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TRANSLATOR’S NOTE

In translating this work, I am deeply indebted to the work of A. Wangerin, whose thorough
and scholarly 1897 German translation appears in [Wan1897]. However, I believe that
Wangerin was writing largely for an audience of mathematicians, and that his goal was to
explain Euler’s reasoning in the ”modern“ terms of his era. Thus, for example, Wangerin
uses the term “total differential”, even though (as Wangerin notes) this wording was not
yet used in Euler’s time. Today, in contrast, the interested audience likely consists of both
mathematicians and historians of mathematics. To satisfy the latter, I have attempted,
as near as possible, to mimic Euler’s phrasing, and especially his mathematical notation.
I have made a few exceptions in cases where Euler’s notation might be confusing to a
modern reader. These include:

• Use of “ln()” rather than “l”, to denote the natural or “hyperbolic” logarithm
function;

• Use of “arcsin, arccos” rather than “A sin, A cos” for the inverse trigonometric func-
tions (particularly confusing since Euler uses a constant A in his computations);

• Use of, for example, “cos2 u” rather than “cosu2” to denote the square of the cosine;

• Introduction of parentheses to delimit the argument of a function where this was
not clear from the context.

In most other cases, I have attempted to copy Euler’s original notation—in particular,
preserving his use of the differential operator d, and the symbol

√
−1, since these had a

slightly different meaning to Euler than they would have to mathematical practicioners
today.
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1. In the following I consider not only optical projections, in which the dif-
ferent points of a sphere are represented on a plane as they appear to an
observer at a specified place; in other words, representations by which a sin-
gle point visible to the observer is projected onto the plane by the rules of
perspective; indeed, I take the word “mapping” in the widest possible sense;
any point of the spherical surface is represented on the plane by any desired
rule, so that every point of the sphere corresponds to a specified point in the
plane, and inversely; if there is no such correpsondence, then the image of a
point from the sphere is imaginary.

2. In Figure 1, abc represents a portion of the Spherical surface, whose pole
is at the point b and Equator the circle alc. Let ab be the prime Meridian,
from which, as is usual in Geography, the longitude of a point on the Sphere
is measured. Now consider an arbitrary point p, which lies on the Meridian
bpl; this Meridian forms an angle abl with the prime Meridian; it is equal to
the Equatorial arc al = t. The latitude of the point is the arc lp = u, if one
takes the radius of the Sphere to be unity.

In Figure 2 the plane of the figure is that in which the image lies, and
P is the point which corresponds to p on the Sphere. From P drop the
perpendicular PX to the axis of abscissa EF , whose position may be freely
chosen, with the point E as origin, and take the abscissa EX = x and the
ordinate XP = y. The position of such points P is determined from the
position of points p of the Sphere, according to some rule, but the position
of p is determined by the two variables t and u, so the coordinates x and
y can be considered Functions of each of the two variables t and u. Our
inquiry then belongs to the part of Analysis which treats of Functions of two
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variables.

3. We now wish to take account the variation of the two quantities t and
u in our calculation. To that end consider a point q on the Sphere, whose
longitude = t while its latitude = u + du. Moreover let r be a point with
longitude t + dt and latitude l′r = u. Completing the parallelogram pqsr, s
will have longitude t+ dt and longitude u+ du. Then on the Sphere the arc
elements will be pq = du and ll′ = dt, so that the element pr = dt · cosu.
Moreover, the parallelogram pqrs will be a rectangle with diagonal

ps =
√
du2 + dt2 · cos2 u.

4. Now suppose that to the points p,q,r,s on the Sphere correspond the points
P ,Q,R,S on the plane, and from these latter drop perpendiculars PX, QU ,
RV , and SW to the axis EF . Since between Q and P only the variable u
changes, being incremented by du, the coordinates for the point Q will be

EU = x+ du

(
dx

du

)
, and UQ = y + du

(
dy

du

)
.

In the same way, between P and R only the variable t changes, so that the
coordinates for the point R will be

abscissa EV = x+ dt

(
dx

dt

)
, and ordinate V R = y + dt

(
dy

dt

)
.

Then the point S, which is obtained from P by simultaneous changes in both
t and u, will have for abscissa

EW = x+ du

(
dx

du

)
+ dt

(
dx

dt

)
and for ordinate

WS = y + du

(
dy

du

)
+ dt

(
dy

dt

)
.

From this it appears that

XU = du

(
dx

du

)
,
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which is equal to the distance

VW = du

(
dx

du

)
.

In the same way,

WS − V R = UQ−XP = du

(
dy

du

)
. (4.1)

But from this it follows that element RS = element PQ, and similarly PR =
QS, so that the quadrilateral PQRS will in fact be a parallelogram.

5. Since the elementary rectangle pqrs on the Sphere is represented on the
plane by the parallelogram PQRS, let us begin by comparing the respective
sides of the two figures. On the Sphere,

pq = du, and pr = dt · cosu,

while on the plane

PQ =

√(
dx

du

)2

+

(
dy

du

)2

, and PR =

√(
dx

dt

)2

+

(
dy

dt

)2

.

Then clearly the element PQ corresponds to a small increment du in the
direction of a Meridian, while PR corresponds to a small increment dt cosu
in the direction of a Parallel1. Now if functions x and y could be obtained,
satisfying

du = du

√(
dx

du

)2

+

(
dy

du

)2

, and dt cosu = dt

√(
dx

dt

)2

+

(
dy

dt

)2

,

then lengths along both the Meridian and the Parallel would have the same
size in the plane as on the Sphere. But there might be another, more sig-
nificant, difference, namely, that the angle between them on the plane might
differ from a right angle.

1Euler uses the capitalized term “Parallel” to refer to a circle of constant latitude on
the sphere, and to the image of this circle on the plane.
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6. So we begin by seeking the directions of the Meridian PQ and the Parallel
PR with respect to the coordinates x and y. From Figure 2, the Meridian
element PQ is inclined with our axis EF at an angle whose tangent is(

dy

du

)
:

(
dx

du

)
.

