
A Translation of Leonhard Euler’s paper

Recherches sur le mouvement des rivières*

§1. There is little that Authors have written so far on the movement of rivers; and all that
they have said is founded on nothing but arbitrary hypotheses and is often actually false.
Because, although we have already been successful in applying mechanical principles to the
movement of water, we have merely considered the cases where water flows through pipes
that are not irregular; and on this account, we have even supposed that all the particles of
the water in the same section perpendicular to the pipe move in an equal motion; so that the
speed of the water in each section of the channel is reciprocally proportional to the ampli-
tude.1 And it is this rule that serves as the foundation for all the research which has been
done until now on the movement of water. The profound speculations of Messrs. Bernoulli2

and d’Alembert, to whom we are indebted for all that has been discovered until now in this
science, are all established on this hypothesis: and it must be admitted that in all the cases
where they have applied their theory, this hypothesis has found itself very much in agreement
with the truth.

§2. But, when the motion of the water is such that its speed is not governed solely by the
amplitude of the channel through which the water runs—so that the velocities in the same
section of the channel differ—it is impossible to apply the principles of hydrodynamics, which
were used with such good success in the research mentioned previously. This happens mainly
when the channels through which the water passes are very large, for we then would deviate
too significantly from the truth if we supposed that water flows with an equal movement
for each portion of channel. Yet we understand easily that it is necessary to relate here the
motion of rivers; since, in the same section that is perpendicular to the bed of the river, the
water can have very different speeds; and it is evident that the particles of water which are
found close to the bottom of the bed are driven by forces entirely different from the particles
above: from whence there must necessarily result a very different movement in the particles
which are located in the same section of the bed.

§3. So, to explore the movement of water in a river, it is necessary to abandon the hypotheses
to which we had attached until now all hydraulic research, going back to the first principles
of Mechanics, by which all the motions of solid and fluid bodies are determined. We must
consider separately each particle of water, and search for all the forces to which it is subject,
to determine the changes caused in its movement. This research being extremely difficult
and enveloped in very perplexing calculations, I will limit myself to begin the explanation of

* Originally published as Recherches sur le mouvement des rivières, Mémoires de l’acadḿie des sciences de
Berlin 16 (1767), 101-118. Numbered E332 in Eneström’s index. Translated from the French by Emma Sorrell
and Erik Tou at Carthage College, Kenosha, Wisconsin. Email: esorrell@carthage.edu, etou@carthage.edu.

1The original word used here is “l’amplitude,” which is the distance from the middle of the river to the
bank.

2Truesdell ([1], p. LVIII) thinks that Euler is speaking of both Johann and Daniel Bernoulli.
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this theory with an example, which will serve as the basis for all the others, and which will
not leave us to provide further clarifications in this matter. After the development of this
example, it will not be very difficult to make the research more general, and to apply it to all
the cases which can be encountered.

§4. I will therefore consider a vertical section made along a river which will represent to us
an infinitely narrow river; and when I will have determined the movement of the water in this
section, although I have not had consideration for the effect of the water located next to both
sides, we will agree that this motion will not differ much from the truth regardless of how
large the river is, provided that the form of the bed is not extremely irregular. So I suppose
for the beginning that the pressures of the adjacent water are equal on both sides, so that all
the particles of water located in this section always remain in the same section. Nevertheless
the method I will use can also be readily applied to the case where water flows from such a
vertical section to another, and when we have found a way to expedite the the calculations
for the case that I am going to treat, we will arrive more easily at the end of the calculations
which include the general solution.

§5. Therefore, let AC be the bed of such a section of river, or of an infinitely narrow river,
which has the same infinitely small width throughout.3 Now this bed AC is an arbitrarily
curved line, which is supposed to be known; for this purpose I construct a horizontal line EF
which serves as an axis in order to relate the line AC to the orthogonal coordinates EP and
PQ. Now ABCD is the river, which moves along this bed AC, and BD its upper surface;
also I suppose that the river exists already in a permanent state or in equilibrium4, so that its
surface BD remains constantly the same, and at the same points, like M , the water particles
which flow there always have the same speeds, and they are subjected to the same pressures.

