
E447Summatio Serierum ex Sin. et Cos. compositarum [Tom XVIIINovi Comm.

Acad. Sci. Petrop. 1774, pp. 24-36].This title consisted of two related papers, both of

which are translated here. See alsoE246.

Summation of the series

sin φλ
+ sin 2φλ

+ ... sin nφλ

cos φλ + cos 2φλ + ... cos nφλ

§1. If1 we putp = cos φ +
√

−1 sin φ andq = cos φ −

√

−1 sin φ, it is known

that

cos nφ =
pn + qn

2
, sin nφ =

pn
− qn

2
√

−1

and also thatpq = 1. Given these, it is evident that summations of such series can

1 Theλ power goes with the sin and cos, not with theφ. Theλ’s are positive integers. To keep

as close as possible to Euler’s notation without confusing the reader, I insert parentheses.

The expression
∫

sin nxα would be written nowadays asΣn

k=1
sinα kx. Euler’s way of writing

has some points in its favor, and I shall adhere to it, inserting parentheses where needed, thus:
∫

(sin nx)
α.
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always be reduced to the two series or progressions

pα + p2α + ... + pnα = p(n+1)α
−pα

pα
−1

= pα 1−pαn

1−pα
,

qα + q2α + ... + qnα = q(n+1)α
−qα

qα
−1

= qα 1−qαn

1−qα
.

§2. If now these two progressions are added to each other, producing Sum of the

two series.

+pα + p2α + ... + pnα

+qα + q2α + ... + qnα,

its sum will be
pα

− p(n+1)α

1 − pα
+

qα
− q(n+1)α

1 − qα
=

=
pα

− p(n+1)α
− pαqα + p(n+1)αqα + qα

− q(n+1)α
− pαqα + pαq(n+1)α

1 − pα − qα + pαqα

which transforms (sincepq = 1) into

pα
− p(n+1)α

− 1 + pnα + qα
− q(n+1)α

− 1 + qnα

2 − pα − qα
.

This reduces further, since

pα + qα = 2 cos αφ,

p(n+1)α + q(n+1)α = 2 cos(n + 1)αφ,

pnα + qnα = 2 cosnαφ,
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to this form:

cos αφ − cos(n + 1)αφ − 1 + cos nαφ

1 − cos αφ
= −1 +

cos nαφ − cos(n + 1)αφ

1 − cos αφ

which is the sum of the proposed series.

§3. If however one of the series is subtracted from the other to give Difference

of the two

series.
+pα + p2α + ... + pnα

−qα
− q2α

− ... − qnα,

its sum will be
pα

− p(n+1)α

1 − pα
+

−qα + q(n+1)α

1 − qα

which when brought to the same denominator becomes

+pα
− p(n+1)α

− pαqα + p(n+1)αqα
− qα + q(n+1)α + pαqα

− q(n+1)αpα

1 − pα − qα + pαqα
.

This expression reduces on account ofpq = 1 to

pα
− qα

− p(n+1)α + q(n+1)α
− 1 + 1 + pnα

− qnα

2 − pα − qα
.
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This reduces further, since

pα
− qα = 2

√

−1 sin αφ,

p(n+1)α
− q(n+1)α = 2

√

−1 sin(n + 1)αφ,

pnα
− qnα = 2

√

−1 sin nα,

to this form:
sin αφ − sin(n + 1)αφ + sin nαφ

1 − cos αφ

√

−1.

§4. For the sake of brevity, let us denote the sums of these seriesby the last term,

or the general term, preceded by the summation sign
∫

, so that the two cases we
∫

= Σ

have worked out will show the summations

∫

(pnα + qnα) = −1 + cos nαφ−cos(n+1)αφ

1−cos αφ
,

∫

(pnα
− qnα) = sin αφ−sin(n+1)αφ+sin nαφ

1−cos αφ
·

√

−1.

These formulas will make it easy to solve all the cases considered below.

