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1. Euler states that he will find a beautiful relation involving the two series

(1)                            1 2 3 4 5 6 7 8 .m m m m m m m m etc− + − + − + − +

(2)                            1 1 1 1 1 1 1 1 ,
1 2 3 4 5 6 7 8n n n n n n n n etc− + − + − + − +

where n = m + 1. While this relation is demonstrated only for special cases, its truth in

general seems assured.

2. Euler explains his idea of the sum of a divergent series. Since the series 

1-2+3-4+5-6 etc.  arises by first expanding 

2 3 4 5
2

1 1 2 3 4 5 6 .
(1 )

x x x x etc
x

= − + − + − +
+

,

then setting x = 1, we conclude that 1 2 3 4 5 6 . 1/ 4etc− + − + − + = . In modern terms this

is the Abel summation of the series.

3. Using calculus, Euler states (without explanation), that he can find the sums of

series of the form 2 31 2 3 4 .m m mx x x etc− + − + , as rational functions of x. He lists these

series with their sums for 0,1, 2, ,6m = . A sample is 
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( )
3 3 2 3 3

4
1 41 2 3 4 .

1
x xxx x x etc
x

− +
− + − + =

+
.

He then sets x = 1 and obtains the sums of series of the type (1) for 0,1, 2, ,9m = .

A sample is 

3 3 3 3 3 21 2 3 4 5 6 .
16

etc− + − + − + = − .

It is important to notice that when the power is 2m, a positive even number, the sum is

2 2 2 2 21 2 3 4 5 6 . 0m m m m m etc− + − + − + = .

4. Euler reviews his previous discovery of the sums

        2
2 2 2 2

1 1 1 1 . ( )
1 2 3 4

n
n n n n etc A n π+ + + + = ,

for n a positive integer. The numbers ( )A n  are rational and he has found their exact

values. (Euler uses consecutive letters of the alphabet rather than ( )A n .

(1) , (2) ,A A A B= = .) Since

     
1

1

1 1 1 1 1 1 2 1 1 1 1 1 1 1. .
1 2 3 4 5 6 2 1 2 3 4 5 6

n

n n n n n n n n n n n n netc etc
−

−

−  − + − + − + = + + + + + + 
 

,

he can now express the sum of series of the type (2) with powers that are even numbers.

He gets

(3)
2 1

2
2 2 2 2 2 2 2 1

1 1 1 1 1 1 2 1. ( )
1 2 3 4 5 6 2

n
n

n n n n n n netc A n π
−

−

−
− + − + − + = .

He remarks that while he knows

1 1 1 1 1 1 . log 2
1 2 3 4 5 6

etc− + − + − + =  ,

his attempts to sum series of the type (2) for other odd powers have always failed.
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5. Euler lists the exact numerical values of the important rational numbers (1)A

through (17)A .

6. He begins by stating that the series of the first type (1) also depend on the

numbers ( )A n . To show this he uses the Euler-Maclaurin summation formula, which he

has found in a previous publication. He writes this formula in the unusual form

( ) ( ) ( 2 ) ( 3 ) ( 4 ) .f x f x f x f x f x etcα α α α+ + + + + + + + + =

3 3 5 5

3 3 5 5

1 1 (1) ( ) (2) ( ) (3) ( )( ) ( ) .
2 2 2 2

A df x A d f x A d f xf x dx f x etc
dx dx dx

α α α
α

− + − + − +∫

7. Using a simple algebraic manipulation, Euler converts the above result into a

summation formula suitable for his alternating series

(4) 

( ) ( ) ( )2 4 3 3 6 5 5

3 3 5 5

( ) ( ) ( 2 ) ( 3 ) ( 4 ) .

2 1 (1) ( ) 2 1 (2) ( ) 2 1 (3) ( )1 ( ) ..
2 2 2 2

f x f x f x f x f x etc

A df x A d f x A d f x
f x etc

dx dx dx

α α α α

α α α

− + + + − + + + −

− − −
= − + − +

To obtain series of the first type he sets ( ) mf x x=  and 1α =  to get 

( 1) ( 2) ( 3) ( 4) ( 5) .m m m m m mx x x x x x etc− + + + − + + + − + + =

( ) ( )2 1 4 31 ( 1)( 2)2 1 (1) 2 1 (2)
2 2 2 2 2

m m mm m m mx A x A x− −− −
− − + −

⋅ ⋅

( )6 5( 1)( 2)( 3)( 4) 2 1 (3) .,
2 2 2 2 2

mm m m m m A x etc−− − − −
− − +

⋅ ⋅ ⋅ ⋅

where the sum on the right is finite if m is a non-negative  integer.