§6. All the water that forms the river must have passed through the section AB, which I
consider here to be the principal section, and against which I will determine both the location
and the movement of each particle after an arbitrary period of time since it passed through
the section AB. Let the height of this section AB = a, in which I shall consider an arbitrary
point O, naming AO = z, and let OMG be the path that each particle of water which passes
through the point O describes in being swept along by the current. Here we must first look
at the motion with which each particle of water passes through the point O. This movement
being broken down into the horizontal and vertical directions, let m be the speed in the hori-
zontal direction, and n the speed in the vertical direction, which I suppose heads downward.
So, naming EA = b so that EO = b + z, after an infinitely small period of time dτ , the
point of water O will advance along the horizontal direction by the space mdτ , and along the
vertical direction by the space ndτ . Consequently, after the time dτ , the point O will arrive
at o, so that having drawn the vertical oe, Ee = mdτ and eo = b + z − ndτ . Now it is clear

3It is at this point that reference is made to “Fig. 1,” though this figure is missing in the published version
of this manuscript. The figure has been reconstructed using Euler’s description of it, and is appended to the
end of this translation.

4That is, a steady flow.
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that m and n are functions of z.

§7. After an arbitrary period of time t, the point of water which passed through O has reached
M , having described during this time t the line OM . We draw the perpendicular MP from
M onto EF ; naming EP = x and PM = y, we see that x and y will be functions of the two
variables t and z. Let, then, for expressing the dependence of these two variables,

dx = Pdt+Qdz, & dy = Rdt+ Sdz, 5

where we see that these differential formulas must be complete; in other words dP
dz

= dQ
dt

and
dR
dz

= dS
dt

6, where dP
dz

marks the differential of P (in assuming only the z variable) divided by

dz, and dQ
dt

, the differential of Q (in assuming only the t variable) divided by dt, and similarly
the others. We also see that these values of x and y, by setting z equal to 0, must express the
form of the bed AC since the water that passes by the point A must slide over the bed itself.
Now, if we set z = a, these same formulas for x and y will express the surface of the water
BD, or the surface of the river.

§8. It is further noted that, when we set t = 0, the point M must revert to O. So, the
functions of t and z which express the values of x and y must be such that if we set t = 0,
then x = 0 and y = b + z = EO. Additionally, since dx = Pdt + Qdz and dy = Rdt + Sdz:
if we set t = 0, and we take z to be constant (so dz = 0, and dt = dτ) these differentials will
give the location of the point o, which the point O reaches in the time dτ . It will therefore be,
setting t = 0, in the quantities P and R, that Ee = Pdτ and eo = b + z + Rdτ . Comparing
these values with those which we have found above, we will have P = m and R = −n, so
that the functions P and R, setting t = 0, must give the horizontal and vertical speeds of the
point O.

§9. In order to find the line OMG that all particles of water passing through the point O
represent in the river—since it is necessary to view this point O as fixed in the section AB—we
will have dz = 0; so the nature of the line OMG will be contained in these formulas:

dx = Pdt, & dy = Rdt

which tells us that, in the element of time dt, the point M arrives at m, so that Pp = Pdt
and pm = y + Rdt. From there, we know the movement of the point M which is carried to
m during the time dt. For, if we call the horizontal speed of point M = v, and its vertical
speed = u, pointing downward, after the period of time dt it must be that Pp = vdt and
pm = y − udt and therefore we will have v = P and u = −R. Thus, knowing the functions
P , Q, R, and S in the general formulas:

dx = Pdt+Qdz, & dy = Rdt+ Sdz,

5In modern notation, we would write P = ∂x
∂t and Q = ∂x

∂z .
6This known today as the equality of mixed partials.
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the functions P and R express simultaneously the speeds of the point M : the horizontal v
and the vertical u.

