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Foreword  

Euler wrote a number of papers concerned with the three-body problem: Considerationes de motu corporum 
coelestium (Considerations on the motion of celestial bodies, E304, 1766); De motu rectilineo trium 
corporum se mutuo attrahentium (On the rectilinear motion of three bodies mutually attracting each other, 
E327, 1767); and Considérations sur le problèm des trois corps (Considerations on the problem of three 
bodies, E400, 1770). This is an annotated translation from Latin of E327. In this publication, Euler considers 
three bodies lying on a straight line, which are attracted to each other by central forces inversely 
proportional to the square of their separation distance (inverse-square law).  Although not explicitly 
mentioned by Euler, this is an exact solution of three bodies that move around the common center of mass 
and always line up. The solution given by Euler could represent a hypothetical situation of Sun, Earth and 
Moon in perpetual alignment in syzygy, for which the parameter that controls the distances among the 
planets was found to be given by a quintic function.   

___________________ 

On the rectilinear motion of three bodies mutually attracted to each other 
 

Author 
L. Euler 

 
I. 

Let 𝐴, 𝐵, 𝐶 be the masses of three bodies such that their distances to a fixed point 𝑂 at a given instant of 
time 𝑡 is given by 

𝑂𝐴 = 𝑥, 𝑂𝐵 = 𝑦 and 𝑂𝐶 = 𝑧 

where, in fact, it is assumed that 𝑦 > 𝑥  and 𝑧 > 𝑦. Hence, the principles of motion give these three 
equations: 
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𝐼.					
𝑑𝑑𝑥
𝑑𝑡/

=
𝐵

(𝑦 − 𝑥)/
+

𝐶
(𝑧 − 𝑥)/

;																																																															[1] 

𝐼𝐼.					
𝑑𝑑𝑦
𝑑𝑡/

=
−𝐴

(𝑦 − 𝑥)/
+

𝐶
(𝑧 − 𝑦)/

																																																															[2] 

𝐼𝐼𝐼.					
𝑑𝑑𝑧
𝑑𝑡/

=
−𝐴

(𝑧 − 𝑥)/
−

𝐵
(𝑧 − 𝑦)/

																																																															[3] 

whence two integrable equations are easily derived: the first [integral] 

 𝐴𝑑𝑥 + 𝐵𝑑𝑦 + 𝐶𝑑𝑧 = 𝐸𝑑𝑡																																																																									[4] 

which upon integration results in 

 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 = 𝐸𝑡 + 𝐹;1                                                                       [5]  

and the second [integral] 

𝐴𝑑𝑥/ + 𝐵𝑑𝑦/ + 𝐶𝑑𝑧/

𝑑𝑡/
= 𝐺 +

2𝐴𝐵
𝑦 − 𝑥

+
2𝐴𝐶
𝑧 − 𝑥

+
2𝐵𝐶
𝑧 − 𝑦

. 2																																										[6] 

Whence, because we lack a third integral equation, very little is possible to conclude about the movement. 

2. Let us set 𝑥 = 𝑦 − 𝑝 and 𝑧 = 𝑦 + 𝑞, such that 𝑝 and 𝑞 are positive quantities; and the first integral [Eq.5] 
gives:  

(𝐴 + 𝐵 + 𝐶)𝑦 − 𝐴𝑝 + 𝐶𝑞 = 𝐸𝑡 + 𝐹																																																												[7] 

and thus 

𝑦 =
𝐴𝑝 − 𝐶𝑞 + 𝐸𝑡 + 𝐹

𝐴 + 𝐵 + 𝐶
; 	𝑑𝑦 =

𝐴𝑑𝑝 − 𝐶𝑑𝑞 + 𝐸𝑑𝑡
𝐴 + 𝐵 + 𝐶

																																												[8	a, b] 

𝑥 =
−(𝐵 + 𝐶)𝑝 − 𝐶𝑞 + 𝐸𝑡 + 𝐹

𝐴 + 𝐵 + 𝐶
; 	𝑑𝑥 =

−(𝐵 + 𝐶)𝑑𝑝 − 𝐶𝑑𝑞 + 𝐸𝑑𝑡
𝐴 + 𝐵 + 𝐶

																															[9	a, b] 

