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Foreword  

As earlier as the 1730’s and until his death in 1783, Euler wrote several papers on celestial mechanics, which 

are generally characterized by rather lengthy and intricate astronomical computations. A typical example of 

the works of this period is E187 – ‘Theory of the motion of the moon which exhibits all its irregularities’, 

which was originally published as a book in 1753, and contains 18 chapters written in Latin. As revealed by 

its title itself, E348 of 1768 was written with the goal of alleviating the astronomical computations in a 

typical celestial three-body problem represented by Sun, Earth and Moon. In this work, Euler’s approach 

consists of two parts: geometrical and mechanical. The geometrical part contains most of the analytical 

developments, in which Euler makes use of Cartesian and spherical trigonometry as well − the latter not 

always in a clear enough way. With few sketches to show the geometrical constructions envisaged by Euler − represented by several geometrical variables −, it is a hard to follow publication. The Translator, on trying 

to clear the way to the non-specialized reader, used the best of his abilities to add his own figures to the 

translation. In the latter part of the work, Euler particularizes his developments to the Moon, ending up with 

eight coupled differential equations for resolving the perturbed motion of this celestial body, which makes 

his claim of an “easy method” as being rather fallacious. Despite showing great analytical skills, Euler did not 

give indications on how this system of equations could be solved, which renders his efforts practically 

useless in the determination of the variations of the nodal line and inclination of the Moon’s orbit.               
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Although I have often attacked the investigation on how the motions of celestial bodies are perturbed due to 

their mutual action, most of the time, I have incurred in rather lengthy and laborious calculations, which, 

however, after many digressions, could be reduced to simpler formulas. However, the cause of this prolixity 

is due to a multiplicity of elements, which are necessary to introduce into the calculation, that is: not only for 

all the determinations, which are related to the motion of the perturbing bodies, should be examined, but 

also the perturbation of its own motion, in so far as if it is not in the same plane, it demands various 

elements, to which is a custom among Astronomers to consider variations originated in the nodal line
1
 and 

inclination of the orbit. But in case all these considerations are simultaneously included into the calculation, 

it is really not worthwhile, because they will give rise to much trouble and confusion, to which no other 

remedy is seen to exist, unless all the elements are carefully distinguished, and all the operations are 

established so that no more elements are admitted into them, than those that are necessary to consider. 

II. 

The principal part of this research is related to mechanics, when the perturbation of the motion by 

the forces of the disturbing body should be defined; thus mechanical principles are provided, and from them 

the location of the body, whose motion is seeked, can be conveniently determined at any time by three 

mutually orthogonal coordinates; truly the other part scarcely requires a swifter development, with which 

the location is firstly determined, and should be reduced to the acceptable practice in Astronomy, in which it 

is common to naturally express the different locations in the sky by longitude and latitude. And also in this 

second part, in which will be allowed to recall the geometry, being correct to distinguish a priori, that all 

mechanics is due to it, and I should observe that these two parts can furthermore not only be conveniently 

separated, but also to be able to deal with both matters in a much easier way than if we wished to deal 

jointly with both of them. However, it is seen that the geometrical mechanical investigation should precede, 

nonetheless it is possible to begin with the geometrical part in a neat way, with none impediment, from the 

location of the body, which motion we seek to obtain, as it were known, and that we identify by three 

coordinates. This inversion of the methodology is thus seen to follow, so that the development of the 

geometrical part gives much important support, with which the work in the calculation of the mechanical 

part that follows next will be considerably alleviated. We follow this method certainly with great advantage, 

provided that we handle the geometrical part without introducing into the calculation quantities related to 

the disturbing forces.  

GEOMETRICAL PART 

III. 

 Therefore, I assume that the motion of the body � is to be determine and that, as usual, readily 

defined by mechanical principles. Certainly, firstly the motion in relation to certain point �, which is 

considered fixed, even if it happened that the said point is used as reference to the circular motion, then, 

next, a certain plane is considered traversing through this point and equally fixed, which is represented by 

the plane of the figure itself (Fig. 1), in which it is drawn a fixed line ��, and at any time, the location of the 

body � is thus defined by the three mutually orthogonal coordinates ��, �� and ��, so that first, from the 

                                                           
1
 The nodal line is a line that joins the ascending node and the descending node of an orbit. It marks the intersection of 

the orbital plane and some reference plane, usually the ecliptic. 
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� location, the perpendicular �� to that plane is drawn, further on, truly from �, the normal �� is guided in 

the direction of the line ��. Then, let us call the following three coordinates: 

�� = �, �� = � and �� = � 

 

which values at any elapsed time = � are considered to be known. Then, consequently, the distance of the 

body � to the fixed point � is immediately obtained, which, for brevity, it is indicated by �� = �, and then, �	 = �	 + �	 + �	.  

 Then, we conceive that during the time �� the body advances from � to �, such that �� = � + ��, 

and the elementary angle ��� = �∅, which, in the mean time, the body � is seen to complete in its orbit 

around �, resulting in �� = ���	 + �	�∅	 , whereas, according to the coordinate elements we have that �� = √��	 + ��	 + ��	, whence 

��	 + �	�∅	 = ��	 + ��	 + ��	 

in this way, this exposes how the elementary angle �∅ can be conveniently expressed by the coordinates, 

which will be soon succinctly shown. 

IV. 

 A certain plane is defined by the segment �� and point �, in which the body � is, in fact, considered 

to move: this plane will cut somewhere the fixed plane of the figure; then this intersection is constructed 

along the line ��, which is called the nodal line in Astronomy, and which variation, due to the motion 

perturbation of the body �, should be investigated above all: next, it is also convenient to note, that the 

angle which the plane ��� is inclined towards the fixed plane, which in Astronomy is simply called 

inclination, and because of the perturbation of the motion, can undergo remarkable alterations. Then, next, 

let us consider these new elements: 

Longitude of the nodal line or angle ��� = �  

Inclination of the orbit to the fixed plane = �  

and argument of latitude or angle ��� = �  

� 
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which we rename according to the coordinates, so from �, as well as from �, let us draw the normals �� 

and �� to the nodal line ��, such that the angle ��� will have the same inclination of �. 

2
 

Then, considering that the angle ��� = �, and that the distance �� = �, we will have that: 

�� = � ����   and   �� = � ���� 

and further  

�� = � ���� ����    and   �� = � ���� ����  

and since the angle ��� = � = ���, we conclude that: 

�� = � ���� cos � − � ���� ���� ��� �   
and �� = � ���� ���� + � ���� ���� ��� �.  

Therefore, our three coordinates are thus defined: 

� = � ����� cos � −  ���� ���� ��� �    

� = � ����� ��� � +  ���� ���� ��� �   

and � = � ���� ����, 

where it should be noted that the tangent of the angle ��� = �!�� ����, which is an angle called the 

longitude of the point � to the node. 