In the same way, the direction of the Parallel PR is inclined with our axis
EF at an angle whose tangent is(

dy

dt

)
:

(
dx

dt

)
.

The difference between these two angles gives the angle, QPR, formed be-
tween the Parallel and the Meridian; its tangent is(

dx

dt

)(
dy

du

)
−
(
dx

du

)(
dy

dt

)
(
dx

du

)(
dx

dt

)
+

(
dy

du

)(
dy

dt

) .
In order that this angle be right, as it is on the Sphere, it is necessary that(
dx

du

)(
dx

dt

)
+

(
dy

du

)(
dy

dt

)
= 0, or

(
dy

du

)
:

(
dx

du

)
= −

(
dx

dt

)
:

(
dy

dt

)
.

7. Therefore, if it is required that the plane figure PQSR will be congruent
to the Spherical figure pqsr, the following three conditions must be satisfied:

First, of course, that PQ = pq,

2) PR = pr,

3) angle QPR = qpr = 90◦.

To this end, the following three equalities are required:

I.

√(
dx

du

)2

+

(
dy

du

)2

= 1, or

(
dx

du

)2

+

(
dy

du

)2

= 1

II.

√(
dx

dt

)2

+

(
dy

dt

)2

= cosu, or

(
dx

dt

)2

+

(
dy

dt

)2

= cos2 u

III.

(
dy

du

)
:

(
dx

dt

)
= −

(
dx

dt

)
:

(
dy

dt

)
.
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If now we set (
dy

du

)
:

(
dx

du

)
= tang φ,

then by (III) it must be that(
dy

dt

)
:

(
dx

dt

)
= − cotφ,

and so (
dy

du

)
=

(
dx

du

)
tang φ and

(
dy

dt

)
= −

(
dx

dt

)
cotφ.

Substituting these values in the two first equations yields(
dx

du

)2

= cos2 φ and

(
dx

dt

)2

= sin2 φ cos2 u.

But evidently there are no circumstances under which the above three con-
ditions can simultaneously be satisfied, since, as is well known, there is no
way that the surface of a sphere can be represented exactly on a plane.

8. In order to remove differential expressions from the calculation, we make
the following substitutions:(

dx

du

)
= p,

(
dx

dt

)
= q,

(
dy

du

)
= r,

(
dy

dt

)
= s,

so that
dx = p du+ q dt, dy = r du+ s dt,

and before anything else, it is required that these two expressions be simul-
taneously integrable; this is the case if p, q, r, and s are functions of t and u
such that (

dp

dt

)
=

(
dq

du

)
and

(
dr

dt

)
=

(
ds

du

)
.

Moreover the above expressions for lengths of lines take the following form:

PQ = du
√
pp+ rr, and PR = dt

√
qq + ss
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Furthermore, the tangent of the angle of inclination of PQ with the axis is

=
r

p
, the tangent of the angle of inclination of PR with the axis is =

s

q
, and

finally, the tangent of angle QPR is

qr − ps
pq + rs

.

9. Using this notation, it is required that a perfect mapping fulfill the fol-
lowing three conditions:

I. pp+ rr = 1; II. qq + ss = cos2 u; III.
r

p
= −q

s
.

We put
r

p
= tang φ,

so that
s

q
= − cotφ;

that is,
r = p tang φ, s = −q cotφ,

and the two first conditions yield

pp = cos2 φ, qq = sin2 φ cos2 u,

from which we deduce

p = cosφ, q = − sinφ cosu

and thus
r = sinφ, s = cosφ · cosu.

Substituting these values into the expressions which must be integrable,

dx = du cosφ− dt sinφ cosu

dy = du sinφ+ dt cosφ cosu;

From the requirements that(
dp

dt

)
=

(
dq

du

)
, and

(
dr

dt

)
=

(
ds

du

)
,
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arise the following two equalities:

I. −
(
dφ

dt

)
sinφ = sinu sinφ−

(
dφ

du

)
cosu cosφ,

II.

(
dφ

dt

)
cosφ = − sinu cosφ−

(
dφ

du

)
cosu sinφ.

Combining these two by

(I.)× (cosφ) + (II.)× (sinφ)

yields

0 =

(
dφ

du

)
cosu, and thus

(
dφ

du

)
= 0,

so that φ depends only on the variable t. But the combination

(II.)× (cosφ) − (I.)× (sinφ)

gives (
dφ

dt

)
= − sinu,

so that

(
dφ

dt

)
depends upon u, contradicting the previous result. Thus is

demonstrated through computation that a perfect mapping of the Sphere
onto the plane is not possible.

10. Since therefore a perfectly exact representation is excluded, we are obliged
to admit representations which are not similar, so that the spherical figure
differs in some manner from its image on the plane.

With respect to the divergence between the image and reality, we can
make various assumptions, and according to the assumption which take as
the basis, we can achieve the image most suitable for this or that purpose. In
this way, the needs which the image must satisfy can vary in many different
ways. From the infinite number of possibilities which present themselves, we
shall in what follows discuss several which are especially important. Before
all else, we assume that the angles formed by the Meridians and the Parallels
are everywhere right angles, since if we admit acute and obtuse angles, the
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image produced will be competely useless. On this account, in what follows
we shall always assume that the angle QPR is a right angle and therefore

r

p
= −q

s
.

11. We inquire more generally what can be deduced from the previous re-
quirement, that all Parallels should cut the Meridians in right angles. To
this end, we introduce again the angle φ, so that r = p tang φ and thus
s = −q cotφ. By substituting these values for r and s, the expressions for
the two differential formulae which are to be integrated are rendered as

dx = p du+ q dt, and dy = p du tang φ− q dt cotφ.

12. In order to put these expressions in the same form, we introduce in place
of p and q two other variables, putting

p = m cosφ, q = n sinφ,

whence
r = m sinφ, s = −n cosφ,

and the two formulae to be integrated become

dx = mdu cosφ+ n dt sinφ,

dy = mdu sinφ− n dt cosφ.

With this the entire task is reduced to the question: how should the func-
tions m and n be selected, so that these two expressions are integrable? In
addition, we must look back to the conditions we wish to fulfill, according to
the case under consideration.

