RESEARCHES
ON THE CURVATURE OF SURFACES'

In order to know the curvature of curved lines, the determination of
the radius of the osculating circle offers the proper method, which for
each point on the curve provides us with a circle whose curvature is the
same. But when one asks for the curvature of a surface, the question
is rather equivocal, and not at all subject to a definitive answer, as
in the previous case. It is only spherical surfaces for which one can
measure the curvature, considering that the curvature of a sphere is
the same as that of its great circles, and its radius can be considered as
the proper measure of curvature. But for other surfaces, one would not
even know how to compare the curvature of the surface with that of a
sphere, as one can always compare the curvature of a curved line with
that of a circle. The reason for this is evident, since through each point
of a surface, there are infinitely many different curves. One only need
consider the surface of a cylinder, where along directions parallel to the
axis, there is no curvature, while cross sections perpendicular to the
axis, which are circles, have the same curvature, and all other sections
taken obliquely to the axis yield particular values of the curvature.
Similarly for all other surfaces, where it can even happen that in one
direction the curvature might be convex and in another concave, as for
surfaces which resemble a saddle.

Thus the question about curvature of surfaces is not amenable to a
simple answer, but requires at once infinitely many determinations, be-
cause as soon as one is able to draw an infinitude of directions through
each point, the curvature must be known along each direction before
one is able to form an accurate idea about the curvature of the surface.
Now through each point of the surface there are infinitely many cross
sections, not only with respect to all the directions on the surface, but
also with respect to different inclinations of the sections. But for the
matter at hand, of all these infinitely many sections, it suffices to con-
sider only those which are perpendicular to the surface, the number
of which is still infinite. To this end one only has to draw a line per-
pendicular to the surface and all sections which pass through this line
are also perpendicular to the surface. Then for each of these sections
it remains to find the curvature, or the radius of the osculating circle,
and the collection of all these radii will give us an accurate measure of
the curvature of the surface at a given point. It must be observed that
each of these radii falls along the same perpendicular direction to the

!Translated from the original French, which was the scholarly language of the
Berlin académie des sciences.
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surface, and that the elementary arcs of all these sections are part of
the shortest curves which can be drawn on the surface.

To render this work more general, I will begin by determining the
radius of curvature of an arbitrary planar section which cuts the surface.
Then I will apply this solution to sections which are perpendicular to
the surface at an arbitrary point, and finally I will compare the radii of
curvature for these sections® with respect to their mutual inclination,
which will allow us to establish a good idea for the curvature of surfaces.
All this work reduces then to the following problems.

PROBLEM 1

1. A surface whose nature is known is cut by an arbitrary plane.
Determine the curvature of the section which is formed.

SOLUTION

FiGURE 1. Plane of the Cross Section

When one regards (see Figure 1) the surface with respect to a fixed
plane, and from an arbitrary point Z on the surface drops the perpen-
dicular ZY, and from Y drops the perpendicular Y X to an axis AC,
then the three coordinates AX =z, XY =y, and YZ = 7 are given.?
Since the nature of the surface is known, the quantity z will be equal
to a certain function of the two others x and y. Suppose then that by
differentiation one obtains dz = pdx + qdy, where

dz dz
r=(g) = 0= (g)
Let the section which cuts the surface pass through the point Z, and
let the intersection of the plane of this section and our fixed plane be

2the perpendicular sections
3See Figure 2 for a modern sketch of the cross section.



FIGURE 2. Modern Sketch of the Cross Section

the line F'F. Let

z=oy— pr+7,
be the equation which determines the plane of the section, and letting
z = 0, the equation y = ﬂxa—*” will give E'F', from which we obtain

AE = % and the tangent of angle CEF = é
e

Thus
15 a

and the cosine =

Vvaa+ B Vaa+ B8

From this and equating the two values of dz, we will have an equation
for the section

the sine =

ady — Bdx =pdr + qdy

or just as well
dy _B+p
dr a—gq

But to reduce this equation to rectangular coordinates, let us draw
from Y the perpendicular YT to EF, and the straight line Z7T" will
also be perpendicular to EF'. Now, since EX =z — %, we will have