                                                           
2
 This figure was added by the Translator. 
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V. 

 Since in Astronomy the angle ��� reveals the longitude, truly the angle ��� is the latitude of point �, which relates to the plane of the ecliptic, and the line �� extended to the First Star of Aries; each one of 

these denominations can be used in a wider sense: we then have 

longitude of the point � or angle ��� = � + ��� 

considering that the tangent of the angle ��� = �!�� ���� 

for the latitude or truly for the angle ��� we will have 

��� ��� = ���� = ���� ���� 

where the same formulas are usually obtained from the spherical trigonometry. Certainly, in the spherical 

surface with center in �, the maximum circle ��� represents a fixed plane, and the point � at infinite, and 

from which the longitude is calculated (Fig. 2). Furthermore, be � the node and �� the orbit to which now 

the motion of the body � is referred to, then, from �, in the direction of the circle ���, the normal arch �� 

is drawn; once this is done, the arch ��� shows the longitude, and truly, the arch �� the latitude of the 

point �, and in relation to these we have that: 

arch ��, or angle of the node = �  

angle ��� or inclination = �  

and arch �� or argument of the latitude = � 

from these, the solution of the right spherical triangle ��� gives 

��� �� = ���� ����       and        �!� �� = �!�� ����,  

exactly as before. 

 

VI. 

 However, for the nodal line and the inclination be both variables; since both the point � and � 

belong to the same plane ���, then by differentiation, the point � should come to �, and because the angle ��� = � and the inclination � are considered constants, of course as long as the angle ��� = �, the 

elementary angle ��� = �∅ is assumed to increase, such that �� = �∅. However, to came to the same 

point � in another way, it is necessary that the nodal line and the inclination be both considered variables, 

since the point � should also have a tendency to a diversified orbit, and then, the differential �� should not 

be considered to be equal to �∅ itself, but it should attain its proper value, which at the same time depends 

on the variation of the orbit. Therefore, since this double differentiation should lead to the same equations 

that we will obtain next, for which certain relations between the variations originated in the orbit will be 
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defined, which will provide a maximum usage in a subsequent calculation. In fact, it possesses not only the 

differentiations of the local coordinates themselves, but also of the quantities thence derived, such as: �� = ���� ��� ����� ���� −  ���� ��� � ����     and       �� = ���� ��� ����� ���� +  ���� ��� � ����  

which ought, therefore, to provide the same results obtained in both ways for the double differentials. 

VII. 

 Therefore, firstly assuming that the angles � and � are constants and that �� = �∅, the differentials 

are:  

� %��& = − �∅cos ����	� ����           and         � %��& = − �∅ ��� ����	� ���� . 
 For the other differentiation [considering that � and � are also variables], it should be firstly noted that: �� ��� � + �� ��� � = ���� ���� ����            and                �� ��� � − �� ��� � = ����  ���� 

which, in the usual way of differentiating gives: 

��� � � %��& + ��� � � %��& + �� %�� ��� � − �� ��� �& = − �� ���	� ���� − �� ���� ����    ���� ���	�  

��� � � %��& − ��� � � %��& − �� %�� ��� � + �� ��� �& = − �� ���	� , 
whence, when the former values are substituted results in

3
: 

− �∅���	 ����	� ���� −  �∅ ���	 ����	� ���� + �� ����  ���� = − �� ���	� ���� − �� ���� ����    ���� ���	�  

−  �∅ ���� ��� ����	� ���� +  �∅ ���� ��� ����	� ���� − �� �������� ���� = − �� ���	� , 
which are reduced into these: 

−  �∅���	� ���� + �� ����  ���� = − �� ���	� ���� − �� ���� ����    ���� ���	�  

− �� ��� ����� ���� = − �� ���	�     or       ������ = �� �!� � , 
which when substituted into the previous expression gives 

�� −  �∅���	� ���� = −�� ����  ���� − �� ���	� ����     ���	� ���� = −�� ����  ���	� ���� 

or �� ���� = �∅ − ��. 

VIII. 

 Whence, therefore, we first learned that the variation in the inclination of the orbit giving rise to �� 

is such that it always depends on the variation of the nodal line �� that is, �� = *+ ,-./ 01. 2 ; or the increment 

in the inclination will be due to the promotion of the nodal line, as the sine of the inclination to the tangent 

of the argument of the latitude; whence the following consequences can be drawn from it: 

                                                           
3
 No justification is given by Euler for this equality.   
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 1º. If the argument of the latitude � is zero or 6
s
 where the latitude is zero, in the mean time the 

nodal line will tend to remain at rest the more the inclination is varied
4
. 

 2º.  If the argument of the latitude � is 3
s
 or 9

s
 where the latitude is zero, or �!� � = ∞ where the 

latitude is maximum, then the inclination will not vary; regardless if in the mean time the nodal line 

progresses or regresses.  

 3º. If the argument of the latitude � is contained between the limits 0
s
 and 3

s
 or between 6

s
 and 9

s
, 

that is, while the latitude increases, then the inclination � increases, if indeed the nodal line advances, but if 

it retreats, the inclination diminishes.  

 4º. If the argument of the latitude � is contained between the limits 3
s
 and 6

s
 or between 9

s
 and 12

s
, 

that is, while the latitude decreases, then the advancement of the nodal line inclination lessens, and in 

reality it ceases to be increased. 

IX. 

 Next, it should be observed that the increase of the argument of the latitude � promoted in its own 

orbit is not equal to the element �∅, unless the nodal line stays immovable; since we found that �� = �∅ −�� ����, with the exception in the case when the inclination � were a right angle. These phenomena will 

be expressed more clearly by using the spherical trigonometry (Fig. 3). If in fact, as before, the circle ��� 

represents a fixed plane, which the motion of the point � is referred to, so that its present motion takes 

place according to the circle ��, such that �� = �, ��� = � and the arch �� = �, whereas after the point � has progressed through the element �� = �∅, and with its motion taking place according to the circle ��, 

the promotion of the nodal line will be given by �� = ��, the inclination is transformed into ��� =  � +��, and the argument of the latitude into �� = � + ��. Accordingly, the elemental arch �� is drawn normal 

to ��, and then we will have that �� = �� ���� and �� = �� ����; thence it is deduced that �� = � −�� ����, and on this account �� = � − �� ���� + �∅ = � + �� and consequently, �� = �∅ − �� ����, 

as before; however, at the same time we see that because �� ���� = �∅ − �� = ��, the expression �∅ − �� exhibits the promotion of the nodal line in the orbit itself, because since the node was in the point � of the orbit ��; it has now been transferred to the point � or to �. In addition, from the spherical triangle ���, we have that: 

���� ∶ ����� + �� = ����� − �� ���� ∶  ����  5 

or  ���� ∶ ���� + �� ���� = ���� − �� ���� ����: ����  
and dividing by  ���� ∶ �� ���� = ���� − �� ���� ����: �� ���� ����  6 

gives 

�� ���� = �� ���� ���� 7       or      ������ = ��  �!� �    
                                                           
4
 1 Signe (1

s
) => 30º. The ecliptic was sometimes divided into 12 signs, each subdivided into 30 degrees.  