First Hypothesis
That all Meridians are set normal to our axis EF , while all Parallels are

set parallel to it.

13. Since we supposed that tang φ =
r

p
, the angle φ measures the inclination

of the arc element PQ with respect to the axis EF ; furthermore, the direction
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Figure 3: A copy of Euler’s Figure 3. (See note 2, §15.)

PQ is that of the Meridian. and since the angle φ is assumed by hypothesis
to be right, the two differential formulae become

dx = n dt, dy = mdu.

That these become integrable, one can achieve in infinitely many ways; it is
only necessary to take m as an arbitrary function of u, and n of t. For this
reason it is possible to set additional conditions.

14. In the first place, all degrees of longitude can be made the same size;
there is no reason to establish inequality among them. Thus, if our axis
EF represents the Equator, so that the abscissa EX corresponds to the
equatorial arc al = t, it is then possible to take x = t, in other words, to set
the function n to unity, or to any constant, while for the ordinate one can
take an arbitrary function of u.

15. Under such an hypothesis, not only does the parallelogram PQSR be-
come a rectangle, as on the Sphere, but also the point Q lies on the ordinate
XP , so that PQ = dy and PR = dx = dt (Fig. 3).2 If, furthermore, we set
y = u, where u denotes the latitude of the place, then, if dx = dt corresponds
to a degree of longitude and dy = du to a degree of latitude, we have that
dy = dx ; however, such a representation would be quite unusable, and all
regions of the Earth would show severe distortion.

2In the original, PR and QS are drawn parallel to each other, but not parallel to EF ,
and PQRS is drawn as a parallelogram, but not a rectangle. See the remark at the end
of Note 3, p. 68, in [Wan1897]
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16. It is better to take the ordinate y equal to some function u of the lati-
tude, suitable to the purpose which the map is supposed to serve. A condition
comes to mind, that the parallelogram PQRS in the plane be similar to the
parallelogram pqrs on the Sphere, for then the smallest parts of the spherical
surface will be similar to their images in the plane. It is exactly this condition
on which the Maritime Charts, named after their inventor Mercator, are
based.

I. On Mercator’s Maritime Charts

16a.3 Because it was required that the rectangle PQRS be similar to the
rectangle pqrs, in which pq = du and pr = cosu dt, it must be that

dy : dt = du : cosu dt;

and since dx = dt,

dy =
du

cosu
;

integrating this expression gives

y = ln tang(45◦ +
1

2
u).

The latitude, measured on the Sphere by the angle u, thus corresponds on
the image to the hyperbolic logarithm of the tangent of the angle 45◦ + 1

2
u.

Using this formula, tables are constructed in which for specific values of u
the corresponding values of y are recorded.

17. Given that on the map all Parallels are equal to the Equator, while on the
Sphere they become smaller and smaller, it follows that in this representation
the degrees of each Meridian, which are equal on the Sphere, must become
larger at the same rate as the degrees on each Parallel increaase with respect
to the Sphere. For this reason, the degrees of latitude on a Meridian increase
constantly as the latitude becomes greater, and at the same rate as the cosine
of the latitude decreases. Therefore, if du denotes a degree of a Meridian on

3Euler’s original paper contained two paragraphs numbered “16”. Following both
[SSN1894] and [Wan1897], and to keep numbering consistent for those who wish to consult
the original text, we call the second of these “16a”. See also Note 5, p. 68 in [Wan1897]
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the Sphere, then on the Map, the length of the same degree will be
du

cosu
.

For example, at the latitude 60◦ one degree on the Meridian has twice the
length as on the sphere, and at the pole it becomes infinitely long. Hence,
such maps can never be extended to the poles.

18. The greatest advantage which this Map gives to travelers at sea, is that
the Loxodromic curves, which on the Sphere cut each Meridian at the same
angle, are here represented by a straight line. Such a straight line cuts all
the Meridians, which are parallel to each other, at the same angle.

19. If, for example, the line ap on the Sphere [Fig. 1] refers to a Loxodromic
curve which cuts every Meridian at an angle = ζ, and if the length of ap = z,
then

du : dz = cos ζ : 1, so that dz =
du

cos ζ
and z =

u

cos ζ
.

But if, on the plane, the line EP [Fig. 3] corresponds to ap, then the angle

EPX is also = ζ, and clearly EP is a straight line with length
y

cos ζ
. If

the length of line EP is known, then, inversely, one can obtain from this the
length of the path traversed by the ship, that is, the length of ap, since

ap : EP = u : y,

and the ratio u : y can be considered as known.

20. But while Loxodromic curves are represented on the plane simply as
straight lines, in constrast, great circles on the Sphere are represented by
transcendental curves of a very high order. Let ap [Fig. 1] be the arc of a
great circle inclined to the Equator at point a by an angle of lap = θ. It is
well known that

tang u = tang θ sin t;

with this and the two previous formulae,

x = t, and y = ln tang(45◦ + 1
2
u),

the curve EP , which corresponds to the arc ap, can be defined.
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21. In order to determine the nature of the curve under consideration, denote
by e the number whose hyperbolic logarithm = 1; then

ey = tang
(
45◦ + 1

2
u
)

=
1 + tang 1

2
u

1− tang 1
2
u
,

thus

tang 1
2
u =

ey − 1

ey + 1
;

from which, collecting terms again,

tang u =
e2y − 1

2ey
.

Substituting this value for tang u in the equation and considering that t = x,
the following relation between x and y is produced:

e2y − 1

2ex
= tang θ sinx,

by which is expressed the nature of the curve EF . From this last it can be
inferred that if x is very small, then y becomes very small also. For very
small values of y, we have

ey = 1 + y and e2y = 1 + 2y;

whence, if sinx = x, we obtain

y

1 + y
= x tang θ

or just
y

x
= tang θ,

so that at point E the curve is inclined to the Equator with an angle of θ.

