E447Summatio Serierum ex Sin. et Cos. compositarum [Tom XMbi/i Comm.
Acad. Sci. Petropl774, pp. 24-36]This title consisted of two related papers, both of

which are translated here. See als»46.

Summation of the series

sin gb>‘ + sin ng)‘ + ...sin ngbA

COS gb)‘ + cos 2gb)‘ + ... COS ngb)‘

81. Ifl we putp = cos¢ + /—1sin¢ andq = cos ¢ — v/—1sin ¢, it is known

that

V2 n

Pt +q"
2

P —q

2¢/—1

cosng = , sinng =

and also thapg = 1. Given these, it is evident that summations of such series ca

1 The A power goes with the sin and cos, not with theThe \'s are positive integers. To keep
as close as possible to Euler’s notation without confudieg€ader, | insert parentheses.
The expressiorf sin nz® would be written nowadays a3, sin® kz. Euler's way of writing
has some points in its favor, and | shall adhere to it, insgriarentheses where needed, thus:

J (sinnz)®.



always be reduced to the two series or progressions

feY 20 no _ pthe_pe 4 1-pon
p +p ++p - pa_l _p 1_pa )
2 . q(n+1)a_qa . 1—gon
e I e s el A S

82. If now these two progressions are added to each other, pragluc

+pa +p2a++pna

+qa+q2a+ _I_ané’

its sum will be
pa _ p(n—i-l)a qa _ q(n—i-l)a _

1_pa 1_qa

pa _ p(n+1)a _ paqa +p(n+1)aqa 4 qa _ q(n—i-l)a _ paqa +paq(n+l)a

1_pa_qa_|_paqa
which transforms (sincgg = 1) into

pa - p(n-l—l)a -1 +pna 4 qa - q(n—i-l)a S qna
2 _ pa _ qa

This reduces further, since

e — 2 cos ag,
p(n+1)a 4 q(n-i-l)Oé = 2 COS(n + 1)O{¢7

P+ ¢ = 2 cos nag,

Sum of the

two series.



to this form:

cos a¢ — cos(n + 1)ag — 1 +cosnag cosnag — cos(n + 1)ad

1+

1 — cos g 1 — cos g
which is the sum of the proposed series.
83. If however one of the series is subtracted from the othente gi Difference
of the two
[l 2c nao
TPt series.
_qa _ q2a - = qna’

its sum will be
pa _ p(n+1)a _qa 4 q(n+1)a

1 —p~ 1—q~

which when brought to the same denominator becomes

+pa _ p(n-l—l)a _ paqa _'_p(n—l—l)ozqa _ qa 4 q(n+1)a +paqa _ q(n—l—l)apa
1_pa_qa_|_paqa ’

This expression reduces on accounp@f= 1 to

pa _ qa _ p(n-l—l)a + q(n—i-l)a — 141+ pna _ qna
2 — pa — qa




This reduces further, since

P — g = 24/ —1sin ao,
prthe _ gnie — 9 /“Tsin(n + 1)ag,
e — g = 2y/—1sin na,

to this form:
sin g — sin(n + 1) + sinnag
v—1.
1 — cos agp

84. Forthe sake of brevity, let us denote the sums of these s®ritbe last term,
or the general term, preceded by the summation $igso that the two cases wef = ©

have worked out will show the summations

] - 1
f (pna qna) COos na¢ CCOS(TLJF )(X¢ ,

Q O Sl‘l’lOd)—S]‘l’] n+ Cl(z)—‘rSl.l’l TlOd) S
f ( " " ) 1(—COS)C|£¢) ’ :

These formulas will make it easy to solve all the cases censdlbelow.

85. Letfirst A = 1, so that the two series to be summed are: A=1.

s=sing+sin2¢+ ... + sinng = [ sinng,

t = cosd+ cos2¢ + ... + cosng = [ cosne.