§10. Let us now give the point O an infinitely small extension OO′ = dz in order to consider
the entire stream7 of water OO′MM ′GG′ which passes through this opening OO′ = dz, for it
is necessary that this stream always remains continuous, without it introducing any gap. So
the horizontal velocity of point O′ will be m + dm, and the vertical velocity will be n + dn,
these quantities m and n being functions of z. In the time dτ the point O′ will reach o′, so
that Ee′ = (m+ dm)dτ , and e′o′ = b+ z + dz − (n+ dn)dτ . Consequently, in this same time
interval dτ , the mass of the water OO′oo′ passes by the opening OO′ = dz, whose volume can
be found in this manner:8

The area of the trapezoid EO′o′e′ is =
1

2
Ee′(EO′ + e′o′),

... of the trapezoid EOoe ... =
1

2
Ee(EO + eo),

... of the trapezoid eoo′e′ ... =
1

2
ee′(eo+ e′o′),

from which we find the area

OO′o′o =
1

2
Ee′(EO′ + e′o′)− 1

2
Ee(EO + eo)− 1

2
ee′(eo+ e′o′)

=
1

2
Ee(OO′ + e′o′ − eo) +

1

2
ee′(EO′ − eo),

and therefore it will be = mdzdτ + 1
2
dmdzdτ − 1

2
mdndτ 2 + 1

2
ndmdτ 2.

§11. After a period time t, with the point O coming to M so that EP = x and PM = y,
the point O′ will reach M ′, so that EP ′ = x+Qdz and P ′M ′ = y + Sdz, and again after an
infinitely small period of time dτ , these points M and M ′ will be transported to m and m′ so
that Ep = x+Pdτ , pm = y+Rdτ , Ep′ = x+Pdτ+Qdz and p′m′ = y+Rdτ+Sdz. Therefore
the mass OO′o′o = mdzdτ will reach MM ′m′m after the period of time t, where it will fill
this space: this is why it is necessary that the area MM ′m′m is equal to OO′o′o = mdzdτ .
However, to find this area, we need only find these four trapezoids.

PMmp =
1

2
Pp(PM + pm) =

1

2
Pdτ(2y +Rdτ),

P ′M ′m′p′ =
1

2
P ′p′(P ′M ′ + p′m′) =

1

2
Pdτ(2y +Rdτ + 2Sdz),

PMM ′P ′ =
1

2
PP ′(PM + P ′M ′) =

1

2
Qdz(2y + Sdz),

pmm′p′ =
1

2
pp′(pm+ p′m′) =

1

2
Qdz(2y + 2Rdτ + Sdz),

7The French word used here is “filet.” Truesdell ([1], p. LIX) prefers “fillet” as a translation. Euler uses
the word in other papers, like E200, with a different meaning.

8In the original, the first trapezoid is EO′o′e, which is either a typo or means Euler constructed his figure
differently than we understand it.
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and since MM ′m′m = P ′M ′m′p′ + PMM ′P ′ − pmm′p′ − PMmp, we will have MM ′m′m =
PSdzdτ −QRdzdτ . So it must be that PS −QR = m, and this is the first condition which
must be satisfied.

§12. This condition that we have just discovered contains the continuity of the fluid, whereby
it is necessary that PS −QR is equal to m, that is, to a function of z, where the time t does
not matter. Considering the initial state in AB, we discover still other properties that the
functions P , Q, R, and S must have. Because, by varying the point O as z, that the time t, to
reach the point o′, we will have Ee′ = mdτ and e′o′ = b+z−ndτ , where dτ marks the element
of time t, which is itself in this case = 0. So if t = 0, it must be that dx = mdτ + odz, and
dy = −ndτ+dz. Now, having generally supposed that dx = Pdτ+Qdz, and dy = Rdτ+Sdz,
it is required that setting t = 0, it becomes:

P = m; Q = 0; R = −n; &S = 1.

These conditions, joined with the fact that PS −QR = m, and that the differential formulas
Pdτ + Qdz and Rdτ + Sdz must be complete, or integrable, determine already in part the
nature of these functions; and besides this, it is necessary that, setting z = 0, the coordinates
x and y express the nature of the line of the bed AC.