Next, if we take x = 90◦, then

e2y − 1

2ey
= tang θ,

whence it follows that

ey = tang θ ±
√

tang2 θ + 1 =
sin θ + 1

cos θ
=

√
1 + sin θ

1− sin θ
= cot(45◦ − 1

2
θ),
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and thus
y = ln cot

(
45◦ − 1

2
θ
)

= ln tang
(
45◦ + 1

2
θ
)
.

From this it can be seen that the curve is transcendental of a very high order.

II. ON MAPS IN WHICH EVERY SURFACE AREA IS REPRESENTED
AT ITS TRUE SIZE

22. We continue to assume that all Meridians are parallel to each other, and
that all degrees are equal at the Equator. The degrees of longitude, calcu-
lated along any Parallel, have then the same magnitude as at the Equator,
so once again we take x = t. Now it is required that the area of the rect-
angle PQRS = dx dy is equal to that of the rectangle pqrs on the Sphere
= du dt cosu. For this it is only necessary that dy = cosu du, from which we
obtain by integration y = sinu. It is then very easy to construct a map; one
merely makes the ordinates equal to the sine of the corresponding latitudes.
The degrees of latitude along the Meridians become smaller and smaller as
the the distance from the Equator increases, and vanish entirely at the pole.
The pole itself is represented by a straight line, parallel to the Equator EF ,
and a distance equal to 1 from the latter; this distance is equal to the radius
of the Sphere.

23. If the entire surface of the Earth be represented by this method, the
map will have the form of a rectangle whose length will be equal to the
circumference of the equator = 2π; on each side of the Equator, the distance
in latitude to the pole is = 1, and thus, the area of the rectangle will be
= 4π; that is, equal to the area of the entire spherical surface. In such maps,
all countries of the Earth are represented at their true size, although their
shape displays a great deviation from reality. In such a representation, the
area of any region on the map has the is equal to the area of the same region
on the surface of the Earth. Such maps can be used to compare the true
size of different regions of the Earth. This is best accomplished by the use of
units such as square degrees, where one degree along the Equator is reckoned
as fifteen German miles4

4A note from [Bag1959] states that one German mile was equal to 7.4204 km. This
puts the length of one degree along the equator at 111.306 km, which is very close to the
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SECOND HYPOTHESIS

That small regions of the Earth should be displayed as similar figures in the
plane.

24. In order that such a similitude be observed, it is necessary before all else
that Meridians and Parallels are everywhere perpendicular. For this reason
the two differential formulae which must be integrabile, encountered above
in paragraph 12, are expressed as

dx = mdu cosφ+ n dt sinφ

dy = mdu sinφ− n dt cosφ.

Furthermore,

PQ = du
√
pp+ rr = mdu,

PR = dt
√
qq + ss = n dt.

and QPR is a right angle, in accordance with the previously established
formulae.

25. If the rectangle PQRS is similar to pqrs, then it is necessary that
PQ : PR = pq : pr, that is, m : n = 1 : cosu, so that our two differential
formulae become:

dx = mdu cosφ+mdt cosu sinφ,

dy = mdu sinφ−mdt cosu cosφ.

26. The entire problem is thus reduced to the following: which functions of
t and u must one take for m and φ, so that both of the differential formulae
are integrable? For the sake of brevity, we introduce again p and r in place
of m and φ As above

p = m cosφ, and r = m sinφ;

currently accepted value of 111.324 km.
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we have thus the equations

dx = p du+ r dt cosu,

dy = r du− p dt cosu,

and we ask which functions of t and u is it necessary to take for p and r,
so that both of these equations are integrable. A solution to this problem is
obtained, as can easily be seen, in the case of the Nautical Chart. In this
case, it is only necessary to take

p = 0, r =
1

cosu
.

Other solutions, however, are not so easily found.

27. From well-known conditions for integrability, it is required that:(
dp

dt

)
=

(
dr cosu

du

)
= −r sinu+ cosu

(
dr

du

)
,(

dr

dt

)
= −

(
dp cosu

du

)
= p sinu− cosu

(
dp

du

)
.

From the latter it follows that(
dp

du

)
= p tang u−

(
dr

dt

)
1

cosu
,

and since

dp = du

(
dp

du

)
+ dt

(
dp

dt

)
,

the following new condition arises:

dp = p du tang u−
(
dr

dt

)
du

cosu
− r dt sinu+

(
dr

du

)
dt cosu.

On multiplying by cosu and bringing the term in p to the left side, this
becomes

dp cosu− p du sinu = −r dt sinu cosu+

(
dr

du

)
dt cos2 u−

(
dr

dt

)
du.

In order that the left side of this equation be integrable the right hand must
be also, and for r a suitable function of t and u must be sought.
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28. It is now necessary to find a way to resolving these formulae. After
careful consideration of all the difficulties, two methods of reaching the goal
presented themselves to me. One of these gives an infinite number of par-
ticular solutions, while the other has led me to the most general solution. I
shall develop both methods here, so that through them significant advances
in the Analysis of functions of two variables might be obtained.

Method of locating particular solutions to the differential
equations

dx = p du+ r dt cosu, dy = r du− p dt cosu

29. Since the functions p and r each involve the two variables u and t, we
set each equal to the product of a certain function of u by a certain function
of t. Thus, let

p = U T, and r = V Θ,

where U and V are functions of u only, T and Θ functions of t only. We then
have the two differential formulae rendered as:

I. dx = UT du + VΘ dt cosu

II. dy = VΘ du − UT dt cosu.

30. From this it will be possible to produce a double representation of x and
y in the form of an integral. If the quantity t is taken as constant, the second
terms vanish, and from the first are obtained:

x = T

∫
U du, and y = Θ

∫
V du.

If, on the other hand, u is taken as constant, then from the second terms
come

x = V cosu

∫
Θ dt, and y = −U cosu

∫
T dt.

17



Moreover, the two expressions for x must equal each other; likewise the two
expressions for y:

T

∫
U du = V cosu

∫
Θ dt, or

∫
U du

V cosu
=

∫
Θ dt

T

Θ

∫
V du = −U cosu

∫
T dt, or

∫
V du

U cosu
= −

∫
T dt

Θ
.

From these two expressions the functions U, V, T,Θ must be determined.