Since
pn _ qn COS n(b _ pn + qn
2 /__1 ) 2 )

sinng =




we shall have

25v"1 = [ a).
2t = /(p”+Q”)-

We immediately find from the preceding paragraph (with- 1)

o5/ T — sin¢+sinn¢—sin(n+1)<j>\/_—1

1—cos¢ ’
o = _14 %8 n¢ —cos(n+ 1)¢
N 1 — cos ¢
and so
sin ¢ + sinng — sin(n + 1)¢
s
2(1 — cos ¢) ’
. 1 | cos ng — cos(n + 1)¢
B 2 2(1 — cos ¢)
86. Now let\ = 2, and again we set A=2.
s = (sin ) + (sin2¢)” + - - - + (sinngp)® = [ (sinnep)?,
t = (cos ¢)® + (cos26)’ + - - - + (cosnp)? = [ (cosng)”.
Since
. 2 2n_2 n . n 2n 2n 2n
(smnqb) —_ P :0_;1 +q — %_p Zq 7
2 - 2n 2pNgn 2n . 1 2n 2n
(cosng)? = P +p4q +*" lye Zq ’
we shall have these formulas : Typo.



4s = /1—/p +¢*"
4 = /1+/p +¢*"

We have[ 1 = n, since the number of terms s further (sincen = 2),

2n¢ —cos2(n + 1)¢
2n 2n — _1 COS ]
/ (p +a ) + 1 —cos2¢

If we substitute these values and divide by 4, we get

s = Py 1 cos2n¢ —cos2(n+1)¢
2 4 4(1 — cos 2¢) ’
, 1 _l_cosQngb—COSQ(n—l—l)qb
2 4 4(1 — cos 2¢) ’
whence immediately
s+t=n

as it clearly must be.

87. Now we set\ = 3 and we represent the series to be summed as

s = (sin @)’ 4 (sin2¢)® + ... + (sinng)® = [ (sinngp)’,
t = (cos ¢)® + (cos20)° + ... + (cosng)® = | (cos ne)’ .



Since

p?m _ 3p2nqn + Bpnq2n _ q?m

. 3
S 71 = )
(sin ) e
3 p?m + 3p2nqn + 3pnq2n + q3n
(cosng)” = ,
8
then, usingpg = 1, we obtain: Typos

—1 3n 3n 3 n n
:ﬁ (p —q )_T\/—_l/(p —q")

S

—1 3n 3n

3 n n
=571 (p _Q)+§7fi/@ —q"),

and
1 3
t=—/@“+fﬂ+—/@“wﬂ-
8 8
If we now substitute the values found above, the two sumsapilear thus: Typos
. - _sin3¢ —sin3(n + 1)¢ + sin 3ng N 35in<b —sin(n + 1)¢ + sinng
B 8(1 — cos 3¢) 8(1 — cos ¢) ’
. 1 4 cos 3ng —cos3(n+1)¢ N 3cosn¢> —cos(n+1)¢
2 8(1 — cos 3¢) 8(1 — cos ¢) '
88. Now let A = 4 so that we are seeking the sums A=4

s = (sing)! + (sin20)" + ... + (sinng)* = [ (sinng)*,
t = (cos )" + (cos2¢)" + ... + (cosng)' = [ (cos ne)*.



Then we have

] A p4n _ 4p3n n oy 6p2n 2n 4pnq3n + q
(sinng)! = = ,

4 p4n + 4p3n n + 6p2n 2n + 4pnq3n + q
(cosng)” = 16 )

and on account giq = 1 it follows that

_1 _1 2n
s = 15 (p" +¢"") 4/(29 +¢*") +

3

8

1 1 on 3
T (" + ¢ )+Z/(p + ¢ +§/1
On substituting the values which we have given above, Typo

3 dng — cos 4 1 I — cos 2 1
s = 3,43 s ng —cosd(n+1)¢  cos2ng — cos2(n + )gb7

8 16 16(1 — cos 49) 4(1 — cos2¢)
. 3 5 cosdng —cosd(n+1)¢  cos2ng —cos2(n+1)¢
8 16 16(1 — cos 4¢) 4(1 — cos 20)

In this fashion larger values of the exponantan be developed.

89. If now we ask what sums of this type would become if the sergicued

infinitely far, several things would need to be looked iftdrirst, it is evident Infinite se-
when) is an even number that the sums of the series would be infinérgje ifn ries.
were infinite. Yet if\ is an odd integer then nothing will make the sum infinitely

large. The question comes down to assigning valuesifora¢ and cos nag

2See translator's comments at the end of this document.



whenn is taken to be infinitely large. Those values could be anyeetween
the outer limité 1 and -1. Ifn were a finite number, then we could say nothing
definite about the sum; if the final term approached one or tiher @f the outer
limits, then the sum could be made to be anything. The illoss authot of
the preceding article chose values by ingenious reasohatgever-the-less was

metaphysical; but we can settle on values perfectly wellysgg analysis.