BT — ax + By B oy

Vvaa+ (6 By aa+ B




and

_ ay—px v _ z
= Vaarpst Vaat B8 vVaatpp
and finally
T7 — w/1+aa+p6  (ay—Bx+v)V1I+aa+Bp
- Vaa+p3 Vaa+ BB '
Then setting
BT — az + By ay

Voo 100 Avaat B |
and
(ay — fz +y)Vaa+ fG+1 _
Voaa+ (6 ’

we will be able to consider the ¢ and u lines as orthogonal coordinates
for the section in question. Thus, if we set du = s dt, the radius of the
osculating circle for the section at the point Z will be

T7Z =

dt (1 + ss)?
ds
provided that it is turning towards the base EF'F'. Presently it is only

a matter of reducing this expression to x and y coordinates. To this
end, since

adr + fdy ady — Bdx
dt=—— and du=———+/14+ aa+ (0,
Voo + (3 vao+ (6 bb
because of % = i—fz, we then obtain
du ap + Bq /it oot B0
N dt aa+ B8 — aq+ Bp +oot ff
Thus
| 4 55 = 20+ B8)(aa+ 55— 2aq +26p + (ap + B9)* +pp + q9)

(ac + BB — aq + Bp)?
Thus, for the differential of s, we will have

s — (aa—!—ﬁﬂ)(adp—kﬂdq—qdp—|—pdq)\/1+aa+ﬂﬂ.

(v + BB — aq + Pp)?

Let us now notice that

dp = da;<;l—i> + dy(j—Z) and dg = dx(g—i) + dy(%),



from which we conclude

i _ (@) (2)+B+p(2) S

aa+ 86 — aq+ Bp

and

i (a—a)(2) +B+p)(2) P

aa+ 86— aqg+ Bp

and finally*
ds ABC

dt ~ D

A= (aa+p)?, C=+/1+aa+pp
B=[(a-0(E)+@+p() +2a-a6+0 (L))
D = (aa+ B8 — ag + fp)°,

since (j—g) = (3—5) as is otherwise known. As a consequence, the os-
culatory radius for the section at the point Z will be expressed in the

form?®

(ca+ B8 — 20+ 20p + (ap + B9)* + pp + qq)®
BC

This is then the veritable expression for the osculatory radius of an
arbitrary section which cuts the given surface.

PROBLEM 2

5. If (see Figure 3) the plane of the section is perpendicular to the
surface at the point Z, determine the osculatory radius of this section
at the same point Z.

SOLUTION

To this end one only need draw from the point Z the line ZP which
is perpendicular to the surface, and require that the plane of the section
pass through this line ZP. Let us consider two other sections through
the point Z, both perpendicular to the fixed plane, the intersection of
one® being the line Y M, parallel to the axis AL, the intersection of the
other being Y N, perpendicular to the first. For the first of these two

4The original formula is split for legibility.
5Using the simplifying notation above.
6The intersection of the plane of the section with the fixed plane.



FI1GURE 3. A Perpendicular Cross Section

sections, the quantity XY = y should be taken to be constant, and the
equation dz = pdx will give the subnormal

zdz
YM=——=pz.
dx
Now, for the other section, taking x constant, the equation dz = qdy

gives the subnormal

Now drawing through the points M and N the lines MP and NP
parallel to the coordinates XY and AX, which intersect at the point P,
the straight line Z P will be perpendicular to each of our two sections’,
and finally ZP will also be perpendicular to the surface at the point®
Z. Thus the sections under consideration in the problem are required
to pass through this line ZP, which will give at the same time the
position of the osculatory radius that we seek. Hence we only need
pass the line of inersection, EF', through the point P. Let ( be the
angle PEL, which intersects the axis AL so that # = « tan (; and since

the perpendicular drawn from N to EP will be
= NP sin( = pz sin(,
we conclude from this that the perpendicular
YT = z(p sin( — g cos (),
and finally
1
psin( —q cosC’

"The segment ZP is perpendicular to the two curves on the surface formed by
the intersection of the surface with the planes ZY M and ZY N.
8 A derivation of the normal vector ZP can be found in exercise 9

the tangent of angle YT Z =



which will be the value of tan). From this we have
cos C sin
= d = *
@ psin( — q cosC and psin¢ —q cos’

thus, since 3 : a =sin( : cos (, both of these give

Bp —aq =1.
Now, substituting these values for o and (3 in the expression found for
the osculatory radius, the numerator will become