31. If it must be that ∫
U du

V cosu
=

∫
Θ dt

T
,

then clearly both fractions must be equal to a fixed quantity; furthermore, the
two variables t and u are independent of each other. Denoting the constant
by α, ∫

U du = αV cosu, and

∫
Θ dt = αT.

In the same way, if ∫
V du

U cosu
= −

∫
T dt

Θ
,

then each of the fractions must equal some constant β and therefore∫
V du = β U cosu, and

∫
T dt = −β Θ.

Thereby are the integrals appearing in the formulae reduced to absolute
magnitudes, and the values for x and y may be expressed without integration
signs:

x = αT V cosu and y = βΘU cosu.

32. To abbreviate, let us set U cosu = P and V cosu = Q, so that

U =
P

cosu
, V =

Q

cosu
.
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Our four formulae then become∫
Θ dt = αT and

∫
T dt = −βΘ,∫

P du

cosu
= αQ and

∫
Qdu

cosu
= β P.

Taking derivatives of the first two of these expressions gives

Θ = α
dT

dt
, P =

α dQ cosu

du
,

and substituting these into the latter two gives∫
T dt = −αβ dT

dt
, and

∫
Qdu

cosu
=
αβ dQ cosu

du
.

Again taking derivatives of these expressions, by t and by u respectively:

T = −αβ ddT
dt2

, and Q =
αβ ddQ cos2 u

du2
− αβ dQ sinu cosu

du
.

We have now established two second-order differential equations, upon whose
integration depends the solution of our problem.

34. 5 Let us begin with the first equation,

T = −αβ ddT
dt2

.

Multiplying by 2 dT and integrating produces

TT = −αβ dT
2

dt2
+ A;

from which, collecting terms,

dt2 =
αβ dT 2

A− TT
.

5The original edition did not contain a paragraph 33.
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Proceeding in the same way with the second equation,

Q =
αβ ddU cos2 u

du2
− αβ dQ sinu cosu

du
,

multiplying by 2 dQ and integrating produces

QQ =
αβ dQ2 cos2 u

du2
+B;

from which, collecting terms,

du2

cos2 u
=

αβ dQ2

QQ−B
.

For the final Integration, we must distinguish two cases, according to
whether the quantity αβ be positive or negative.

First Case

which is αβ = +λλ, and thus β = +
λλ

α
.

35. In this case we have

dt2 =
λλ dT 2

A− TT
,

where, since A must be a positive quantity, we can write A = aa. Thus

dt =
λ dT√
aa− TT

,

whose integral is clearly

t+ δ = λ arcsin

(
T

a

)
,

so that, collecting terms,

T = a sin

(
t+ δ

λ

)
,
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whence

dT =
a dt

λ
cos

(
t+ δ

λ

)
.

From Θ = α
dT

dt
it now follows that

Θ =
aα

λ
cos

(
t+ δ

λ

)
.

36. The other equation to be integrated becomes, for the case αβ = λλ,

du

cosu
=

λ dQ√
QQ−B

;

which, being integrated, gives

ln tang

(
45◦ +

1

2
u

)
+ λ ln ε = λ ln

(
Q+

√
QQ−B

)
.

So that we are able more conveniently to develop this formula, we call

tang(45◦ +
1

2
u) = s,

and since

ln s =

∫
du

cosu
,

we have
ds

s
=

du

cosu
, and thus ds =

s du

cosu
.

Therefore,

ln(ελs) = λ ln
(
Q+

√
QQ−B

)
,

from which it follows that

ελs = (Q+
√
QQ−B)λ,
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and so

Q+
√
QQ−B = εs

1
λ .

Abbreviating 1
λ

= ν and solving for Q gives

Q =
1

2
εsν +

Bs−ν

2ε
,

and from this comes

dQ =
1

2
νεsν−1 ds− νB

2ε
s−ν−1 ds;

from the equality ds =
s du

cosu
, this changes into

dQ ==
1
2
νεsν

cosu
− νB

2ε
s−ν

du

cosu
.

Since6

P =
α dQ cosu

du
,

we now have

P =
1

2
α ν εsν − α ν Bs−ν

2ε
.

6From §32
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37. From the values found above for P and Q, it follows that

U =
ανεsν

2 cosu
− ανBs−ν

2ε cosu
, and V =

εsν

2 cosu
+

Bs−ν

2ε cosu
;

from which, finally, we obtain both our coordinates x and y:7

x =
1

2
α a sin

(
t+ δ

λ

)(
εsν +

B

ε
s−ν
)
,

y =
1

2
α ν λ a cos

(
t+ δ

λ

)(
εsν − B

ε
s−ν
)
,

recalling that

ν =
1

λ
and s = tang(45◦ +

1

2
u).

7Perhaps it would be useful to summarize Euler’s calculations for x and y. From §32,
U cosu = P and V cosu = Q. From this, and the expressions for P and Q obtained in
§36,

U =
ανεsν

2 cosu
− ανBs−ν

2ε cosu
, and V =

εsν

2 cosu
+

Bs−ν

2ε cosu
;

From §30, §31 and §35, respectively,

x = V cosu

∫
Θ dt,

∫
Θ dt = αT, T = a sin

(
t+ δ

λ

)
so that

x = (αT )(V cosu) = αa sin

(
t+ δ

λ

)(
εsν

2 cosu
+

Bs−ν

2ε cosu

)
.

To calculate y, recall that αβ is equal to a positive constant λ2; therefore β = λ2

α . From
§30, §31, and §35, respectively

y = Θ

∫
V du,

∫
V du = β U cosu, Θ =

aα

λ
cos

(
t+ δ

λ

)
so that

y =
aα

λ
cos

(
t+ δ

λ

)
· β · U cosu =

aα

λ
cos

(
t+ δ

λ

)
· λ

2

α
· cosu

(
ανεsν

2 cosu
− ανBs−ν

2ε cosu

)
.