810. Inthese series as well as all other divergent series, themot the sum
properly speaking is not adequate if we wish to determineim“so matter what
the final term may be. Wishing to stay with valid reasoninggckreowledged to
myself that a different sense of “sum” would be more appudprfor the analysis
of these cases, and we should find as the “sum” of any infiniiessevhether
convergent or divergent, an analytic expression from whhehseriesrises and

with this definition any doubts about its propriety would isr?

811. To make this clearer, let us consider the first series deeelapove,

s =sin¢ +sin2¢ +sin3¢ + - - - +sinne

3The first “1” was left out.

4Dan. Bernoulli.

S“ut summa cuiusque seriei infinitae, sive fuerit convergswes divergens, vocetur ea formula
analytica, ex cuius evolutione eae series nascantur, bamuissa definitione omnia dubia circa
huiusmodi summationes sponte evanescunt.”



which we found was

sin ¢ + sinng — sin(n + 1)¢
2(1 — cos ¢) '

In this expression, the formsn n¢ andsin(n + 1)¢ enter on account of the final
term. If the series is extended infinitely far, then with nafiterm these values
eventually go away, and in this case the sum becomes

sin ¢

°T 2(1 = cos )’

This is then the formula from which the series arises and smyotion it can
rightly be taken as theumof that series. The same argument applies to the other
series,

t =cos¢+ cos2¢p+ cos3¢p + - - - 4 cosng

for which we found

1 cosng —cos(n+1)¢
= 2Jr 2(1 — cos ¢)

If we omit the last fraction as depending only on the final tefrthe series, then
by my notion the sum will be = —1/2. As this may not be quite clear, this

expression may be written as

cos¢p — 1

= 2(1 —cos¢)’

10



which can be shown to be equivalent to the series: multipthday/ 2 — 2 cos ¢

and then we need

cosp —1=2cosp+2cos2¢+ 2cos3¢ + 2cosdp+ - - -

— 2(cos ¢)? — 2cos ¢ cos 2¢ — 2cos G cos3p — - - - .

Now, since

2cosacosb = cos(a — b) + cos(a + b),

2(cos ¢)? = 1 + cos 29, 2 cos ¢ cos4¢ = cos 3¢ + cos 5o,
208 ¢ cos2¢ = cos ¢ + cos 3¢, 2cos @ cosbp = cosdo + cos 6o,
2cos ¢ cos 3¢ = cos2¢ 4 cos 4o, 2cos ¢ cosbp = cosdHp + cos 7o,

etc., and when we substitute in these values the equalitglisegident, for it

becomes

cosp— 1= 2cos ¢ +2cos2¢p +2cos3¢p +2cosdo
—1—cos¢ —cos2¢ —cos3p —cosdp etc..
—cos2¢p —cos3¢p —cosdo

812. With these observations in mind, we consider the case3. We had put A =3

s = (sin¢)” + (sin2¢)° + (sin3¢)° + - - -,

t = (cos ) + (cos2¢)* + (cos 3¢)° + (cosdg)® + - - - .

11



The sums for these have the expressions

. _ sin 3¢ . 3sin ¢ andt——l
~ 8(1 —cos3¢)  8(1— coso) 2

To be sure, it is not immediately apparent how to derive theesdrom these
expressions. The expert, though, will certainly see thesehare correct. Still, it

will help to show the truth of the latter summation. Since

1
(cosa)® = 708 + 7 608 3a,

the series resolves into two components, typo

t=3(cosd+cos2¢ + cos3¢ + cosdp + -+ -)

+1 (cos 3¢ + cos6¢ + cos 9 + - -+ ) .

By the earlier formula, the sum of the first serieg is(—3) = —2, and the sum

of the second series fs- (—3) = —1 so that both joined together make the sum

N[

12



The General Summation of other
Infinite Progressions Reducible to

this Type

Theorem.

When the sum of the progression

Az + B2 +C2+ D2 +---+ N2"

is known, then the progressions

S = Axsin ¢ + Ba?sin2¢ + Ca®sin 3¢ + - - - + Na" sin ne

and

T = Ax cos ¢ + Ba® cos 2¢ + Cx® cos 3¢ + - - + Na" cos ng

can also be summed.