8. Euler now lets 0x =  in this last result to obtain series of the first type (1). On the

right, all the terms disappear if m is even, and all but one term disappears if m is odd. He

lists all the results for m = 0 to 10.
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A sample is

2m = 2 2 2 2 21 2 3 4 5 6 . 0etc− + − + − + = ,

3m =
( )4

3 3 3 3 3
3

2 1
1 2 3 4 5 6 . 1 2 3 (2)

2
etc A

−
− + − + − + = − ⋅ ⋅ .

These sums agree with the results of section 2, but only now is the dependence on A(n)

revealed.

9. When p is a positive integer, he has obtained the following two results:

( )2
2 1 2 1 2 1 2 1 2 1 1

2 1

2 1
1 2 3 4 5 6 ( 1) (2 1)! ( )

2

p
p p p p p p

pp A p− − − − − +
−

−
− + − + − + = − −   , and

  
2 1

2
2 2 2 2 2 2 2 1

1 1 1 1 1 1 2 1 ( )
1 2 3 4 5 6 2

p
p

p p p p p p p A p π
−

−

−
− + − + − + = .

Dividing the two he eliminates ( )A p  and gets

( )
( )

1 22 1 2 1 2 1 2 1 2 1

2 1 2

2 2 2 2 2 2

( 1) (2 1)! 2 11 2 3 4 5 6
1 1 1 1 1 1 2 1

1 2 3 4 5 6

p pp p p p p

p p

p p p p p p

p

π

+− − − − −

−

− − −− + − + − +
=

−− + − + − +
.

He also has

2 2 2 2 2

2 1 2 1 2 1 2 1 2 1 2 1

1 2 3 4 5 6 01 1 1 1 1 1
1 2 3 4 5 6

p p p p p

p p p p p p+ + + + + +

− + − + − +
=

− + − + − +
.

Euler lists this pair  for p = 1 to 5.

.He ends by noting that the result that precedes these is (p = 0)

1 1 1 1 1 1 . 1
1 1 1 1 1 2log 21 .
2 3 4 5 6

etc

etc

− + − + − +
=

− + − + − +
,

and does not, at first glance, seem connected to his discoveries.

10.     Reflecting on the above results, Euler conjectures the general formula
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(5)
( )

( )
1 1 1 1 1

1

( 1)! 2 11 2 3 4 5 6 . cos1 1 1 1 1 22 11 .
2 3 4 5 6

nn n n n n

n n

n n n n n

netc n

etc

π
π

− − − − −

−

− − −− + − + − +
=

−− + − + − +
,

which he has shown to be true for n = 2, 3, 4, … . This is the main result of the paper.

11. In this section Euler proves that his conjecture (5) is valid for n = 1. Since it is

known that 

1 1 1 1 1 1 . 1
1 1 1 1 1 2log 21 .
2 3 4 5 6

etc

etc

− + − + − +
=

− + − + − +
, 

we must show that 
( )

( )11

( 1)! 2 1 1lim cos
2 2log 22 1

n

n nn

n nπ
π−→

− − −
=

−
. Euler does this using

L’Hospital’s rule.

12. Now Euler verifies his conjecture (5) for n = 0 which is known to be 

1 1 1 1 11 .
2 3 4 5 6 2log 2

1 1 1 1 1 1 .

etc

etc

− + − + − +
=

− + − + − +
.

 As in the previous section, he uses L’Hospital’s rule.

13.  The conjecture (5) has been demonstrated for n = 0, 1, 2, 3, …. He now proves

the conjecture for n a negative integer. He uses the identity (1 ) ( )
sin

x x
x

π
π

Γ − Γ = , which

he has proved in a previous publication.

14. Euler verifies his conjecture for 1/ 2n =  which is

( )
( )

1/ 2
1/ 2 1/ 2 1/ 2 1/ 2 1/ 2

1/ 2 1/ 2

1/ 2 1/ 2 1/ 2 1/ 2 1/ 2

1 1 1 1 11 . ( 1/ 2)! 2 12 3 4 5 6 cos1 1 1 1 1 42 11 .
2 3 4 5 6

etc

etc

π
π−

− + − + − + − − −
=

−− + − + − +
.

He uses (1/ 2) πΓ = , and remarks that this case makes his conjecture very convincing.
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15.       Next Euler tests his conjecture for n = 3/2 which is 

1 2 3 4 5 6 . 3 2 0.49677381 1 1 1 1 2 21 .
2 2 3 3 4 4 5 5 6 6

etc

etc π
− + − + − + +

= =
− + − + − +

.