= aλ cos

(
t+ δ

λ

)
· 12αν

(
εsν − B

ε
s−ν

)
,
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These formulae are rendered more elegantly, if we set B = ε2b. From this we
obtain

x =
1

2
α ε a sin

(
t+ δ

λ

)(
s

1
λ + s−

1
ε

)
,

y =
1

2
α ε a cos

(
t+ δ

λ

)(
s

1
λ − s−

1
ε

)
.

Second Case
where αβ = −µµ, and thus β = −µµ

α
.

38. In this case, we have

d t2 =
−µµ dT 2

A− TT
,

and from this,

d t =
−µ dT√
TT − A

.

From which, integrating,

t+ δ = µ ln
(
T +
√
TT − A

)
,

from which, if e denotes the number whose hyperbolic logarithm is 1,

e(t+δ)/µ = T +
√
TT − A.

For the sake of brevity let
t+ δ

µ
= θ, so that dθ =

dt

µ
; then

eθ − T =
√
TT − A,

whence

T =
e2θ + A

2eθ
= 1

2
eθ + 1

2
Ae−θ.

But from this,

dT =
dt

2µ
eθ − Adt

2µ
e−θ,

24



so that8

Θ =
α

2µ
(eθ − Ae−θ).

39. Moreover, in this case, we have

du2

cos2 u
=
−µµ dQ2

QQ−B
=

µµ dQ2

B −QQ
.

Since the quantity B must be positive, we set B = bb, so that

du

cosu
=

µ dQ√
b b−QQ

,

and integrating,

ln tang(45◦ + 1
2
u) + ln ε = µ · arcsin

(
Q

b

)
;

where if we again set tang(45◦ + 1
2
u) = s, then

ln(εs)

µ
= arcsin

(
Q

b

)
,

from which in turn we deduce

Q = b sin

(
ln(εs)

µ

)
,

and from this

dQ =
b

µ
· ds
s

cos

(
ln(εs)

µ

)
=

b

µ
· du

cosu
cos

(
ln(εs)

µ

)
,

so that, finally,

P =
αb

µ
cos

(
ln(εs)

µ

)
.

8See §35
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40. Now from the above9

x = αTV cosu = αTQ, and y = βΘP = −µµ
α

ΘP

which become, by substituting the values discovered,

x = 1
2
α b sin

ln(εs)

µ

(
eθ + Ae−θ

)
and

y = 1
2
α b cos

ln(εs)

µ

(
eθ − Ae−θ

)
,

where it must be remembered that

θ =
t+ δ

µ
and s = tang(45◦ + 1

2
u).

41. The above formulae contain several completely arbitrary quantities, so
that these solutions can be extended to embrace innumerable speccial cases.
However, we can obtain a still more general solution, if we compound two, or
arbitrarily many, solutions in the above form. That is to say, if we have first
found the values x = M , y = N , and then x = M ′, y = N ′, and then x = M ′′,
y = N ′′, etc., than the following very general solution can be constructed:

x = AM + BM ′ + CM ′′ + DM ′′′ + · · · ,
y = AN + BN ′ + CN ′′ + DN ′′′ + · · · ;

9From §30 and §31,

x = αT

∫
U du,

∫
U du = αV cosu;

from §30, §31, and §32,

y = Θ

∫
V du,

∫
V du = β cosu, U cosu = P.
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and certainly this method is so general that it contains all possible solutions.

General Method of Resolving the Differential Equations

dx = p du+ r dt cosu, dy = r du− p dt cosu

42. What is sought for is some combination of the two formulae, which admits
a resolution into two factors. To this end, multiply the first by α, the second
by β, and add to obtain

α dx+ β dy = p(α du− β dt cosu) + r(β du+ α dt cosu);

in order to bring the two differential factors to the same form, this can be
written as

α dx+ β dy = αp (du− β

α
dt cosu) + βr(du+

α

β
dt cosu).

Now we take

α

β
= −β

α
, or αα + ββ = 0, or β = α

√
−1,

and the combination gives

dx+ dy
√
−1 = (p+ r

√
−1)(du−

√
−1 dt cosu).

In order that the differential factor on the right can be integrated, this will
be represented in the form

dx+ dy
√
−1 = cosu(p+ r

√
−1)(

du

cosu
−
√
−1 dt).

43. We now set
du

cosu
− dt
√
−1 = dz,

so that
z = ln tang

(
45◦ + 1

2
u
)
− t
√
−1,
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and
dx+ dy

√
−1 = cosu(p+ r

√
−1) dz.

Clearly, this equation is not integrable unless the factor on the right,

cosu(p+ r
√
−1),

is itself a function of z; and whatever function it be, integration can always
be performed. From this it follows that the the integral is also a function of
z, so that the expression x + y

√
−1 equals an arbitrary function of z, that

is, of the quantity
ln tang

(
45◦ + 1

2

)
− t
√
−1.

44. In order to render the formula more elegant, we set, as previously,

tang
(
45◦ + 1

2
u
)

= s,

so that
ds

s
=

du

cosu
, and z = ln s− t

√
−1.

Denote, as is customary, by Γ an arbitrary function of its argument,

x+ y
√
−1 = Γ : (ln s− t

√
−1),

or rather, what comes out the same,

x+ y
√
−1 = 2Γ : (ln s− t

√
−1).

Since the expression
√
−1 by its nature has the double sign ±, we also have

x− y
√
−1 = 2Γ : (ln s+ t

√
−1).

Thus we infer that

x = Γ : (ln s− t
√
−1) + Γ : (ln s+ t

√
−1)

y
√
−1 = Γ : (ln s− t

√
−1)− Γ : (ln s+ t

√
−1)

However, it is certain that these expressions for x and y can always be reduced
to real values.
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45. For example, if Γ represents any power of the argurment, or any multiple,
then, denoting the exponent by γ, and using the abbreviation ln s = v,
development of the power series yields

x = vλ − λ(λ− 1)

1 · 2
vλ−2tt+

λ(λ− 1)(λ− 2)(λ− 3)

1 · 2 · 3 · 4
vλ−4t4 − λ · · · (λ− 5)

1 · 2 · · · 6
vλ−6t6 + etc.

y =
λ

1
vλ−1t− λ(λ− 1)(λ− 2)

1 · 2 · 3
vλ−3t3 +

λ · · · (λ− 4)

1 · 2 · · · 5
vλ−5t5 − λ · · · (λ− 6)

1 · 2 · · · 7
vλ−7t7 + etc.