5
 The application of the Law of Sines to the spherical triangle ��� does not give this expression. 

6
 It is not known where this expression comes from. 

7
 The claimed division does not lead to this expression. 
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exactly as before
8
. 

9
 

X. 

 Moreover, if the differential formulas found in § 7. are unfolded they give ��� − ����	 = �∅ ���� ���	� ����    and    ��� − ����	 = �∅ ���� ���	� ����    
and since � = � ���� ����, we find these very fitting formulas: 

��� − ��� = �	�∅ ���� ����    and 

��� − ��� = �	�∅ ���� ����. 

Next, we eliminate ��, firstly multiplying by �, and then by �, and once the product is taken, it will give 

����� − ��� = �	�∅ ���������� − ����� . 

However, as we saw in § 7, ���� � − ���� � = 9 :;,/  ,-./ , this formula is reduced to a much simple expression 

��� − ��� = �	�∅ ����. 

These formulas when combined with those then found at the beginning, namely 

�	 + �	 + �	 = �	      and          ��	 + ��	 + ��	 = ��	 + �	�∅	 

will be used with maximum advantage in the mechanical part, to the coordinates derived from the 

calculations, such that it provides to the next quantities of this sort, which use are retaken in Astronomy.  

XI. 

 However, those reductions of the Geometry clearly show that it makes no difference to which point � and fixed plane ��� (see Fig. 1) we wish to refer the motion of the point �. In fact, if we envisage an 

astronomical use, it is of most interest, not only in which way the point �, as the center of motion is taken 

into account, but also that plane, to which the motion of the point � is referred to by longitude and latitude, 

                                                           
8
 From the above observations, it appears that this result was forced by Euler. Nonetheless, this has no further 

consequences, since the same expression was obtained before by another method in § 7. 
9
 This figure was added by the Translator. 
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because from this will depend the chief simplicity of the determination. To this end, it is necessary to 

consider how that choice should be made, together with the artifices, which so far have been devised, and 

only then, it can be used with some success, since the motion of the body, which is sought, should not 

disagree very much from the laws of Kepler, on account that the perturbations hand been very small. 

Moreover, when the motion is thus compared, such that the areas described around any point are nearly 

proportional to time, then this point is most suitable to be considered as that fixed point �. When that 

happens, if among the forces driving the body, one far exceeds the remaining, to that point this force should 

be directed to, then point � will be suited to be accepted: therefore, if the question would be related to 

perturbations of a certain chief planet or of a comet, then point � will be most suitable taken in the center 

of the Sun: if however, the perturbations in the motion of the Moon, or those made in another secondary 

planet should be defined; then it is proper be considered point � in the center of the Earth or [in the center] 

of the primary planet, such that the force of the body declared in � impelling it to �, much exceeds the 

remaining forces to which this body is simultaneously driven.  

XII. 

 So, If the body � has been solicited by just one principal force, the body will be revolved regularly 

around point � in a conical section, perpetually in the same plane, such that no matter in what way the fixed 

plane ��� is chosen, neither on how the nodal line nor the inclination and any mutation has been ever 

originated; however, meanwhile, the calculation, without doubt, has turned out very simple, if the fixed 

plane is chosen in the same plane of the motion. Truly, if the motion is disturbed by another celestial body, 

which motion is indeed also necessary to be assumed known in this investigation, the fixed plane can most 

conveniently be assumed as being congruent with the orbit of that disturbing body. Thus, if the 

perturbations of the Moon originated by the Sun are sought, the ecliptic plane, in which the Sun is seen to 

move from the Earth, as it [the Earth] were the center of the motion �, will render the fixed plane ���, and 

no matter how the perturbation from another body is brought about, this plane, in which this body is seen 

to move from the center of motion �, should be selected. Yet, if this body itself is not moved in the same 

plane, then some medium plane can be most conveniently adopted; but the effort to adapt the calculation 

to this case is hardly considered, but, if its employment will become indeed necessary, it can be easily 

provided.   

MECHANICAL PART 

XIII. 

 For the handling of the mechanical part, three bodies should be considered (see Fig. 1). The first, is 

the one which is putted in the center of the motion �, which exerts the main force in the body �, which 

motion we investigate, such as it appears to an observer located in the very point �, let us then call the mass 

of the body positioned in this point = �.  

 The other body, by which action the motion of the body � is perturbed, that we assume is moving in 

any manner in the fixed plane ��� itself, such that its location can be assigned at any time. Be the mass of 

this body = �, and that now, in fact, it dwells in <, such that its distance to the central body �< = =, and the 

longitude or angle ��< = >, whence, from <, the perpendicular <? is drawn to the fixed line ��, and be �? = = ���> and ?< = = ���>. 
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 The third body is the one in � itself, which motion we are looking for, be its mass = @, and as before, 

we put its distance to the center of motion �� = �, and calling the three orthogonal coordinates �� = �, �� = � and �� = �, which we obtain from the calculation by introducing the following elements:  

  1º longitude of the nodal line or angle ��� = �  

2º Inclination of the orbit to the fixed plane = �  

3º argument of latitude or angle ��� = �. 

Finally, we consider that during the infinitesimal time ��, the elementary angle ��� = �∅ is completed by 

the body �. On the other hand, the relationships of these elements will be taken from the geometrical part.  

XIV. 

 Since the body � is driven to � by a force = ABC, certainly, � is attracted to � by a force = DBC, so that 

for the point � could be considered at rest, the body � should be declared to be attracted to � by a force = AEDBC ,
10

 which once resolved according to the directions of the three coordinates give the following forces: 

according to ��: = AEDBF ∙ �; according to ��: = AEDBF ∙ �; according to ��: = AEDBF ∙ �.  Thereafter, for the force 

with which the body � is attracted towards <, we have: firstly, let us call, for simplicity, the distance <� = H, 

such that the force �< is = IJC , which can be readily decomposed into the forces: according to ��: = IJF �, 

and according to �<: = IJF �<, and from this, since �? = = ���> − � and  ?< − �� = = ���> − �, we have 

the forces: according to �?: = IJF �= ���> − �   and according to ��: = IJF �= ���> − �  .
11

 

Finally, because body � is driven to < by a force = IKC , the following components will be contrarily translated 

to �: according to ��: = IKC ���>, and according to ��: = IKC ���>, which once collected with the other 

forces acting on the body � give: 

1º. Force according to ��: = AEDBF � + IJF �� − = ���>  + IKC ���>  

2º. Force according to ��: = AEDBF � + IJF �� − = ���>  + IKC ���>  

                                       3º. Force according to ��: = AEDBF � + IJF �, 

                                                           
10

  

 

 

 

 

 

 

In a system of two bodies, the attraction force LM	 of the second body acts on the first body of mass NM. Similarly, the 

attraction force L	M of the first body acts on the second body of mass N	. Both forces LM	 and L	M are equal and 

directed along O, where O = OP − OQ. From Newton’s second law, we can write the following differential equations 

describing the motion of each body: N	 *OPC
*0C = −R ST SC UF O or 

*OQC
*0C = R SC UF O, 

*OPC
*0C = −R ST UF O, where R is the gravitational 

constant. It follows from the last two equations that 
*OQC
*0C − *OPC

*0C = R SC UF O + R ST UF O, and then, 
*OC*0C = −R ST ESC UF O. For 

NM = �, N	 = @, V = �, and when the two bodies are collinear with O, results in 
*OC*0C = −R AEDBC , where the minus sign 

means that these forces tend to shorten the distance between the two bodies.     
11

 These are the components of the force according to �<, projected in the directions �� and ��.  
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which should be proportional to the acceleration of the body � in the same directions, and considering a 

constant element of time we have: 

��� = −∝ ��	 X� + @�Y � + �HY � − �= ���> % 1HY − 1=Y&[ 

��� = −∝ ��	 X� + @�Y � + �HY � − �= ���> % 1HY − 1=Y&[ 

                                              ��� = −∝ ��	 \AEDBF � + IJF �], 

where the constant ∝ depends on each particular type of motion, and can be defined from the apparent 

motion of the Sun.   