He makes the verification numerically. To find the sum of the divergent series in the

numerator he first calculates the sum of the first nine terms and gets 

1 2 3 4 5 6 7 8 9 1.9217396662− + − + − + − + = .

 From this he must subtract 10 11 12 13 14 .etc− + − + −  which remarkably, he

calculates using the alternating series version of the Euler-Maclaurin sum formula (4)

from section 7. This  is about 1.541610. Thus the numerator is 0.380129. 

He calculates the sum of the convergent series in the denominator in the same

way and gets 0.765158. The numerical agreement from the conjecture is remarkably

close and Euler ends by saying “one could not doubt in the least that this matter is true.”

16.        Convinced of the truth of his conjecture (5), Euler lists the special cases in which 

n = 3/2, 5/2, 7/2, …, 15/2. A sample is

( )
( )

2 2 2

3 3

3 3 3

1 3 5 8 2 11 2 2 3 3 4 4 .
1 1 1 2 8 21 .

2 2 3 3 4 4

etc

etc π

⋅ ⋅ −− + − +
= −

−− + − +
.

17.       Euler  continues his search to find the sum of the series 

1 1 1 1 1 1 1 1 ,
1 2 3 4 5 6 7 8n n n n n n n n etc− + − + − + − +

when n is an odd integer. He examines his conjecture (5) in this case:
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( )
( )

( )
2 1 2 1 2 1 2 1

2 2 1 2 2 2 2

2 1

1 1 1 11 .
2 3 4 5

2 1 1 2 3 4 5 .
2 11 2 3 2 2 1 cos

2

etc

etc

λ λ λ λ

λ λ λ λ λ λ

λ

π
λλ π

+ + + +

+

+

− + − + − =

− − + − + −
−

+⋅ ⋅ −

and observes that the value of both the numerator 

2 2 2 21 2 3 4 5 .etcλ λ λ λ− + − + −

and  the denominator 2 1cos sin
2
λ π λπ+

= −    are  zero when λ is an integer. Thus we

should try L’Hospital’s rule.

18. Euler uses L’Hospital’s rule and gets 

 (6) ( )
( )

2 1 2 1 2 1 2 1

2 2
2 2 2 2

2 1

1 1 1 11 .
2 3 4 5

2 2 1
(1 log1 2 log 2 3 log3 4 log 4 .)

1 2 3 2 2 1 cos

etc

etc

λ λ λ λ

λ λ
λ λ λ λ

λ

π

λ λπ

+ + + +

+

− + − + − =

−
− + − +

⋅ ⋅ −
.

He lists several special cases and observes that summing the series 

2 2 2 21 log1 2 log 2 3 log3 4 log 4 .etcλ λ λ λ− + − +

is probably more difficult than his original problem.

19. Since 

            1

1 1 1 1 2 1 1 1 1 11 1
3 5 7 9 2(2 1) 2 3 4 5

m

m m m m m m m m metc etc−

−  + + + + + = − + − + − −  
,

we get from the previous section 

(7)            
2 1 2 1 2 1 2 1

2
2 2 2 2

1 1 1 11 .
3 5 7 9

(2 log 2 3 log3 4 log 4 5 log5 .).
1 2 3 2 cos

etc

etc

λ λ λ λ

λ
λ λ λ λπ

λ λπ

+ + + ++ + + + + =

− − + − +
⋅ ⋅
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Euler notes that (7) is slightly simpler than (6) and he lists a few special cases. Relation

(7) is true only for 1, 2,3,λ = . However, when 0λ =  we know that 

1log 2 log3 log 4 log5 . log
2 2

etc π
− + − + =  ,

and this gives us hope for future research.

20.       Euler states that he has found the similar conjecture

1 1 11 3 5 7 1 2 3 ( 1)2 sin
1 3 5 7 2

n n n n

n n n n

etc n n
etc

π
π

− − −

− − −

− + − + ⋅ ⋅ −
=

− + − +

using the same methods. When 2n λ= , an even integer, we have:

2 1 2 1 2 1 2 1

2 2 2 2 1

1 1 1 (3 log3 5 log5 7 log 7 .)1 .
3 5 7 1 2 3 (2 1)2 cos

etcetc
λ λ λ λ

λ λ λ λ

π
λ λπ

− − − −

−

− + −
− + − + = −

⋅ ⋅ ⋅ −
, 

which is similar to (7).

.
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