary that

ac + bd = 0, ac− bd = sin g, bc + ad = − cos g, (19.5)

or, if one substitutes in the above values for c and d:

a cos(1
2
g) + b sin(1

2
g) = 0, (19.6)

a cos(1
2
g)− b sin 1

2
g = sin g, (19.7)

b cos(1
2
g) + a sin(1

2
g) = − cos g. (19.8)

The first two equations yield

a =
sin g

2 cos(1
2
g)

= sin(1
2
g), (19.9)

b =
− sin g

2 sin(1
2
g)

= − cos(1
2
g), (19.10)

and these two values suffice to satisfy the third equality. It remains only to
examine whether the values we have found also are able to satisfy the two
expressions for the values of y. For this it is necessary that

bc− ad = 1. (19.11)
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But with the values we have found, bc = − cos2(1
2
g) and ad = sin2(1

2
g), so

that
bc− ad = −1. (19.12)

However, it is observed that one can exchange the positive and negative
coordinate axes, so that the agreement is complete.

20. From the foregoing discussion one perceives that our general for-
mulae lead to the stereographic projection, if the function ∆(z) takes the
form

∆(z) =
sin(1

2
g)− z cos(1

2
g)

cos(1
2
g) + z sin(1

2
g)

=
tan(1

2
g)− z

1 + z tan(1
2
g

(20.1)

Moreover, let it be remarked, that this method of projection is extraor-
dinarily appropriate for the practical applications required by Geography,
for it does not strongly distort any region of the earth. It is also important
to note that with this projection, not only are all Meridians and Circles of
Parallel exhibited as circles or as straight lines, but all great circles on the
sphere are expressed as circular arcs or straight lines. Other hypotheses,
which one might perhaps make concerning the function ∆, will not possess
this straightforward advantage.
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