XV. 

 However, before we consider these formulas further, we should precisely define the distance <� = H, to introduce it afresh into the calculation. Since we have that: 

<�	 = ��	 + �?	 + �?< − �� 	  12 

then, 

H	 = �	 + �	 + �	 + =	 − 2=� ���> − 2=� ���>, 
which because �	 + �	 + �	 = �	, can be reduced to: 

H	 = �	 + =	 − 2=�� ���> + � ���> . 
Moreover, introducing the expressions for � an � found in §4. above: 

� ���> + � ���> =  �_���� ����> −  � + ���� ���� ����> −  �  `, 
where the angle > −  � expresses the distance of the disturbing body < to the nodal line or angle ��< => −  �, so that 

H	 = �	 + =	 − 2�=_���� ����> −  � + ���� ���� ����> −  �  `. 
In fact, if now for brevity we call the angle <�� = a, which denotes the distance of the body � to the 

disturbing body < as seen from �, because �� = � and �< = =, it is also true that 

H	 = �	 + =	 − 2�= ���a, 

whence it will be concluded that: 

���� ����> −  � + ���� ���� ����> −  �  = ���a 

which can be easily proved by spherical trigonometry
13

. As seen in Fig. 2, since because �� = �, �� = �, 

and the angle ��� = �, if �< =  >, then �< =  > −  �, and in the spherical triangle the side <� = a is 

determined in this very way from the sides �� = �, �< =  > −  � with the intercepted angle ��< = �. 

                                                           
12

 The first term in the second hand-side of this expression was incorrectly written as ��2 in the original manuscript.  
13

 This result comes from the application of the law of cosines to the spherical triangle of the figure. 
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XVI. 

 Although the three equations deducted from the principles of mechanics are enough for all 

determinations, because all the craft in them is certain, just as it enable us to derive them in a very suitable 

manner. Nonetheless, it is first required to offer at once the calculation of the multiplications: the first 

[equation] by 2��, the second [equation] by 2�� and the third [equation] by 2��, and in only one 

[equation] they ought be gathered; since as we saw above 

��	 + ��	 + ��	 = ��	 + �	�∅	 

and �	 + �	 + �	 = �	 

then 

2����� + 2����� + 2����� = ����	 + �	�∅	      and    ��� + ��� + ��� = ���. 

Hence, with the reminded calculation, the following equation will be obtained: 

����	 + �	�∅	 = −2 ∝ ��	 X� + @�	 �� + �HY ��� − �= ��� ���> + �� ���> % 1HY − 1=Y&[ 

where the formula �� ���> + �� ���> can be conveniently expanded. Truly, considering the formulas in § 

10.aAbove, we have that 

�� = ���� − ��∅ ���� ����         and       �� = ���� − ��∅ ���� ����  

because � = � ���� ����, whence 

�� ���> + �� ���> = ��� �� ���> + � ���>  − ��∅ ����> − �  ���� , 
however, we recently saw that 

� ���> + � ���> =  �_���� ����> −  � + ���� ���� ����> −  �  ` = � ���a, 

and since, in fact, ��� = ��� + �� �������� + �� �������� , or 

��� = ��� + �� �������� + �� �����!��    because    �� = �� �����!��  .  
                                                           
14

 This figure was added by the Translator. 
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Since �∅ = �� + �� ����, then we get ��� = ��� + �∅�!��, 
therefore 

�� ���> + �� ���> = �� ���a + ��∅ ���a�!�� − ��∅ ����> − �  ���� = 

�� ���a + ��∅ ���� _���� ���� ���� ����> −  �  + ���	�  ����> −  � −  ����> − � ` 
and thus, 

�� ���> + �� ���> = �� ���a − ��∅_���� ����> − � − ���� ���� ����> −  �  `. 
Therefore, the equation that we found transforms into: 

����	 + �	�∅	 = −2 ∝ ��	�� X� + @�	 + ��HY − �= ���a % 1HY − 1=Y& −[ − 2
∝ ��	�∅ ∙ =�_���� ����> − � − ���� ���� ����> −  �  ` % 1HY − 1=Y&. 

XVII. 

 It is possible to deduce a more concise form for the expansion of the too complicated formula �� ���> + �� ���> from the proper values found for � and �. In fact these differentials are duly produced 

in case where the angles � and � are handled as constants and �� is brought to �∅, then this differential 

give:  

�� = �� ����� ��� � −  ���� ���� ��� �  − ��∅����� ��� � +  ���� ���� ��� �   

�� = �� ����� ��� � +  ���� ���� ��� �  − ��∅����� ��� � −  ���� ���� ��� �   

whence it follows that 

�� ���> + �� ���>= ��_���� ����> − � + ���� ���� ����> − �  `− ��∅_���� ����> − � − ���� ���� ����> − �  ` 

to which I observe a more contracted form in Fig. 2 where �< = > − �; �� = �, <�� = � and <� = a, we 

will have, in the first place, as before: ���� ����> −  � + ���� ���� ����> −  �  = ���a, then, in fact, if 

the angle ��< = e it is found that 

��� e = ���� ����> −  � − ���� ���� ����> −  �  ���� ����> −  �     15 

whence it is concluded that 

���� ����> −  � − ���� ���� ����> −  �  = ���� ����> −  �  ��� e��� e = ���a ��� e  
because: ��� e: ����> −  �  = ����: ���a.

16
  

                                                           
15

 This result comes from the application of the law of the tangent to the spherical triangle of the figure. 
16

 This result comes from the application of the law sines to the spherical triangle of the figure. 
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From these results we obtain 

�� ���> + �� ���> = �� ���a − ��∅ ���a ��� e. 
Or if in � we draw in the direction of the arch �� another normal arch, and on it, and from <, we draw the 

perpendicular to the spherical surface, which we call = f, then ���f = ���a ��� e,
18

 or  

���� ����> −  � − ���� ���� ����> −  �  = ���f 

and therefore, the equation containing the first determination will assume the following form 

����	 + �	�∅	 = −2 ∝ ��	 X� + @�	 �� + ����HY − �= ��� ���a − ��∅ ���f % 1HY − 1=Y&[. 
XVIII. 