§13. Now, to find the acceleration of the element of water MM ′m′m, whose mass is = mdzdτ ,
regard must be had to the forces which are acting there. These forces are firstly the weight
of this element, which I will express by its volume mdzdτ , and by this force the element is
pushed downward. Next, this same element is subjected to the pressures of the particles of
water by which it is surrounded, and these pressures are expressed most conveniently by the
height of a column of water that would exert the same pressure. So let p be the height that
expresses the pressure at point M , and p will be a specific function of the coordinates x and
y, or else of the variables t and z; and to represent this dependence, let dp = Mdt + Ndz.
From there we will know the pressures at points M ′, m, and m′; for we have the pressure at
M ′ = p+Ndz, at m = p+Mdt,9 and at m′ = p+Ndz +Mdτ , using dτ for dt, like we have
done previously in considering these points.

§14. So, on the side MM ′ acts a force = MM ′(p + 1
2
Ndz), on the side Mm a force

= Mm(p + 1
2
Mdτ), on the side M ′m′ a force = M ′m′(p + Ndz + 1

2
Mdτ), and on the side

mm′ a force = mm′(p + Mdτ + 1
2
Ndz). Let us break down these forces according to the

directions of the coordinates EP 10 and EA11, because, since these forces act perpendicularly
to the sides, the resolution will provide:

gives the forces

9It is likely that Euler intended to use Mdτ here, but we kept Mdt, as originally printed.
10That is, the horizontal direction.
11The vertical direction.
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The force on: by EP by EA
MM ′ = MM ′(p+ 1

2
Ndz); +Sdz(p+ 1

2
Ndz); −Qdz(p+ 1

2
Ndz),

Mm = Mm(p+ 1
2
Mdτ); −Rdτ(p+ 1

2
Mdτ); +Pdτ(p+ 1

2
Mdτ),

mm′ = mm′(p+Mdτ + 1
2
Ndz); −Sdz(p+Mdτ + 1

2
Ndz); +Qdz(p+Mdτ + 1

2
Ndz),

M ′m′ = M ′m′(p+Ndz + 1
2
Mdτ); +Rdτ(p+Ndz + 1

2
Mdτ); −Pdτ(p+Ndz + 1

2
Mdτ).

So, taking all these forces together, the element MM ′m′m will be pushed in the horizontal
direction EP by the force = −MSdzdτ + NRdzdτ and in the vertical direction EA by the
force = MQdzdτ −NPdzdτ ; and from this it is necessary to subtract the force of gravity of
this element which is = PSdzdτ −QRdzdτ = mdzdτ .

§15. The mass MM ′m′m, being acted upon by two forces, one along the horizontal EP , which
is = (NR −MS)dzdτ , and the other along the vertical EA which is = (MQ − NP )dzdτ −
mdzdτ ,

the accelerating force in the direction EP will be =
NR−MS

m
, and

the accelerating force in the direction EA will be =
MQ−NP

m
− 1.

Consequently, the point M will be accelerated by these two accelerating forces. So, tak-
ing z constant, and the element of time dt equally constant, according to the principles of
acceleration, we will have:

NR−MS

m
=

2ddx

dt2
, &

MQ−NP
m

− 1 =
2ddy

dt2
.12

However, having dx = Pdt + Qdz, and dy = Rdt + Sdt, if we set dP = Pdt + Qdz, and
dR = Rdt + Sdz, it will be that ddx = Pdt2, and ddy = Rdt2, from which we finally derive
these two equations

NR−MS = 2mP, & MQ−NP −m = 2mR.

§16. So, to determine the movement of the river ABCD, which is formed by water flowing
continuously past the section AB = a, on the bed AC whose form is given, having taken
the horizontal line EF for an axis, and naming AE = b, let a particle of water arrive, which
passes by O, setting AO = z, to M after an elapsed period of time t, and let the coordinates
be named EP = x and PM = y, these quantities x and y will be some functions of t and z.
So let

dx = Pdt+Qdz, & dy = Rdt+ Sdz,

where P , Q, R and S are such functions of t and z that these differential equations are
integrable. Now, for the functions P and R, also let:

dP = Pdt+ Qdz, & dR = Rdt+ Sdz.