13



Demonstration.

The progression

Az+ B2+ C22+ Dz + -+ N2"

is a function of the variable quantiy let it be denoted\ : z. As before, put Az

p=cos¢+ vV —1sing,
q=cos¢p — v/ —1lsing,

so that
1

2¢/—1

sinng = (" —q")

and

1
cosng = o (p" +¢").

If these formulas are substituted into the proposed sdhien,we obtain for their

sums the expressions

25vV—-1=A:px— A :qz,

2T = A :pr+ A : qu.

It is to be noted that the imaginary partspodindq will cancel ouf, so thatSandT

SActually, the real parts of the first equation and the imagjingarts of the second equation
will cancel themselves.

14



will end up real. These formulas will hold equally well wheththe series extend
indefinitely or they end at some point.
Example 1.

Let all the coefficientsA = B = C' = ... = 1 with the series continued infinitely

far. Then

For the first series

S = wsin¢ + 2 sin 2¢ 4 2% sin 3¢ + x* sin4¢ + ...

we get the expression

pr qx (p—qx
25v—1 = — = .
l—pr 1-—gx 1—(p+ q)z+ pgx?

Sincep — ¢ = 2v/—1sin ¢, p+ g = 2 cos ¢ andpq = 1, this becomes

B xsin ¢
T 1—2xcos¢p+a?

S

We get for the second series

T =zcos¢+ x?cos2¢ + 2° cos3d + . ..

15



the expression

px gr_ (p+q)z — 2pga®

2T = + — ,
l—pr 1—qz 1—(p+q)z+ pgz?

or
xcos ¢ — 22

T = i
1 — 2z cos ¢ + 22

Corollary 1.

Forz = 1, these become the summations given above, namely

and

This latter is all the more worthy of notice, in that the indwal terms of the series

are variable, while the sum is constant.

16



Corollary 2.

There is always ar-value that can make the sum of the first series equal to any

given quantitya. For thisx-value, we have

xsin ¢ B
1 — 2z cos ¢ + 22

If X is given a definite value, then the corresponding valua cdn be expanded
as

a=xsing + 2sin2¢ + 23sin3¢p + - - - .

In a similar way, if we are given

xcos ¢ — x?
1 — 2z cos ¢ + 22

_a,’

then the value foxk can be un-earthed, and we also have

a=1xcosp~+ x?cos2¢p+ x3cos3p+ - - - .

Example 2.

Let now

1 1 1
A:z:z—|—§z2—|—§zg—|—zz4—l—---:log1_z.

17



Let then the proposed series be

1 1
S:xsin¢+§xzsin2¢+ gz):gsin3¢+---

and

1 1
T =xcosop+ §xzcos2¢+ §$3COS3¢+"~ )

We shall have

1 1 | 1—gqx

25v—1 =log = log
1—pzx 1—qx 1 —pzx

25v/~T = log 1—2xcos¢p+zv/—1sing

1 —2cos¢p—x/—1sing

To reduce this formula, consider the form

gergx/—_l
f—gv-1

lo

If we putg/f = tanw, then this logarithm will be= 2w+/—1. The anglev in our

case must satisfy
x sin ¢
tanw = ———
1 —xcos¢

and it follows immediately tha® will equal this anglev.

"log was missing.

18



For the other progression, from

= —log (1 —2xcos¢+:)§2)

1
2T =log + log
1—px 1—qx

comes

T = —%log (1 —2xcos¢+x2).

Corollary.

From the first progression, that

x sin ¢

— =tanw
1 —xcos¢ ’

we derive
tan w sin w

= sin¢ + cos ptanw  sin(¢p +w)’

When we substitute this batkwve find

sin w ) 1 sin w 2 1 sin w S
w :m Sln¢+ 5 (m) SlIngb—l— g (m) Sln3¢

1 sinw 4
bl _ ind
T3 (sin(<b+w)) Sindg -,

which merits the greatest attention. Rut 7/2, sosinw = 1 andsin(¢ + w) =

8into the original serie§.

19



cos ¢. There follows the most beguiling summation

T sing [ 1 sin2 /1 \? sin3¢ [/ 1 \°
2 1 (cos¢)+ 2 (cosgb) * 3 (cosgb) *

Before, | had come upon this formula using various prinaglem differential

calculus. It seemed all the more noteworthy there, that ¢hies had the same

constant sum no matter what we take for the angle

Translator's Comments

Comments on “Summation of the Series ...”