 The two remaining determinations from the differential equations deducted from the principles of 

motion will be conveniently obtained by the following procedures: firstly, from the equations obtained in § 

14, the subtraction of the first equation multiplied by � from the second equation multiplied by � gives: 

���� − ���� = −∝ ��	�=�� ���> − � ���> % 1HY − 1=Y& 

or, when the values for � and � are substituted into this expression results in 

���� − ���� =∝ ��=��	_���� ����> −  � − ���� ���� ����> −  �  ` % 1HY − 1=Y&. 
Thus, since ���� − ���� is the differential of ��� − ���, then we have this equation 

���	�∅ ���� =∝ ��=��	_���� ����> −  � − ���� ���� ����> −  �  ` % 1HY − 1=Y&. 
In a similar way, from the first and third [equations of § 14] we deduce 

���� − ���� = −∝ �=���	���> % 1HY − 1=Y& 

or 

���� − ���� = −∝ ��=��	���> ���� ���� % 1HY − 1=Y& 

then giving 

                                                           
17

 This figure was added by the Translator. 
18

 This geometrical construction is not clear. 
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���	�∅ ���� ���� = −∝ ��=��	���> ���� ���� % 1HY − 1=Y&. 
Equally, from the second equation combined with the third equation results in 

���� − ���� = −∝ ��=��	���> ���� ���� % 1HY − 1=Y& 

or 

���	�∅ ���� ���� = −∝ ��=��	���> ���� ���� % 1HY − 1=Y& 

where it should be noted that only two determinations are contained in these three equations, and the third 

[equation] can be freely included with the two other [equations]. 

XIX. 

 So, let us examine the two last [equations], and since their first members ought to be differentiate, 

and observing that the quantity �	�∅ ���� is a unique quantity to both, then  

���� �� �	�∅ ����  − �� ���� �	�∅ ���� = −∝ ��=��	���> ���� ���� % 1HY − 1=Y& 

���� �� �	�∅ ���� + �� ���� �	�∅ ���� = −∝ ��=��	���> ���� ���� % 1HY − 1=Y& 

whence, eliminating �� �	�∅ ����  results in 

��  �	�∅ ���� = −∝ ��=��	���� ���� ����> − � % 1HY − 1=Y& 

and thus the variation of the nodal line is defined such that 

�� = −∝ �=��	����  ����> − � � �∅ % 1HY − 1=Y& 

from which, at the same time, the variation of the inclination is obtained from 
*/,-./ = *+01.2, and, on the other 

hand, once the member  �	�∅ ����  is eliminated from both original equations, the following equation is 

obtained 

�� �	�∅ ���� = −∝ ��=��	���� ���� ����> − � % 1HY − 1=Y&. 
Writing the first equation in the following form:  

���� ���	�∅  − �� ���� �	�∅ = ∝ ��=��	_���� ����> −  � − ���� ���� ����> −  �  ` % 1HY − 1=Y&, 
and expanding the first member of the last equation, gives 

���� �� �	�∅  + �� ���� �	�∅ = −∝ ��=��	_���� ���� ����> − � ` % 1HY − 1=Y&. 
Eliminating �� between the last two equations, gives 

�� �	�∅  = −∝ ��=��	��	_���� ����> −  � − ���� ���� ����> −  �  ` % 1HY − 1=Y& 

or 
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�� �	�∅  = −∝ ��=��	���f % 1HY − 1=Y& 

which is the other determination required to be sought. 

XX. 

 Let us multiply this last equation by 2�	�∅, and leaving one integral just indicated, we will have the 

following expression    

�g�∅	  = −P ∝ ���	 h  �Y=�∅ = ���f % 1HY − 1=Y&   19 

this equation contains the relation between the elementary angle �∅ and the infinitesimal time ��, where, 

in fact, it is clear that if the mass of de disturbing body � would fade away, then �	�∅ would be proportional 

to the time ��, or the areas described around � are proportional to time. If to this equation, it is first added 

the one found in § 17, and equally integrated to the extent possible, then 

��	 + �	�∅	 = 2 ∝ ��	�� + @ %1� − 1j& − 2
∝ ���	 h ���HY + 2 ∝ ���	 h = ��� ���a − ��∅ ���f % 1HY − 1=Y&. 

the above equation compares the variation of the distance � with the element �∅ or with the infinitesimal 

time ��, which are two particular characteristics to look for the motion of the body � in its own orbit. 

Besides, we have, in fact, for the variation of orbit itself the following: 

�� = −∝ �=��	����  ����> − � � �∅ % 1HY − 1=Y& 

������ = −∝ �=��	����  ����> − � � �∅ % 1HY − 1=Y& = ���!�� . 
And finally, it can be recalled the relation between the argument of the latitude � to these same elements, 

given by �� = �∅ − �� ����. 

XXI. 

 The element of time �� with the constant ∝ will be taken away from the calculation in a most 

convenient way, if a certain motion that is regular and known is introduced, like the mean motion of the Sun, 

or of another body, which is revolved around the center of the forces in a uniform circle. Then, let us put 

around the body located in �, which mass is = k, the other body, which mass = ℭ, at a distance = !, in a 

circle, so that it circulates in a time � an angle m proportional to it, and our equations can be adapted to this 

case, once these are established: � = k, @ = ℭ and � = 0, and then � = ! and �∅ = �m. Then, the motion 

that we assume to be known, is controlled by these two equations  

�g�∅	  = P ∝ o��	         and               ��	 + �	�∅	 = 2 ∝ ��	�k + ℭ %1� − 1j&      
where the first constants o and j can be conveniently defined for this case. To this end, from the first P ∝ ��	 = Bp*∅C

q   which, when substituted into the second, gives  ��	 + �	�∅	 = �kEℭ Bp*∅C
q rMB − Mst or 

 oj��	 + oj�	�∅	 = �k + ℭ �Y�∅	�j − � , from which  

                                                           
19

 The number two in bold should not be there. 
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�∅ = ���oj���k + ℭ ��j − � − oj , 
a certain constant value of � itself should be satisfactorily attributed to this differential equation, for which 

the denominator fades away, however, as I have exposed in another place, this approach is not possible to 

be admitted to the integral, unless the factor of denomination
20

 fades away to be of a minimum dimension 

of one, whence it is necessary that under the radical sign the same factor appears in a pair or squared, such 

that it reduces to the same value, so that the differential of the quantity placed after the sign reproduces the 

same factor. Therefore, let us place that differential = 0, and � = M	 j, which under the hypothesis that 

� = !, then j = 2!, and in this case the denominator itself is then equal to �k + ℭ !	 − 2o!, which, when 

equated to zero, gives o = M	 �k + ℭ !. Now, in the other equation be considered that � = ! and �∅ = �m, 

then !g�m	  =∝ �k + ℭ !��	 or ∝ ��	 = 1F*uC
kEℭ .      

XXII. 