§5. Let firstλ = 1, so that the two series to be summed are: λ = 1.

s = sin φ + sin 2φ + ... + sin nφ =
∫

sin nφ,

t = cos φ + cos 2φ + ... + cos nφ =
∫

cos nφ.

Since

sin nφ =
pn

− qn

2
√

−1
, cos nφ =

pn + qn

2
,
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we shall have

2s
√

−1 =

∫

(pn
− qn) ,

2t =

∫

(pn + qn) .

We immediately find from the preceding paragraph (withα = 1)

2s
√

−1 =
sin φ + sin nφ − sin(n + 1)φ

1 − cos φ

√

−1,

2t = −1 +
cos nφ − cos(n + 1)φ

1 − cos φ

and so

s =
sin φ + sin nφ − sin(n + 1)φ

2(1 − cos φ)
,

t = −
1

2
+

cos nφ − cos(n + 1)φ

2(1 − cos φ)
.

§6. Now letλ = 2, and again we set λ = 2.

s = (sin φ)2 + (sin 2φ)2 + · · · + (sin nφ)2 =
∫

(sin nφ)2 ,

t = (cos φ)2 + (cos 2φ)2 + · · ·+ (cos nφ)2 =
∫

(cos nφ)2 .

Since

(sin nφ)2 = p2n
−2pnqn+q2n

−4
= 1

2
−

p2n+q2n

4
,

(cos nφ)2 = p2n+2pnqn+q2n

4
= 1

2
+ p2n+q2n

4
,

we shall have these formulas : Typo.
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4s = 2

∫

1 −

∫

(

p2n + q2n
)

,

4t = 2

∫

1 +

∫

(

p2n + q2n
)

.

We have
∫

1 = n, since the number of terms isn; further (sinceα = 2),

∫

(

p2n + q2n
)

= −1 +
cos 2nφ − cos 2(n + 1)φ

1 − cos 2φ
.

If we substitute these values and divide by 4, we get

s =
n

2
+

1

4
−

cos 2nφ − cos 2(n + 1)φ

4(1 − cos 2φ)
,

t =
n

2
−

1

4
+

cos 2nφ − cos 2(n + 1)φ

4(1 − cos 2φ)
,

whence immediately

s + t = n

as it clearly must be.

§7. Now we setλ = 3 and we represent the series to be summed as λ = 3

s = (sin φ)3 + (sin 2φ)3 + ... + (sin nφ)3 =
∫

(sin nφ)3 ,

t = (cos φ)3 + (cos 2φ)3 + ... + (cos nφ)3 =
∫

(cos nφ)3 .
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Since

(sin nφ)3 =
p3n

− 3p2nqn + 3pnq2n
− q3n

−8
√

−1
,

(cos nφ)3 =
p3n + 3p2nqn + 3pnq2n + q3n

8
,

then, usingpq = 1, we obtain: Typos

s =
−1

8
√

−1

∫

(

p3n
− q3n

)

−
3

−8
√

−1

∫

(pn
− qn)

=
−1

8
√

−1

∫

(

p3n
− q3n

)

+
3

8
√

−1

∫

(pn
− qn) ,

and

t =
1

8

∫

(

p3n + q3n
)

+
3

8

∫

(pn + qn) .

If we now substitute the values found above, the two sums willappear thus: Typos

s = −
sin 3φ − sin 3(n + 1)φ + sin 3nφ

8(1 − cos 3φ)
+ 3

sin φ − sin(n + 1)φ + sin nφ

8(1 − cos φ)
,

t = −
1

2
+

cos 3nφ − cos 3(n + 1)φ

8(1 − cos 3φ)
+ 3

cos nφ − cos(n + 1)φ

8(1 − cos φ)
.