(1+pp+qq)? (1 + (psin¢ — g cos()?)
(psin¢ — q cos ()3

[MI°H

I

and for the denominator

Jitoat B8 = V/1+ (psin¢ — gcos()?

psin( — qgcos

and for the other factor?:
A+B+C

(p sin ¢ — gcos )2

A= ((1 + qq) cosC — pq sinC)Q(j—Z)
B = ((1 + pp) sin ¢ — pq cosC)Z(Z—Z>
C =2((1+ qq) cos ¢ — pg sin ) (1 + pp) sin ¢ — pq cos () (Z—i)

and finally the osculatory radius at the point Z will be!®

— (1 + (psin¢ —gq cosC)Z)(l —l—pp-i-(](])g
A+B+C ’

CONCLUSION

23. After these reported examples, to clarify the preceding work,
one can draw the following conclusion to judge the curvature of any
surface in general. Let us consider the plane which touches the surface
at a point where the curvature is sought. Let the plane of reference be
this plane (see Figure 4), which touches the surface at the point Z and
all sections for which I have just defined the osculatory radii will then
be perpendicular to this plane and cut the plane in some straight line
EF or MN, which in turn passes through the point Z. Let all possible
sections be represented by some straight line drawn through the point

9The original equation is split for legibility.
0Using the symbols introduced above.



FiGURE 4. The Touching Plane

Z on the touching plane!’. Let EF be the section above which I called
the principal one, and consider another arbitrary section M N which
forms an angle of EZM = ¢ with the principal. Since the osculatory
radius of this section M N was found in paragraph 10

_ u’(pp +qq)
A+B+C
dp
A=(pcosy—qu s1ng0)2(d$)
d
B =(q cos ¢ + pu smgp)z(dg)

d
C =2(p cos ¢ — qu sin p)(q cos ¢ + pu singa)(d—p),
Y

the denominator of this expression can be expressed in the form:

weosi? - (m(37) +aa(5) + (7))

4 2u sing cosp - ( (Zx) +pq(jz> + (pp — q@(fg))

ruwsing - (aa(32) + (1) - 20a(57)).

where it should be noted that the quantities u, p, ¢, along with the
formulae ( dw) (ZZ) and ( ) depend only on the choice of the point Z,
and consequently are common to all sections, the variability of which
is comprised by the single angle ¢. Thus in general the expression for

any osculatory radius of any surface whatever should always have the

A clear reference to the tangent plane.



form
v

P cosp? + @ sinp? 4+ 2R sin @ cos @’

which, since
2 _ 1,1 o2 11 . N
Cos o~ = 5+5 €0S2p, sing” = 5—; cos2p and sinp cos @ = 3 sin 2,

reduces to this 1

L+ M cos2¢p + N sin2¢’
and furnishes me the following reflections.

II1. Reflection

26. From our general formula we can find the sections which corre-
spond to the largest and the smallest osculatory radius. The method
of the largest and smallest provides us with the equation

—2M sin2¢ 4 2N cos2¢ = 0,

from which we have tan2¢p = % Thus, if ¢ is the angle whose tangent

is = &, the angle 180° + ¢ works just as well, and from this we find

the two values of the angle ¢:
I p=3¢ and IL ¢ =90°+ 3¢,

of which one corresponds to the largest osculatory radius and the other
the smallest. From this one has the important consequence that what-
ever the curvature of an element of the surface, these two sections, one
having the largest curvature and the other the smallest, are always
perpendicular to each other.

VI. Reflection

29. Let the largest osculatory radius = f, which corresponds to
the section F'F, the smallest = g, for the section GH, perpendicular
to the preceding. This established, for any other section M N inclined
to the first EF at an angle of EZM = ¢, the osculatory radius = r,
will be solely determined by two previous ones and the angle ¢ in the
following manner. The general formula

1
"T T+ M cos 20

gives, setting ¢ = 0,
L+ M=

I

=

and setting ¢ = 90°, there results

—_

L-M=-",

9
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from which one concludes
I = ft+y and M = — f—9 ’
2fg 2fg
and finally we will have:
2fg

" 9= (f—g)cos2g’