In fact, the value of y needed to receive opposite signs, but one can, depending
on the nature of the object, transpose the positive and negative directions of
the axes.

46. These values are apparently quite different from those which were ob-
tained above from our particular solutions. On the other hand, they are
immediately valid for the case of Nautical Charts, which was not contained
in the formulae derived above. One only need set λ = 1 , so that

x = ln s = ln tang
(
45◦ + 1

2
u
)

and y = t.

Indeed, in the above, the values of x and y were exchanged, but clearly the
x and y coordinates can always be permuted.

47. While it is certain that all the values found above must be contained
within the current formula, since the latter clearly constitutes the most gen-
eral solution, it is well worth the trouble to show that this is really the case.
To this end, observe that if Γ : z denotes an arbitrary function of z, it is
always possible to write in its place ∆ : Z, Z being itself a certain func-
tion of z. Here we take Z = eαz, with z = ln s − t

√
−1; then in place of

Γ : (ln s− t
√
−1) it is possible to write

∆ : eα ln s−t√−1

. But since eα ln s = sα, and

eαt
√−1 = cosαt+

√
−1 sinαt,

we have
eα ln s−αt√−1 = sα

(
cosαt−

√
−1 sinαt

)
.
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Replacing Γ with the new function ∆, the formulae in §44 become

x = ∆ : sα
(
cos αt−

√
−1 sinαt

)
+ ∆ : sα

(
cos αt+

√
−1 sinαt

)
,

y
√
−1 = ∆ : sα

(
cos αt−

√
−1 sinαt

)
− ∆ : sα

(
cos αt+

√
−1 sinαt

)
;

where it is observed that both values can be multiplied by an arbitrary con-
stant; and also they can be interchanged.

48. Considering the special case ∆ : z = z, we obtain

x = 2sα cosαt, and y = −2sα sinαt.

If α is taken in a negative sense, the following values also satisfy:

x = 2s−α cosαt, y = +2s−α sinαt.

As observed above, that the two solutions can always be combined in such
a manner that both are multiplied by a constant and then added together.
Thus, out of the two previous solutions the more general solution can be
formed:

x =
(
Asα + Bs−α

)
cosαt, y =

(
−Asα + Bs−α

)
sinαt.

The solution given in §37 is included in these formulae. But clearly the
formulae which include the function ∆ are much more general.

49. In order to derive the second particular solution [§40] from our general
formula, we set

Z = cosαz = cos
(
α ln s− αt

√
−1
)

= cos(α ln s) cos(αt
√
−1) + sin(α ln s) sin(αt

√
−1).

But it is well known that

cos(αt
√
−1) =

e−αt + e+αt

2

and

sin(αt
√
−1) =

e−αt − e+αt

2
√
−1

,
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so that

Z =

(
e−αt + e+αt

2

)
cos(α ln s) +

(
e−αt − e+αt

2
√
−1

)
sin(α ln s).

From this we have

x = ∆ :

(
cos(α ln s)(e−αt + e+αt)

2
+

sin(α ln s)(e−αt − e+αt)
2
√
−1

)
+ ∆ :

(
cos(α ln s)(e−αt + e+αt)

2
− sin(α ln s)(e−αt − e+αt)

2
√
−1

)
,

and

y
√
−1 = ∆ :

(
cos(α ln s)(e−αt + e+αt)

2
+

sin(α ln s)(e−αt − e+αt)
2
√
−1

)
−∆ :

(
cos(α ln s)(e−αt + e+αt)

2
− sin(α ln s)(e−αt − e+αt)

2
√
−1

)
.

But then, selecting ∆ : Z to be Z, this becomes:

x = cos(α ln s)(e−αt + e+αt), y
√
−1 =

sin(α ln s)(e−αt − e+αt)√
−1

,

and in the case where α is negative:

x = cos(α ln s)(e+αt + e−αt), y
√
−1 = −sin(α ln s)(e−αt − e+αt)√

−1
.

These formulae include the solution, presented in §40, of the second case.

50. In these general formulae for finding the coordinates x and y are included
all possible representations of a spherical surface that can be shown on the
surfae of a plane, in which Meridians are cut by Parallels at right angles, and
all very small shapes on the Sphere are represented by similar shapes on the
plane.

51. In this most general solution is contained also that projection, with which
one ordinarily the Hemispheres are mapped into the interior of circles, in
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whose centers are placed the two poles.10 This projection arises from the
formulae established in §48:

x = sα cosαt, and y = −sα sinαt;

it is supposed that α = −1, so that

x =
cos t

tang
(
45◦ + 1

2
u
) , and y =

sin t

tang
(
45◦ + 1

2
u
) .

For then, x and y vanish at the poles, where u = 90◦. But at the equator,
where u = 0, and s = 1, then x = cos t and y = sin t, whence

xx+ yy = 1.

Thus, the Equator is represented by a circle whose radius=1. Moreover, at
all points of longitude t,

y

x
= tang t,

so that every Meridian is represented by a radius of this circle. Finally, the
image of the Parallel with latitude u is a circle, concentric with that of the
Equator, and with radii

=
1

s
=

1

tang
(
45◦ + 1

2
u
) = tang(45◦ − 1

2
u);

that is, the radius is equal to the tangent of half the distance to the pole. And
the hemispheres are customarily represented in conformity to this condition.

THIRD HYPOTHESIS
That all areas of the Earth are represented at their true size in the plane.

10Known today as the “polar stereographic projection”; the “Hemispheres” are the
northern and southern hemispheres of the globe. Euler mentions this projetion again in
[Eul1777b], §2, and [Eul1777c], §4.
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52. We start with the general formulae for dx and dy (§8):

dx = p du+ q dt, and dy = r du+ s dt.

and suppose, once again, that all Meridians are cut by the Parallels at right

angles. Thus, the condition
s

q
= −p

r
must be fulfilled. Accordingly, set

s = −np, q = +nr, and we have

dx = p du+ nr dt, dy = r du− np dt.