§8. Now letλ = 4 so that we are seeking the sums λ = 4

s = (sin φ)4 + (sin 2φ)4 + ... + (sin nφ)4 =
∫

(sin nφ)4 ,

t = (cos φ)4 + (cos 2φ)4 + ... + (cos nφ)4 =
∫

(cos nφ)4 .
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Then we have

(sin nφ)4 =
p4n

− 4p3nqn + 6p2nq2n
− 4pnq3n + q4n

16
,

(cos nφ)4 =
p4n + 4p3nqn + 6p2nq2n + 4pnq3n + q4n

16
,

and on account ofpq = 1 it follows that

s =
1

16

∫

(

p4n + q4n
)

−
1

4

∫

(

p2n + q2n
)

+
3

8

∫

1,

t =
1

16

∫

(

p4n + q4n
)

+
1

4

∫

(

p2n + q2n
)

+
3

8

∫

1.

On substituting the values which we have given above, Typo

s =
3

8
n +

3

16
+

cos 4nφ − cos 4(n + 1)φ

16(1 − cos 4φ)
−

cos 2nφ − cos 2(n + 1)φ

4(1 − cos 2φ)
,

t =
3

8
n −

5

16
+

cos 4nφ − cos 4(n + 1)φ

16(1 − cos 4φ)
+

cos 2nφ − cos 2(n + 1)φ

4(1 − cos 2φ)
.

In this fashion larger values of the exponentλ can be developed.

§9. If now we ask what sums of this type would become if the series continued

infinitely far, several things would need to be looked into.2 First, it is evident Infinite se-

ries.whenλ is an even number that the sums of the series would be infinitely large ifn

were infinite. Yet ifλ is an odd integer then nothing will make the sum infinitely

large. The question comes down to assigning values forsin nαφ and cos nαφ

2See translator’s comments at the end of this document.
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whenn is taken to be infinitely large. Those values could be anywhere between

the outer limits3 1 and -1. Ifn were a finite number, then we could say nothing

definite about the sum; if the final term approached one or the other of the outer

limits, then the sum could be made to be anything. The illustrious author4 of

the preceding article chose values by ingenious reasoning that never-the-less was

metaphysical; but we can settle on values perfectly well just using analysis.

§10. In these series as well as all other divergent series, the notion of the sum

properly speaking is not adequate if we wish to determine a “sum” no matter what

the final term may be. Wishing to stay with valid reasoning, I acknowledged to

myself that a different sense of “sum” would be more appropriate for the analysis

of these cases, and we should find as the “sum” of any infinite series, whether

convergent or divergent, an analytic expression from whichthe seriesarises, and

with this definition any doubts about its propriety would vanish.5

§11. To make this clearer, let us consider the first series developed above,

s = sin φ + sin 2φ + sin 3φ + · · ·+ sin nφ

3The first “1” was left out.
4Dan. Bernoulli.
5“ut summa cuiusque seriei infinitae, sive fuerit convergenssive divergens, vocetur ea formula

analytica, ex cuius evolutione eae series nascantur, hacque admissa definitione omnia dubia circa
huiusmodi summationes sponte evanescunt.”
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which we found was

sin φ + sin nφ − sin(n + 1)φ

2(1 − cos φ)
.

In this expression, the formssin nφ andsin(n + 1)φ enter on account of the final

term. If the series is extended infinitely far, then with no final term these values

eventually go away, and in this case the sum becomes

s =
sin φ

2(1 − cos φ)
.

This is then the formula from which the series arises and so bymy notion it can

rightly be taken as thesumof that series. The same argument applies to the other

series,

t = cos φ + cos 2φ + cos 3φ + · · ·+ cos nφ

for which we found

t = −
1

2
+

cos nφ − cos(n + 1)φ

2(1 − cos φ)
.

If we omit the last fraction as depending only on the final termof the series, then

by my notion the sum will bet = −1/2. As this may not be quite clear, this

expression may be written as

t =
cos φ − 1

2(1 − cos φ)
,
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which can be shown to be equivalent to the series: multiply each by2 − 2 cos φ

and then we need

cos φ − 1 =2 cosφ + 2 cos 2φ + 2 cos 3φ + 2 cos 4φ + · · ·

− 2(cos φ)2
− 2 cosφ cos 2φ − 2 cos φ cos 3φ − · · · .