The brevity of this article may mislead one into reading (&rahslating) it at
speed, but there is much to ponder. At first, to be sure, Entdndes even simple
steps, leading the reader to assume a didactic purposestartidle. And yet, in
sections5-8, Euler did not bother to correct typos. His concern in thesgigns

must be with the method of analysis rather than any partieudawer.

In 89, Euler makes a serious jump in sophistication, addressijgmssues. To
prove that the sums do not become infinite wheis an odd integer, he gives
only the briefest of an argument thah* n¢ andcos* n¢ will cover the interval [-
1,1] with an even hand — perhaps he had in mind the Euler-Magb.aummation

formula with the summation over, which clinches the matter in one step. Now,

20



the argument does not work for certain values, suchh as 0 and¢ = x/2.

So what did he mean by the general notion dihating value? Euler addresses
first the question of what valuesn na¢ andcosna¢ should take whem goes

to infinity, leaving for 8.0 the question of possible limiting values of the sums.
Euler points out that no definite values can be attributethéd‘tinal term”, and
excoriates the “illustrious author” of the article prevsoto his for resorting to
metaphysics to pick some value for the final term, rather tiefying solely on
analysis, which is perfectly adequate to the main task ofrfima value for the

sum

In 810, Euler says that new notions and a négfinitionare required. Such no-
tions, he says, could be used for both convergantdivergentases. They would
give results that would leave “no doubt of their correctiiese cannot do full
justice to them in an article of nine pages, but he is on thh fmaiAbel’s theo-
rem and Fourier analysis of step functions, and to a gemerhlotion of limit.
He will content himself here with heuristic examples of thethod, but his bold

attack gives a significance to the article belied by its liyevi
In 8§11, Euler looks at the case= 1 and argues that the terrsis. n¢ andsin(n +

1)¢ in the formula

_ sin¢ +sinng — sin(n + 1)¢
o = 2(1 — cos ¢)

need to dwindle in their effect ¥, is to reach some limit that is independentof

21



The limiting value must then be

sin ¢
2(1 — cos @)’

This is the only candidate for an answer, and Euler is bdgidafiningthis answer
as representing the sum of the series. In the same way, Eglezsathat the only
reasonable answer for the limit of the cosine serieé IAs it is not clear how a

series can arise from this constant, Euler re-writes it as

cosp — 1

b= 2(1 —cos¢)’

and then he shows that1l — cos ¢) - ¢ will be cos ¢ — 1 if you substitute fott its
definition as a cosine series. These solutions fordt are in fact the answers one

would get by Abel’s theorem.

Although he doesn’t spell it out in detail, the notion thatétthas in mind is only

one move away from Cesaro sums, and his limit is the limitrieiteed by those
sums. Cesaro sums suggest themselves from the formulasdeuieed for the
initial values of\ — it would be second nature for him to see them as elements of a
telescoping series. The important point here is that Eeleognized the need for

a newdefinitionrather than a new analyticedchnique This is an awesome step.

It is worth noting that Euler calls his limit a@nalytic expressior that is, a func-
tion rather than a value. That is why the difficultiespat 0 and¢ = 7/2 don't

matter; they do not affect the possibility of a limiting fuimmn. In effect, Euler

22



is giving a Fourier series and asking what function doespitesent. His answer

is that youstart conceptually from the limiting function and verify that tgeven
series is the appropriate Fourier representation of thmstfon. And you can use
any heuristic method to find exactly what that limiting funatshould be. Then,
Euler feels, the question of convergence becomes moot: tieenld conception

of limit is inadequate for proving convergencgu evolve your understanding

of what a limit is A decent undergraduate course on Fourier analysis could be

designed starting from this one paper.

Comments on “The General Summation...”

Euler plays his pet formula® = cos ¢ + isin ¢ to the hilt. His quaint notation

A : z for A(z) is too charming to resist.

Corollary 2 reverses the analysis of the first example to solve for exampl

x sin ¢ B
1 — 2z cos ¢ + 22

9

giving a as a Fourier series with coefficients that are expressedrinstef x.
This is the idea of a generating function. In the pyrotechitthis corollary
andExample 2 and especially in the final spectacular equation, we watsfara

performer spin off his tricks so effortlessly.
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