𝑧 =
𝐴𝑝 + (𝐴 + 𝐵)𝑞 + 𝐸𝑡 + 𝐹

𝐴 + 𝐵 + 𝐶
; 	𝑑𝑥 =

𝐴𝑑𝑝 + (𝐴 + 𝐵)𝑑𝑞 + 𝐸𝑡
𝐴 + 𝐵 + 𝐶

.																														[10	a, b] 

Whence the second integral [Eq. 6] assumes the following form: 

𝐴(𝐵 + 𝐶)𝑑𝑝/ + 𝐶(𝐴 + 𝐵)𝑑𝑞/ + 2𝐴𝐶𝑑𝑝𝑑𝑞 + 𝐸𝐸𝑑𝑡/

(𝐴 + 𝐵 + 𝐶)𝑑𝑡/
= 𝐺 +

2𝐴𝐵
𝑝

+
2𝐴𝐶
𝑝 + 𝑞

+
2𝐵𝐶
𝑞
,																	[11] 

whence arises one integral equation3 

𝐵(𝐴𝑑𝑝/ + 𝐶𝑑𝑞/) + 𝐴𝐶(𝑑𝑝 + 𝑑𝑞)/

(𝐴 + 𝐵 + 𝐶)𝑑𝑡/
= 𝐺 +

2𝐴𝐵
𝑝

+
2𝐴𝐶
𝑝 + 𝑞

+
2𝐵𝐶
𝑞
,																															[12] 

                                                             
1 Upon the multiplication of 𝐼.[Eq. 1] by 𝐴; 𝐼𝐼. [Eq. 2] by 𝐵; 𝐼𝐼𝐼. [Eq. 3] by 𝐶, and taking the sum over the three equations 
yields 𝐴𝑑𝑥 + 𝐵𝑑𝑦 + 𝐶𝑑𝑧 = 𝐸𝑑𝑡, which upon integration gives 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 = 𝐸𝑡 + 𝐹, where 𝐸 and 𝐹 are constants 
of integration.   
2 From 𝐼. 𝐴𝑑𝑥

HI
= ∫ 𝐴𝐵

(𝑦−𝑥)2
𝑑𝑡 + ∫ 𝐴𝐶

(𝑧−𝑥)2
𝑑𝑡, which upon multiplication by HK

HI
 gives  

𝐴𝑑𝑥2

HIL
= ∫ 𝐴𝐵

(𝑦−𝑥)2
𝑑𝑥 + ∫ 𝐴𝐶

(𝑧−𝑥)2
𝑑𝑥, and 

then 
M𝑑𝑥2

HIL
= 𝐴𝐵

𝑦−𝑥
+ 𝐴𝐶

𝑧−𝑥
. And similarly for II. and III., yielding: 𝐵𝑑𝑦

2

HIL
= 𝐴𝐵

𝑦−𝑥
+ 𝐵𝐶

𝑧−𝑦
, and 𝐶𝑑𝑧

2

HIL
= 𝐴𝐶

𝑧−𝑥
+ 𝐵𝐶

𝑧−𝑦
. Taking the sum 

over the three equations and introducing the constant of integration 𝐺 yields MHK
LOPHQLORHSL

HIL
= 𝐺 + /MP

QTK
+ /MR

STK
+ /PR

STQ
.  

3 In the original manuscript, these three last lines have been misplaced at the end of § 3. 
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and observing that the last term 𝐸𝐸 is included into 𝐺. 

 

3. Let us make the same proper substitutions into the first second order differential [difference - of - 
differentials] equations [Eqs. 1 and 3], which now result in two [equations]: 

−(𝐵 + 𝐶)𝑑𝑑𝑝 − 𝐶𝑑𝑑𝑞
(𝐴 + 𝐵 + 𝐶)𝑑𝑡/

=
𝐵
𝑝𝑝

+
𝐶

(𝑝 + 𝑞)/
																																																												[13] 

𝐴𝑑𝑑𝑝 + (𝐴 + 𝐵)𝑑𝑑𝑞
(𝐴 + 𝐵 + 𝐶)𝑑𝑡/

=
−𝐴

(𝑝 + 𝑞)/
−
𝐵
𝑞𝑞
,																																																													[14]	 

which [by subtracting Eq. 13 from Eq. 12] results in  

𝑑𝑑𝑝 + 𝑑𝑑𝑞
𝑑𝑡/

=
−𝐴 − 𝐶
(𝑝 + 𝑞)/

−
𝐵
𝑝𝑝

−
𝐵
𝑞𝑞
.																																																																	[15] 