Now the element of a Meridian will be

PQ = du
√
pp+ rr,

and the element of a Parallel,

PR = n dt
√
pp+ rr.

Therefore, the area of the rectangle PQSR will be

n du dt (pp+ rr) ,

while, on the Sphere, the corresponding area pqsr is

du dt cosu.

Since both these two expressions must be equal, we obtain

n(pp+ qq) = cosu,

or

n =
cosu

pp+ rr
,

so that on account of our Hypothesis we will have:

dx = p du+
r dt cosu

pp+ rr
, and dy = r du− p dt cosu

pp+ rr
.

Therefore, it is required to find suitable functions for p and r, in order that
these formulae be integrable.
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53. To simplify the calculations, let us set

p = m cosφ and r = m sinφ,

so that pp+ rr = mm, and we shall have

dx = mdu cosφ+
dt cosu sinφ

m
,

and

dy = mdu sinφ− dt cosu cosφ

m
.

Furthermore, set m = k cosu, to obtain

dx = k du cosu cosφ+
dt sinφ

k

and

dy = k du cosu sinφ− dt cosφ

k
.

Finally, let us set cosu du = dv, so that v = sinu, resulting in

dx = k dv cosφ+
dt sinφ

k
, dy = k dv sinφ− dt cosφ

k
,

where now it is required to find suitable values for k and φ.

54. Since no suitable method is yet known for finding a general solution to
these equations, we search for particular solutions. And first, the solution
discovered above (§22), where x = t and y = sin t, immediately presents
itself. These values arise from our fomulae, if in the latter we set k = 1
and φ = 90◦; and this extends to a more general solution if for k and φ are
selected arbitrary constants. say k = a and φ = α, whence is obtained

x = av cosα +
t sinα

a
and y = av sinα− t cosα

a
.

This solution differs from the previous one only in that the the Meridians are
no longer normal to our axis EF , but are inclined to it at an angle α. But
the Parallels cut these Meridians at right angles and therefore are straight
parallel lines.
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55. We shall be able to elicit other solutions, if for one of the quantities k
and φ we select a function which depends on v alone, and for the other a
function which depends on φ alone. Then, if k = T and y = V , we shall have

dx = T dv cosV +
dt

T
sinV

and

dy = T dv sinV − dt

T
cosV.

From this it follows that

x = T

∫
dv cosV = sinV

∫
dt

T
,

y = T

∫
dv sinV = − cosV

∫
dt

T
.

The two expressions for x must be equal, as well as the two expressions
for y.

56. From the equality of the two expressions for x we deduce that∫
dv cosV

sinV
=

∫
dt

T
: T = α;

and from the equality of the two expressions for y, that∫
dv sinV

cosV
= −

∫
dt

T
: T = β.

From this, for the function T , the equalities∫
dt

T
= αT ; and

∫
dt

T
= −βT,

arise, and therefore it must be that β = −α. Differentiating,

dt

T
= α dT and so T =

√
2 t

α
.
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For V on the other hand we have∫
dv cosV = α sinV and

∫
dv sinV = −α cosV ;

Differentiating both of these gives dv = α dV , so that V =
v

α
, or, with a

constant added,

V =
v + c

α
.

57. From these values we find∫
cosV dv = α sinV = α sin

(
v + c

α

)
and

∫
dt

T
= αT =

√
2αt,

and the expressions for the two coordinates are found to be

x = sin

(
v + c

α

)√
2αt and y = − cos

(
v + c

α

)√
2αt,

From this we immediately deduce

√
xx+ yy =

√
2αt,

and from this it is clear that all points with the same longitude t are located
on the circumference of a circle with radius

√
2αt. Therefore, in this repre-

sentation, all Meridians are represented as concentric circles, and the prime
Meridian, where t = 0, collapses into the common center point. The circles
of parallel, therefore, are represented as radii of these circles. Clearly such a
mapping is quite unsuitable, even if it fulfills all of the conditions which we
are examining.

58. Now let k be a function of v alone, which = V , and the angle φ a function
of t alone, which = T . We have

dx = V dv cosT +
dt sinT

V
and dy = V dv sinT − dt cosT

V

and from this the resulting values for x and y are:

x = cosT

∫
V dv =

1

V

∫
dt sinT and y = sinT

∫
V dv = − 1

V

∫
dt cosT.
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From the equality of these expressions it is established that

V

∫
V dv =

dt sinT

cosT
= α, and − V

∫
V dv =

dt cosT

sinT
= −β,

From the two expressions for V it follows immediately that α = β;, then on
differentiating,

V dv = −α dV
V V

, or dv = −α dV
V 3

,

and integrating:

v + c =
α

2V V
, and from this, V =

√
α

2(v + c)
.

As for the function T,∫
dt sinT = α cosT and −

∫
dt cosT = α sinT ;

differentiating these, it follows that

dT = −dt
α
, and thus T = − t

α
.

59. From the values discovered,∫
V dv =

√
2α(v + c),

so that

x =
√

2α(v + c) cos
t

α
, and y = −

√
2α(v + c) sin

t

α
,

from which it follows immediately that

y

x
= − tang

(
t

α

)
, and

√
xx+ yy =

√
2α(v + c).
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From the first of these formulae it is clear that all Meridians are represented
as straight lines emerging as radii from a single fixed point. From the other
formula it is clear that all Parallels are portrayed as concentric circles. Such
a method of representation is very convenient for tracing a map of each
hemisphere in the interior of a circle, whose center is the image of a pole.
The shape of any region on the map does not differ appreciably from reality,
and its true area can be measured directly from the map.11,

60. In these three Hypotheses is contained everything ordinarily desired from
geographic as well as hydrographic maps. The second Hypothesis treated
above even covers all possible representations. But on account of the great
generality of the resulting formulae, it is not easy to elicit from them any
methods of practical use. Nor, indeed, was the intention of the present work
to go into practical uses, especially since, with the usual projections, these
matters have been explained in detail by others.
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