Now, since

2 cos a cos b = cos(a − b) + cos(a + b),

2(cos φ)2 = 1 + cos 2φ, 2 cos φ cos 4φ = cos 3φ + cos 5φ,

2 cos φ cos 2φ = cos φ + cos 3φ, 2 cos φ cos 5φ = cos 4φ + cos 6φ,

2 cosφ cos 3φ = cos 2φ + cos 4φ, 2 cos φ cos 6φ = cos 5φ + cos 7φ,

etc., and when we substitute in these values the equality is self-evident, for it

becomes

cos φ − 1 = 2 cosφ +2 cos 2φ +2 cos 3φ +2 cos 4φ

−1 − cos φ − cos 2φ − cos 3φ − cos 4φ etc..

− cos 2φ − cos 3φ − cos 4φ

§12. With these observations in mind, we consider the caseλ = 3. We had put λ = 3

s = (sin φ)3 + (sin 2φ)3 + (sin 3φ)3 + · · · ,

t = (cos φ)3 + (cos 2φ)3 + (cos 3φ)3 + (cos 4φ)3 + · · · .

11



The sums for these have the expressions

s = −
sin 3φ

8(1 − cos 3φ)
+

3 sinφ

8(1 − cos φ)
and t = −

1

2
.

To be sure, it is not immediately apparent how to derive the series from these

expressions. The expert, though, will certainly see that these are correct. Still, it

will help to show the truth of the latter summation. Since

(cos a)3 =
3

4
cos a +

1

4
cos 3a,

the series resolves into two components, typo

t = 3
4
(cos φ + cos 2φ + cos 3φ + cos 4φ + · · · )

+1
4
(cos 3φ + cos 6φ + cos 9φ + · · · ) .

By the earlier formula, the sum of the first series is3
4
·

(

−
1
2

)

= −
3
8
, and the sum

of the second series is1
4
·

(

−
1
2

)

= −
1
8

so that both joined together make the sum

−
1
2
.
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The General Summation of other

Infinite Progressions Reducible to

this Type

Theorem.

When the sum of the progression

Az + Bz2 + Cz3 + Dz4 + · · · + Nzn

is known, then the progressions

S = Ax sin φ + Bx2 sin 2φ + Cx3 sin 3φ + · · · + Nxn sin nφ

and

T = Ax cos φ + Bx2 cos 2φ + Cx3 cos 3φ + · · ·+ Nxn cos nφ

can also be summed.
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Demonstration.

The progression

Az + Bz2 + Cz3 + Dz4 + · · · + Nzn

is a function of the variable quantityz; let it be denoted∆ : z. As before, put ∆ : z

p =cos φ +
√

−1 sin φ,

q =cos φ −

√

−1 sin φ,

so that

sin nφ =
1

2
√

−1
(pn

− qn)

and

cos nφ =
1

2
(pn + qn) .

If these formulas are substituted into the proposed series,then we obtain for their

sums the expressions

2S
√

−1 = ∆ : px − ∆ : qx,

2T = ∆ : px + ∆ : qx.

It is to be noted that the imaginary parts ofp andq will cancel out6, so thatSandT

6Actually, the real parts of the first equation and the imaginary parts of the second equation
will cancel themselves.
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will end up real. These formulas will hold equally well whether the series extend

indefinitely or they end at some point.

Example 1.

Let all the coefficientsA = B = C = . . . = 1 with the series continued infinitely

far. Then

∆ : z =
z

1 − z
.

For the first series

S = x sin φ + x2 sin 2φ + x3 sin 3φ + x4 sin 4φ + ...

we get the expression

2S
√

−1 =
px

1 − px
−

qx

1 − qx
=

(p − q)x

1 − (p + q)x + pqx2
.