12Truesdell explains the appearance of the number two in these equations by saying that Euler used special
units to “take the ratio of the units of length and time in such a way that g = 1

2” ([1], p. XLIII - XLIV).
Euler himself made this change of units—starting in E177 and continuing into later papers—with little in the
way of explanation until a later paper (§20 of E222).
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Finally, let the water pressure at the point M expressed by height = p, which is likewise a
function of the variables t and z, be

dp = Mdt+Ndz.

§17. The issue is thus to find the functions P , Q, R, S, M , and N ; for this the following
conditions must be satisfied:

1) The coordinates x and y must be such functions of t and z that when we set z = 0,
they express the figure of the bed AC; thus, setting z = 0, we will have for the form of
the bed AC the formulas dx = Pdt and dy = Rdt. However, when we set t = 0, it must
become x = 0 and y = b+ z.

2) The movement of the water flowing through the point O is assumed to be such that its
speed in the horizontal direction is = m, and its speed in the vertical direction pointed
downward is = n; it must be, setting t = 0, that

P = m; Q = 0; R = −n; S = 1;

where m and n will be functions of the single variable z, without containing the other,
t.

3) The third condition requires that in general PS − QR = m, where PS − QR must
be a function of the single variable z, without the variable t entering.

4) The consideration of acceleration provided us with these equations which must be
satisfied:

NR−MS = 2mP, & MQ−NP = 2mR +m.

5) Finally, it is evident that the pressure p must be such a function of t and z that when
we set z = a—in which case the pressure will refer to the surface BD—the value of p
vanishes. Then it must be that M = 0, if we set z = a.

§18. The equations of the fourth condition, since they are by virtue of the third m = PS−QR,
will give

M = −2PP− 2RR−R,
N = −2QP− 2SR− S,

and from there we obtain:

dp = −2PPdt− 2RRdt−Rdt,
−2QPdz − 2SRdz − Sdz.

But, having Pdt+Qdz = dx and Rdt+ Sdz = dy, it will be

dp = −2Pdx− 2Rdy − dy.
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Then, since this equation must be integrable, it is necessary that Pdx + Rdy is a complete
differential formula.

§19. From there we can also find the following condition: since Pdt = dP − Qdz and
Rdt = dR−Sdz, the substitution of these formulas will give:

dp = −2PdP + 2PQdz + 2RSdz

−2RdR− 2QPdz − 2SRdz − dy,

whose integral, as it can be taken, will be:

p = C − y − PP −RR + 2

∫
dz(PQ−QP−RS− SR).13

Then it is necessary that the equation PQ−QP+RS−SR is a function of the single variable
z, since otherwise the integration could not take place.

§20. So let PQ−QP +RS− SR = w so that w represents a function of the single variable
z, and the pressure at M will be

p = C − y − PP −RR + 2

∫
wdz,

and
∫
wdz will similarly be a function of z. However, since the expression of p must vanish if

we set z = a, it is necessary that this position z = a must make every t vanish in the equation
y + PP + RR, so that it will become a constant. And then we will need only to determine
C, so that p vanishes in this case z = 0.14

§21. Since we also have PS − QR = m, where m is likewise a function of only z, these two
equations:

PS −QR = m,

PQ +QP +RS− SR = w, 15

can serve to eliminate Q and S: and we find

Q =
PPQ + PRS−mR− wP

PP +RR
,

S =
PRQ +RRS +mP− wR

PP +RR
,

and these values must make integrable the equations

dx = Pdt+Qdz, & dy = Rdt+ Sdz.

13This appears to be a typo; see the representation of the same expression on the next line.
14This also seems to be a typo, since the case Euler has been examining is z = a, not z = 0.
15Again, a typo in this equation. It should be PQ−QP +RS− SR.
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Now substituting these values found by introducing the equations dP = Pdt + Qdz, and
dR = Rdt+ Sdz, we will have:

dx =
PPdP + PRdR−mRdz − wPdz

PP +RR
,

dy =
PRdP +RRdR +mPdz − wRdz

PP +RR
,

and both of these equations must be integrable.