 Then, since the knowledge of the motion at any given time � allows the determination of the mean 

motion  m, here the time variable in our calculation will be redefined, by writing in the place of ∝ ��	 the 

value just found of 
1F*uC
kEℭ . Next, to render our formulas simpler, let us put 

AEDkEℭ = N and � = ��� + @ , and 

then ∝ ��	�� + @ = N!Y�m	and ∝ ���	 = N�!Y�m	 where it should be noted that the perturbations will 

be minimum if the terms affected by the number � are minimum. Then our equations will assume the 

following forms: 

1º. �g�∅	  = −PN�!Y�m	 v  �Y=�∅ ���f r MJF − MKFt    

2º.  ��	 + �	�∅	 = 

                             2N!Y�m	 %1� − 1j& − 2N�!Y�m	 h ���HY + 2N�!Y�m	 h = ��� ���a − ��∅ ���f % 1HY − 1=Y& 

3º. �� = −N�!Y�m	 K,-.2 ,-.�wx+ B *∅ r MJF − MKFt 

4º. 
*/,-./ = −N�!Y�m	 K:;,2  ,-.�wx+ B *∅ r MJF − MKFt = *+01.2 

5º. �� = �∅ + N�!Y�m	���� K,-.2 ,-.�wx+ B *∅ r MJF − MKFt = �∅ − �� ���� . 
With these equations, the whole motion of the body � with all the perturbations originated by the action of 

the body < can be determined: where, especially regarded to the integral formulas, which in the first two 

equations are affected only by the perturbations, being sufficient that these values are selected as close to 

the real ones, from which the task of approximations to these integrals can hardly be considered an 

impediment. Nonetheless, I will expose soon the method to such an extent as to liberate the calculation of 

these integrals.  

XXIII. 

 Meanwhile, for the sake of brevity, let us consider that:  

h  �Y=�∅ = ���f % 1HY − 1=Y& = ? 

                                                           
20

 It is simply the result of the division of the ratio. 
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h ���HY = y 

h = ��� ���a − ��∅ ���f % 1HY − 1=Y& = z 

then, the first two previous equations are contracted to these forms: 

1º. �g�∅	  = PN!Y�m	�o − �?  

2º. ��	 + �	�∅	 = 2N!Y�m	 \MB − Ms − ��y − z ]  
which alone accomplishes all the task, if the body � is moved in the same plane, in which we assume that 

the disturbing body < is circulating, the remaining equations for the motion, that is declared to pertain to the 

latitude, the solution of these suffers much less difficulties, since all the efforts should be consumed in the 

two previous [equations]. Thenceforth, once the element �m has been eliminated, arises this equation 

�o − �? ���	 + �	�∅	 = �g�∅	 X%1� − 1j& − ��y − z [ 

whence the following equation is obtained 

�∅ = ����o − �? 
�{%� − �	j − ��	�y − z − o + �?& 

and furthermore 
2N!Y�m	 = �	��	

� − �	j − ��	�y − z − o + �? 

or 

!�m√2N! = ���
{−o + �? + � − �	 %1j + �y − �z& 

the integration of these formulas would be available in case the fraction � or the perturbations disappeared. 

XXIV. 

 We can represent that equation in this form: 

���	 ��o − �? = �∅|%− 1j − ��y − z + 1� − o − �?�	 & 

and since we know that �� = �, then, it would become maximum or minimum when the quantity under the 

radical sign vanishes. However, not only in Astronomy that these places are of primary importance, 

wherever the body � is said to move along a segment of an arch, but even so, the choice of this important 

fact is at our disposal, with which the disturbed motion could be very neatly compared with the regular 

motion, and thus be capable to assign the aberrations from it. However, in a convenient way, this will be 

provided by introducing into the calculation a new angle ϒ, which in astronomy is called the true anomaly
21

, 

                                                           
21

 The true anomaly (ϒ) represents the real geometric angle in the plane of the ellipse, between periapsis (closest 

approach to the central body) and the position of the orbiting object at any given time. Argument of periapsis (}) 
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and it is chosen in such way that either by reducing or increasing the [angular] distance between two lines 

according to the maximum or minimum value of �. Therefore, with the purpose of approximating the real 

motion to a regular motion made along an ellipse, we now define � = ~ME� :;,ϒ, so that now the motion 

conforms to the regular motion along such an ellipse, in which the focal parameter is = �,
22

 the eccentricity = �, and thus the semi-major axis = ~Mx�C, and the true anomaly arising from the [major] axis = ϒ. Then, it 

can be easily perceived that because of the perturbations, the aspect of this ellipse changes continuously, 

whence not only the anomaly ϒ but also the letters � and � are expected to vary, and these variations are 

now investigated. 

XXV. 

 For that investigation to be rendered easier, let us introduce, for the sake of brevity, the following: 

1j − ��y − z = �      and        o − �? = � 

such that we have this evolved form 

���	 ��o − �? = �∅|%−� + 1� − ��	& . 
Now that we have � = ~ME� :;,ϒ or 

MB = ME� :;,ϒ~ , by hypothesis, not only for the case where  ϒ = 0, which 

gives 
MB = ME� ~ , as well as for the case where ϒ = 180º, which gives 

MB = Mx� ~ , the quantity −� + MB − �BC 

should go off to zero
23

, and then, from these two situations arise the equations: 

−� + 1 + � � − ��1 + � 	
�	 = 0 

and 

−� + 1 − � � − ��1 − � 	
�	 = 0 

and by subtraction they give 
	� ~ − g��~C = 0, such that � = 2�, or � = M	 �, whence � = ME� ~ − �ME� C

	~ =
Mx�C 	~ . 
But if we put the semi-major axis of our ellipse = V such that V = ~Mx�C, then � = M 	U, and thus 

1j − ��y − z = 1 2V          and           o − �? = 12 � .    
XXVI. 

 When these values are substituted in our equation results in: 

                                                                                                                                                                                                   

defines the orientation of the ellipse in the orbital plane, as an angle measured from the ascending node to the 

periapsis (the closest point the celestial body [e.g Moon] comes to the central body [e.g Earth] around which it orbits). 
22

 Also called semi-latus rectum. 
23

 By equating this quantity to zero, Euler is somehow searching for the maximum and minimum values of �, which 

translates into finding the major and minor axes of the ellipse. 
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���	 |12 � = �∅|�−1 + �	 2� + 1� − �2�	� 

and when we write for 
MB in the right-hand side of this equation, the value 

ME� :;,ϒ~ , then we have that:   

���	 |12 � = �∅|�−1 + �	 2� + 1 + � ���ϒ� − 1 + 2� ���ϒ+ �	���	ϒ2� �      24 

and thus, 

���	 |12 � = �∅|�	 − �	���	ϒ 2� = ��∅ ���ϒ�2�  

So, we have that 
*BBC = �*∅ ~ ���ϒ; whence, surely, as we have anticipated, we certainly recognize that as the 

anomaly fades away with the sine of ϒ, at the same time, the differential of � goes off to zero, and, 

therefore, it passes over a maximum or a minimum value. Hence, indeed, the increment of the distance �, in 

general, is reduced to the element �∅, which itself can now be compared with the known element �m, and 

because o − �? = M	 �, we have that 

�g�∅	  = N!Y��m	,           or            �	�∅ = !�m�N!� . 
And since 

MB = ME� :;,ϒ~ , then  

���	 = ���1 + � ���ϒ �	 − �� ���ϒ+ � �ϒ ���ϒ�  

which turned out equal to the expression 
�*∅ ~ ���ϒ, resulting in 

 ���∅ − �ϒ ���ϒ = *~~ �1 + � ���ϒ − �� ���ϒ = *~B − �� ���ϒ, 

which involves new relations among differentials. 