Sincep − q = 2
√

−1 sin φ, p + q = 2 cosφ andpq = 1, this becomes

S =
x sin φ

1 − 2x cos φ + x2
.

We get for the second series

T = x cos φ + x2 cos 2φ + x3 cos 3φ + . . .
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the expression

2T =
px

1 − px
+

qx

1 − qx
=

(p + q)x − 2pqx2

1 − (p + q)x + pqx2
,

or

T =
x cos φ − x2

1 − 2x cos φ + x2
.

Corollary 1.

Forx = 1, these become the summations given above, namely

S =
sin φ

2(1 − cos φ)
=

1

2
cot

1

2
φ

and

T = −
1

2
.

This latter is all the more worthy of notice, in that the individual terms of the series

are variable, while the sum is constant.
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Corollary 2.

There is always anx-value that can make the sum of the first series equal to any

given quantitya. For thisx-value, we have

x sin φ

1 − 2x cos φ + x2
= a.

If x is given a definite value, then the corresponding value ofa can be expanded

as

a = x sin φ + x2 sin 2φ + x3 sin 3φ + · · · .

In a similar way, if we are given

x cos φ − x2

1 − 2x cos φ + x2
= a,

then the value forx can be un-earthed, and we also have

a = x cos φ + x2 cos 2φ + x3 cos 3φ + · · · .

Example 2.

Let now

∆ : z = z +
1

2
z2 +

1

3
z3 +

1

4
z4 + · · · = log

1

1 − z
.

17



Let then the proposed series be

S = x sin φ +
1

2
x2 sin 2φ +

1

3
x3 sin 3φ + · · ·

and

T = x cos φ +
1

2
x2 cos 2φ +

1

3
x3 cos 3φ + · · · .

We shall have

2S
√

−1 = log
1

1 − px
− log

1

1 − qx
= log

1 − qx

1 − px
,

or7

2S
√

−1 = log
1 − x cos φ + x

√

−1 sin φ

1 − x cos φ − x
√

−1 sin φ
.

To reduce this formula, consider the form

log
f + g

√

−1

f − g
√

−1
.

If we putg/f = tanω, then this logarithm will be= 2ω
√

−1. The angleω in our

case must satisfy

tan ω =
x sin φ

1 − x cos φ

and it follows immediately thatSwill equal this angleω.

7log was missing.
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For the other progression, from

2T = log
1

1 − px
+ log

1

1 − qx
= − log

(

1 − 2x cos φ + x2
)

comes

T = −
1

2
log

(

1 − 2x cos φ + x2
)

.

Corollary.

From the first progression, that

x sin φ

1 − x cos φ
= tanω,

we derive

x =
tan ω

sin φ + cos φ tanω
=

sin ω

sin(φ + ω)
.

When we substitute this back8, we find

ω =
sin ω

sin(φ + ω)
sin φ +

1

2

(

sin ω

sin(φ + ω)

)2

sin 2φ +
1

3

(

sin ω

sin(φ + ω)

)3

sin 3φ

+
1

4

(

sin ω

sin(φ + ω)

)4

sin 4φ + · · · ,

which merits the greatest attention. Putω = π/2, sosin ω = 1 andsin(φ + ω) =

8into the original seriesS.
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cos φ. There follows the most beguiling summation

π

2
=

sin φ

1

(

1

cos φ

)

+
sin 2φ

2

(

1

cos φ

)2

+
sin 3φ

3

(

1

cos φ

)3

+ · · · .

Before, I had come upon this formula using various principles from differential

calculus. It seemed all the more noteworthy there, that the series had the same

constant sum no matter what we take for the angleφ.

Translator’s Comments

Comments on “Summation of the Series ...”

The brevity of this article may mislead one into reading (andtranslating) it at

speed, but there is much to ponder. At first, to be sure, Euler includes even simple

steps, leading the reader to assume a didactic purpose to this article. And yet, in

sections6-8, Euler did not bother to correct typos. His concern in these sections

must be with the method of analysis rather than any particular answer.