§22. All these questions are then reduced to the research of the nature of these two functions
P and R, on which depend the functions P and R, so that these two equations

dx =
P (PdP +RdR)−mRdz − wPdz

PP +RR
,

dy =
R(PdP +RdR) +mPdz − wRdz

PP +RR
,

become integrable. And once we have found a method to resolve this problem in general, it
will not be more difficult to determine these functions so that they satisfy the other condi-
tions. However, this problem is so difficult that, although it depends only on the analysis,
we can almost never hope to find the general solution, which could be used to determine the
movement of all kinds of rivers.

§23. These difficulties compel me to dwell on individual cases, whose development can at the
same time serve to show us how we must go about seeking the general solution.16 Since, then,
setting t = 0 must give x = 0 and y = b+ z, I will assume

x = V t+ Att, & y = b+ z + Zt+Btt,

where V and Z represent functions of only the variable z. We then will have:

P = V + 2At; R = Z + 2Bt,

Q =
tdV

dz
; S = 1 +

tdZ

dz
,

P = 2A; R = 2B,

Q =
dV

dz
; S =

dZ

dz
,

16A brief historical note: this paper was published in 1767 but written in 1751. This large gap between
dates, along with the missing figure and now the fact that Euler resorts to examining specific cases, suggests
that this paper was a draft. Truesdell suggests that the Berlin Academy, being deprived of a large quantity
of papers it would normally have published, was looking for extra papers to print and selected this work from
Euler’s unpublished manuscripts.
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and by the second condition we will have m = V and n = −Z. Now the third condition gives

PS −QR = V + 2At+
V tdZ

dz
+

2AttdZ

dz
− ZtdV

dz
− 2BttdV

dz
,

and this expression must be = m = V , from which we derive these two equations:

2Adz + V dZ − ZdV = 0, & AdZ = BdV,

where the latter gives Z = BV
A

+ C, which being put in the first produces 2Adz − CdV = 0,
and thus V = 2Az

C
+D, so Z = 2Bz

C
+ BD

A
+ C.

§24. Let us change these constants, and let D = 2Ac
C

; A = 1
2
αC; B = 1

2
ζC, to have V =

α(z + c); and Z = C + ζ(z + c), and our equations will become:

x = α(z + c)t+ 1
2
αCtt; y = b+ z + Ct+ ζ(z + c)t+ 1

2
ζCtt,

P = α(z + c) + αCt; R = C + ζ(z + c) + ζCt,
Q = αt; S = 1 + ζt,
P = αC; R = ζC,
Q = α; S = ζ,

From there we obtain the function of z, which was named w = PQ−QP+RS−SR, which
produces

w = αα(z + c) + ααCt + ζC + ζζ(z + c) + ζζCt,
− ααCt − ζC − ζζCt,

or w = (αα + ζζ)(z + c).

Since the terms containing t eliminated themselves, we do not need further reductions.

§25. From there we will then have 2
∫
wdz = (αα + ζζ)(zz + 2cz + cc), and the pressure at

the point M will be

p = Const.− b− z − Ct− ζ(z + c)t− 1

2
ζCtt+ αα(z + c)2

−αα(z + c)2 − 2ααCt(z + c)− ααCCtt+ ζζ(z + c)2

−ζζ(z + c)2 − 2ζCCt− ζζCCtt
−2Cζ(z + c)− 2ζζCt(z + c)

−CC

or

p = Const.− b− z − 2Cζ(z + c)− CC − (1 + 2ζC)Ct

−(ζ + 2ααC + 2ζζC)(z + c)t− C
(

1

2
ζ + ααC + ζζC

)
tt.

Now this expression needing to disappear, setting z = a, whichever value obtains the variable
t, we will derive three equations

10



Const. = b+ a+ 2Cζ(a+ c) + CC.

(1 + 2ζC)C + (ζ + 2ααC + 2ζζC)(a+ c) = 0.

C

(
1

2
ζ + ααC + ζζC

)
= 0,

of which the last provides us with two solutions which I will develop separately.

§26. Now, for the first solution, let C = 0; and the second [equation] gives c = −a; and the
first [equation] Const = b+ a. Then our equations for the movement of water will be:

x = α(z − a)t, & y = b+ z + ζ(z − a)t,

and the pressure p = a− z − ζ(z − a)t.