XXVII. 

 The remaining determinations must be sought from the formulas found above: 

� =  2o − 2�?      and          1 V = 1 − �	
� = 2j − 2��z − y , 

which once differentiated, and substituting the restituted values shown above for ?, y, z, give  

�� = −2��? = −2��Y=�∅ ���f % 1HY − 1=Y& 

� %1 V & = � �1 − �	
� � = 2��y − 2��z = 2����HY − 2�= ��� ���a − ��∅ ���f % 1HY − 1=Y&. 

However, since �� = �BC*∅,-.ϒ ~ = �B*∅ ,-.ϒ ME� :;,ϒ , then, the last differential reduced to the element �∅ 

transforms into 

                                                           
24

 There are errors in the signs of the last term under the radical which were corrected. 
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� %1 V & = � �1 − �	
� � = 2���Y�∅ ���ϒ�HY − 2��=�∅ %� ���a ���ϒ 1 + � ���ϒ  −  ���f& % 1HY − 1=Y&. 

It is true that � rMx�C
~ t = x*~~C �1 − �	 − 	�*�~ , and then 

��� = − ��2� �1 − �	 − �2 � �1 − �	
� �, 

from which it is conclude that 

��� = + ��1 − �	 �  �Y=�∅  ���f % 1HY − 1=Y& − ���Y�∅ ���ϒHY 
+ ���=�∅ %� ���a ���ϒ 1 + � ���ϒ  –  ���f& % 1HY − 1=Y& 

which, since � = ~ME� :;,ϒ, it is contracted into the following form 

��� = ��	=�∅ % 1HY − 1=Y& �� ���a ���ϒ− � ���f �� + 2 ���ϒ+ � ���	
ϒ  1 + � ���ϒ � − ���Y�∅ ���ϒHY  , 

which, once divided by �, gives 

�� = ��	=�∅ % 1HY − 1=Y& � ���a ���ϒ−  ���f �� + 2 ���ϒ+ � ���	
ϒ  1 + � ���ϒ � − ��Y�∅ ���ϒHY  . 

Finally, when this expression is substituted into the formula ���∅ − �ϒ ���ϒ = *~B − �� ���ϒ, the resulting 

expression, once divided by ���ϒ, is 

���∅ − �ϒ = ��Y�∅ ���ϒHY  − ��	=�∅ % 1HY − 1=Y& � ���a ���ϒ+  ���f ���ϒ�2 + ����ϒ  1 + � ���ϒ � . 
XXVII. 

 Therefore, now we have all the quantities that enters into our calculation, and we have revealed the 

sudden increment in the element �∅, which in the same infinitesimal time �� is completed by the here 

introduced angle �m according to the mean motion , whence, we can easily assign that increment for any 

minimum time. Hence, firstly, the relation between the elementary angle �∅ and �m is expressed by the 

following formula: 

�	�∅ = !�m�N!�     whence we have that    N!Y�m	 = M~ �g�∅	  
next, if we consider that � = ~ME� :;,ϒ, and that V = ~Mx�C, then we will have that: 

1º. �� = −2��Y=�∅ ���f % 1HY − 1=Y& 

2º. � %1 V & = 2���Y�∅ ���ϒ�HY − 2��	=�∅�  _� ���a ���ϒ − �1 + � ���ϒ ���f` % 1HY − 1=Y& 

3º. �� = ��	=�∅ % 1HY − 1=Y& � ���a ���ϒ−  �� + 2 ���ϒ+ � ���	
ϒ  ���f 1 + � ���ϒ � − ��Y�∅ ���ϒHY  

4º. �ϒ = �∅ − ��Y�∅ ���ϒ�HY  − ��	=�∅� % 1HY − 1=Y& � ���a ���ϒ+  �2 + ����ϒ ���f ���ϒ 1 + � ���ϒ �, 
knowing that 
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���a = ���� ����> −  � + ���� ���� ����> −  �   

and that 

���f = ���� ����> −  � − ���� ���� ����> −  �   

where it should be noted that �∅ − �ϒ designates the increment of the arc described by the celestial body 

along the orbit itself. 

Third, for the motion in the latitude we have these formulas:   

1º. �� = − ��Y=�∅ ���� ����> − � � % 1HY − 1=Y& 

2º. ������ = − ��Y=�∅ ����  ����> − � � % 1HY − 1=Y& = ���!�� 

3º. �� = �∅ + ��Y=�∅ ���� ���� ����> − � � % 1HY − 1=Y& 

or �� = �∅ − �� ���� . 
XXIX. 

 Nothing more would be desired, if I could perform the integration of these equations, since then, 

any kind of perturbation could be defined, no matter great it would have been. But, since the forces of the 

Analysis have not yet increased to such an extent, it is fit to appeal to approximations, from which, 

hopefully, we could expect some success, in case the perturbations would be considered as being small: 

because then, the values of the quantities � and � would be changed by small amounts, having been 

affected by the letter � in the integration of the formulas, such that, without error, can be considered just as 

constants, since, indeed, later on, the necessary corrections, obtained by the usual methods, can be applied 

without difficulties. However, in case we consider that the eccentricity is rather big, we will have difficulties, 

which, however, in order to be overcome, it will be possible to apply certain artifices, in which, indeed, the 

best way to succeed, is to consider that the eccentricity �, varies little from unity, such as in an almost 

parabolic orbit as those of the comets. Nonetheless, greater difficulties appear, when the eccentricity is 

rather small, especially when the variations of the anomaly ϒ grow, however if the need should arise, this 

cure could be expected. These operations are chiefly hindered by the quantity 
MJF, unless it is possible to 

conveniently convert it into a series sufficiently convergent, whose whole integration would be despairing, 

and another option is not seen to be left over, unless from the single variations of these differential formulas 

versus very small intervals of time are defined, the task for the integration of these summations is 

compensated, and on another occasion I showed more details. 

APPLICATION OF THIS THEORY TO THE MOTION OF THE MOON 

XXX. 