In §9, Euler makes a serious jump in sophistication, addressing major issues. To

prove that the sums do not become infinite whenλ is an odd integer, he gives

only the briefest of an argument thatsinλ nφ andcosλ nφ will cover the interval [-

1,1] with an even hand – perhaps he had in mind the Euler-MacLaurin summation

formula with the summation overn, which clinches the matter in one step. Now,
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the argument does not work for certain values, such asφ = 0 andφ = π/2.

So what did he mean by the general notion of alimiting value? Euler addresses

first the question of what valuessin nαφ andcos nαφ should take whenn goes

to infinity, leaving for §10 the question of possible limiting values of the sums.

Euler points out that no definite values can be attributed to the “final term”, and

excoriates the “illustrious author” of the article previous to his for resorting to

metaphysics to pick some value for the final term, rather thanrelying solely on

analysis, which is perfectly adequate to the main task of finding a value for the

sum.

In §10, Euler says that new notions and a newdefinitionare required. Such no-

tions, he says, could be used for both convergentand divergentcases. They would

give results that would leave “no doubt of their correctness”. He cannot do full

justice to them in an article of nine pages, but he is on the path to Abel’s theo-

rem and Fourier analysis of step functions, and to a generalized notion of limit.

He will content himself here with heuristic examples of the method, but his bold

attack gives a significance to the article belied by its brevity.

In §11, Euler looks at the caseλ = 1 and argues that the termssin nφ andsin(n+

1)φ in the formula

sn =
sin φ + sin nφ − sin(n + 1)φ

2(1 − cos φ)

need to dwindle in their effect ifsn is to reach some limit that is independent ofn.
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The limiting value must then be

sin φ

2(1 − cos φ)
.

This is the only candidate for an answer, and Euler is basically definingthis answer

as representing the sum of the series. In the same way, Euler argues that the only

reasonable answer for the limit of the cosine series is -1
2
. As it is not clear how a

series can arise from this constant, Euler re-writes it as

t =
cos φ − 1

2(1 − cos φ)
,

and then he shows that2(1 − cos φ) · t will be cos φ − 1 if you substitute fort its

definition as a cosine series. These solutions forsandt are in fact the answers one

would get by Abel’s theorem.

Although he doesn’t spell it out in detail, the notion that Euler has in mind is only

one move away from Cesàro sums, and his limit is the limit determined by those

sums. Cesàro sums suggest themselves from the formulas Euler derived for the

initial values ofλ – it would be second nature for him to see them as elements of a

telescoping series. The important point here is that Euler recognized the need for

a newdefinitionrather than a new analyticaltechnique. This is an awesome step.

It is worth noting that Euler calls his limit ananalytic expression– that is, a func-

tion rather than a value. That is why the difficulties atφ = 0 andφ = π/2 don’t

matter; they do not affect the possibility of a limiting function. In effect, Euler
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is giving a Fourier series and asking what function does it represent. His answer

is that youstart conceptually from the limiting function and verify that thegiven

series is the appropriate Fourier representation of this function. And you can use

any heuristic method to find exactly what that limiting function should be. Then,

Euler feels, the question of convergence becomes moot: whenthe old conception

of limit is inadequate for proving convergence,you evolve your understanding

of what a limit is. A decent undergraduate course on Fourier analysis could be

designed starting from this one paper.

Comments on “The General Summation...”

Euler plays his pet formulaeiφ = cos φ + i sin φ to the hilt. His quaint notation

∆ : z for ∆(z) is too charming to resist.

Corollary 2 reverses the analysis of the first example to solve for example

x sin φ

1 − 2x cos φ + x2
= a,

giving a as a Fourier series with coefficients that are expressed in terms of x.

This is the idea of a generating function. In the pyrotechnics of this corollary

andExample 2, and especially in the final spectacular equation, we watch astar

performer spin off his tricks so effortlessly.
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