Since z cannot become bigger than a, it is necessary for α to be negative, so that

x = α(a− z)t, & y = b+ z − ζ(a− z)t,

and the pressure p = a− z + ζ(a− z)t.

Setting z = 0, the form of the bed AC in this case will be expressed by the equations x = αat
and y = b− ζat, from which we know that the bed AC will be a straight line inclined to the
horizon at an angle whose tangent = ζ

α
.

§27. For the second case, we will have C = −ζ
2(αα+ζζ)

, from which the second equation becomes

(1 + 2ζC)C = 0, or ααζ = 0,17 so it will be α or ζ = 0: if it was that ζ = 0, it would be
C = 0, like in the previous case, so let α = 0; and it will be that C = − 1

2ζ
; and Const.

= b+ a− a− c+ 1
4ζζ

= b− c+ 1
4ζζ

. From which our equations for the movement of water will
be:

x = α(z + c)t, & y = b+ z − t

2ζ
+ ζ(z + c)t− 1

4
tt,

& p = 0. Now α being = 0, since x = 0, the water flowing through AB will never leave by
the perpendicular BAE.

§28. In this case then, the water will flow perpendicularly from top to bottom. But, if we
take c =∞, so that αc obtains a finite value = f , and if we also set ζ = 0 so 1

2ζ
− ζc = g, the

following case will result:

x = ft, & y = b+ z − gt− 1

4
tt,

and the pressure will consequently be = 0. Then, the bed being under no pressure, this case
describes the motion where water falls freely and in an oblique arbitrary direction. Now it is
also clear that the water must pass by the height AB with the same speed and in the same

17This is incorrect, although it does not affect the analysis that follows. It should be that αα = 0.
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direction so that each particle of water describes a parabola, as if it was separated from the
rest, since it does not suffer from any pressure. Also, we see from our equations that the form
of the bed, or the path of particles that pass by A, is a parabola included in these formulas

x = ft, & y = b− gt− 1

4
tt.

§29. In the first case, having set C = 0 to satisfy the second equation, instead of setting
c = −a, we can also set ζ = 0; and the first [equation] will be Const. = b + a. In this case,
we will have:

x = α(z + c)t, & y = b+ z,

and p = a − z, where in place of x = α(z + c)t, we can set x = (αz + ζ)t. Here we see that
the bed AC becomes a horizontal line like the surface BD: for each particle of water will be
moved uniformly in a horizontal direction, and αz + ζ marks the speed with which the water
passes by the point O. Also, the various parts of water will act on one another only by virtue
of their weight; hence the pressure p = a − z is the same throughout as if the water was at
rest. In this case, then, the surface of the river will be perfectly horizontal and the movement
of all the parts will be horizontal and uniform.

§30. Having found x = (αz + ζ)t, the speed of the water at point O would be = αz + ζ; but
we easily understand that this same case must exist in some manner that varies the speeds
for various points O. Also, we see that these values

x = Zt, & y = b+ z,

where Z marks an arbitrary function of z, satisfy all the required conditions as well. For,
having

P = Z; Q =
tdZ

dz
; R = 0; S = 1, & from there

P = 0; Q =
dZ

dz
; R = 0; S = 0, it will be

m = PS −QR = Z = a function of z,

w = PQ−QP +RS− SR =
ZdZ

dz
= a function of z,

from which we derive the pressure at an arbitrary point M ,

p = Const.− b− z − ZZ + 2

∫
ZdZ = a− z.

Thus a river can exist on a horizontal bed when all the particles of water are moved uniformly
in horizontal directions and the upper surface remains horizontal. Additionally, the water
pressure throughout will be the same as if all the water was at rest.

§31. Here are three different values of coordinates x and y that satisfy the conditions required
for representing the movement of a river.
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I. x = ft; y = b+ z − gt− 1
4
tt,

II. x = α(a− z)t; y = b+ z + ζ(a− z)t,
III. x = Zt; y = b+ z,

where Z represents an arbitrary function of z.

Now the second case can yet be made more general, by setting:

x = (a− z)Zt, & y = b+ z + ζ(a− z)Zt;

and this will be from the consideration of these particular cases that we can expect the general
solution.

A reconstruction of Figure 1.
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