 Let us consider that the center of the Earth is in �, which mass is = �, and considering the plane of 

the ecliptic in the figure, now, indeed, we have the Sun in <, which mass is = �, and for which, I place the 

line �� directed to a fixed point in the sky such as to the First Star of Aries, being defined the following  

longitude of the Sun or angle ��� = >  

and distance of the Sun to the Earth or �< = =. 
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These elements are defined for the Sun’s motion: semi-major axis of the Sun’s orbit = !, focal parameter of 

the Sun’s orbit = �,
25

 eccentricity of its orbit = �, and true anomaly = �; then = = �Mx� :;,B.
26

 Then, in fact, 

considering the mean motion
27

, if during an infinitesimal time the Sun traverses an angle �m, then =	�> = !�m√!�,
28

 where �> = ��, and we wish to observe the motion only during the Sun’s apogee. It is 

true that � = !�1 − �	 ; then we have that 

= = !�1 − �	 1 − � ���� ,    and    �m = �>�1 − �	 Y	�1 − � ���� 	   and also, �� = �>, approximately, 
where it should be noted that once the eccentricity of the Sun’s orbit is neglected, then = = ! and �> = �m. 

 XXXI. 

 Be further the Moon in �, which mass = @, and be defined 
IAED = �, knowing that 

AEDAEI = N, and 

since the elementary angle �m is chosen from the mean motion of the Sun, such that k = � and ℭ = �; 

whence giving 
IAEI = N� or  N = M., since the mass of the Sun can be considered infinitely larger than the 

mass of the Earth. Now for the location of the Moon it is established that  

longitude of the ascending node or angle ��� = �  

inclination of the orbit of the Moon in relation to the ecliptic or angle ��� = � 

and argument of latitude or angle ��� = � 

then, we have that: 

longitude of the Moon= � + !V��!���!�� ���� �������������0�-, -, 0�� 1.��� �A�    
and 

northern latitude =!V���� ����� ���� �������������0�-, -, 0�� 1.��� 9A� . 

Then, if the distance of the Moon to the Earth �� = � and the distance of the Moon to the Sun <� = H, and 

having been already defined the two angles a and f, such that  

���a = ���� ����> −  � + ���� ���� ����> −  �   

���f = ���� ����> −  � − ���� ���� ����> −  �  , 
then, H	 = �	 + =	 − 2�= ���a or H = ��	 + =	 − 2�= ���a . 

XXXII. 

 From these considerations, if we consider that currently � = ~Mx� :;,ϒ  denotes half the parameter of 

the lunar orbit, � is its eccentricity, and the angle ϒ is its true anomaly; such that now � should be 

considered negative; then, in fact, being �∅ the angle described by the Moon around the Earth in the same 

                                                           
25

 Also called semi-latus rectum. 
26

 The negative sign in the denominator indicates that the reference direction > =  0, points towards the center of the 

ellipse, and positive if that direction points away from the center. 
27

 In orbital mechanics, mean motion is the angular speed required for a body to complete one orbit, assuming constant 

speed in a circular orbit which completes in the same time as the variable speed, elliptical orbit of the actual body. 
28

 This result comes from Kepler’s 2
nd 

law. 



 

time, during which the Sun traverses the angle 

Moon, the following equations should

2
3º.  �� = ���	=�∅ � ���a ���

4º.  ��
�	

5º.  �ϒ = �∅ 
 ��Y�∅ ���ϒ
�HY 

denoting �∅ � �ϒ the instantaneous promotion of the line of apsides

apogee in its orbit: 

6º.  ��
7º.  ��

���� ��
8º.  �� � �∅ � �� ����

 Let us begin with the development of the expression 

that the distance = is always much longer than the distance 

1
HY � �=	 � 2�= ���a

And, therefore, 

1
HY

Then, the formulas nº. 3 and nº. 5 will transfo

                                                           
29

  

 
The apsides refer to the farthest (1) and nearest (2) points reached by an orbiting planetary body (1 and 2) with respect 

to a primary, or host, body (3). The line of apsides

Earth, point 1, the farthest, is called apogee

time, during which the Sun traverses the angle �m in its mean motion. Hence, for defining the motion of the 

should be considered:      

1º.  �	�∅ � !�m�N!� � !�m{!�
�  

2º . �� � �2��Y=�∅ ���f % 1
HY � 1

=Y& 

���ϒ+  �� � 2 ���ϒ
 � ���	
ϒ  ���f 

1 � � ���ϒ � % 1
HY � 1

=Y

� � ��∅ ���ϒ
�     or     � %1

�& � 
 ��∅ ���ϒ
�  

ϒ  � ��	=�∅
� � ���a ���ϒ
  �2 � � ���ϒ ���f ���

1 � � ���ϒ
the instantaneous promotion of the line of apsides

29
 or the [promotion] of the Moon’s 

�� = −��Y=�∅ ���� ����> � � 
� % 1

HY � 1
=Y& 

� ��
�!�� � ���Y=�∅ ����  ����> � � 

� % 1
HY � 1

=Y

���� � �∅ 
 ��Y=�∅  ���� ���� ����> � � 
� % 1

H
XXXIII. 

Let us begin with the development of the expression 
M

JF � M
KF: since it is obvious to be established 

longer than the distance �; then we have that 

���a 
 �	 xM/	 � 1
=Y 
 3� ���a

=g 
 3�	 �5 ���	a
2=¡

� 1
=Y � 3� ���a

=g 
 3�	 �5 ���	a � 1 
2=¡  . 

Then, the formulas nº. 3 and nº. 5 will transform into these expressions: 

The apsides refer to the farthest (1) and nearest (2) points reached by an orbiting planetary body (1 and 2) with respect 

line of apsides is the line connecting positions 1 and 2. In the case of Moon and 

apogee; and point 2, the nearest, is called perigee.  
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in its mean motion. Hence, for defining the motion of the 

% 1
Y& 
 ��Y�∅ ���ϒ

HY  

���ϒ � % 1
HY � 1

=Y& 

or the [promotion] of the Moon’s 

&
% 1

Y& 

 % 1
HY � 1

=Y& . 

: since it is obvious to be established 

a � 1 
 

The apsides refer to the farthest (1) and nearest (2) points reached by an orbiting planetary body (1 and 2) with respect 

In the case of Moon and 
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3º.  �� � ��Y�∅ ���ϒ=Y X1 − 3 ���	a + 3� ���a2= �3 − 5 ���	a [
− ��	�∅ ���f1 − � ���ϒ �� − 2 ���ϒ+ � ���	

ϒ �3� ���a=Y + 3�	 �5 ���	a − 1 2=g � 

5º.  �ϒ = �∅ + ��Y�∅ ���ϒ�=Y  X1 − 3 ���	a + 3� ���a2= �3 − 5 ���	a [
− ��	=�∅ ���f ���ϒ��1 − � ���ϒ �3� ���a=Y + 3�	 �5 ���	a − 1 2=g � �2 − ����ϒ  . 

Then, we have that: 

�����ϒ+ ���∅ − �ϒ  ���ϒ = 2��	��∅ ���f �3� ���a=Y + 3�	 �5 ���	a − 1 2=g � 

which is a quite simple expression that will be possible to use next.  

XXXIV. 

 Then, it should be noted furthermore that when the inclination �  is quite small, such that ���� = 1 − M	 �	, then, approximately, have that: 

���a =  ����� − > +  � − 12 �	���� ����> −  �   

���f = ����� − > +  � + 12 �	���� ���� ����> −  �  . 
_______________________________ 

 

 

 

 

 