And then, each element 𝑑𝑑𝑝 and 𝑑𝑑𝑞 can be expressed separately in the following way  

1º.					
𝑑𝑑𝑝
𝑑𝑡/

=
−𝐴 − 𝐵
𝑝𝑝

−
𝐶

(𝑝 + 𝑞)/
+
𝐶
𝑞𝑞
																																																														[16] 

2º.					
𝑑𝑑𝑞
𝑑𝑡/

=
𝐴
𝑝𝑝

−
𝐴

(𝑝 + 𝑞)/
−
𝐵 ∓ 𝐶
𝑞𝑞

.																																																																[17] 

4. Since the solution has been reduced to two differential equations involving 𝑝, 𝑞 and 𝑡 we should expect 
that significant advantage is to be obtained, if it were possible to  reduce these equation to two others  of 
first order only. This is a unique technique that I have discovered which can be applied in the following 
manner. I put 𝑞 = 𝑝𝑢, and the two differential equations [Eqs. 15 and 16]  are represented as: 

	𝑑 Y
𝑑𝑝
𝑑𝑡
Z =

𝑑𝑡
𝑝𝑝
Y−𝐴 − 𝐵 −

𝐶
(𝑢 + 1)/

+
𝐶
𝑢𝑢
Z																																																				[18] 

𝑑 Y
𝑢𝑑𝑝 + 𝑝𝑑𝑢

𝑑𝑡
Z =

𝑑𝑡
𝑝𝑝
[𝐴 −

𝐴
(𝑢 + 1)/

−
𝐵 ∓ 𝐶
𝑢𝑢

\.																																														[19] 

 Now the trick consists in the following substitution H]
HI
= ^

√]
 and H`

HI
= aH]O]Ha

HI
= b

√]
; because it will expose 

that for these substitutions, the two variables 𝑝 and 𝑡 can be eliminated from the calculations, such that  
only these three [variables] 𝑟,	𝑠 and 𝑢 are  to be determined by their first differentials. Then, in particular, 
the equation that the integral was found above [Eq. 17] assumes a finite form which reads 

𝐵(𝐴𝑟𝑟 + 𝐶𝑠𝑠) + 𝐴𝐶(𝑟 + 𝑠)/

𝐴 + 𝐵 + 𝐶
= 𝐺𝑝 + 2𝐴𝐵 +

2𝐴𝐶
𝑢 + 1

+
2𝐵𝐶
𝑢
,																																						[20] 

whose usefulness it will be possible to assess. 

5. Since H]
HI
= ^

√]
, then 𝑑𝑡 = H]√]

^
 , whence our second order differential [difference - of - differentials] 

equations [Eqs. 18 and 19] give 

𝑑𝑟

e𝑝
−

𝑟𝑑𝑝
2𝑝e𝑝

=
𝑑𝑝
𝑝𝑟e𝑝

Y−𝐴 − 𝐵 −
𝐶

(𝑢 + 1)/
+
𝐶
𝑢𝑢
Z																																													[21] 

𝑑𝑠

e𝑝
−

𝑠𝑑𝑝
2𝑝e𝑝

=
𝑑𝑝
𝑝𝑟e𝑝

[𝐴 −
𝐴

(𝑢 + 1)/
−
𝐵 ∓ 𝐶
𝑢𝑢

\.																																																[22] 
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or: 

𝑑𝑟 =
𝑟𝑑𝑝
2𝑝

+
𝑑𝑝
𝑝𝑟
Y−𝐴 − 𝐵 −

𝐶
(𝑢 + 1)/

+
𝐶
𝑢𝑢
Z																																																					[23] 

𝑑𝑠 =
𝑠𝑑𝑝
2𝑝

+
𝑑𝑝
𝑝𝑟
[𝐴 −

𝐴
(𝑢 + 1)/

−
𝐵 ∓ 𝐶
𝑢𝑢

\.																																																							[24] 

Moreover, in particular, it will be considered that 

𝑢𝑑𝑝 + 𝑝𝑑𝑢 =
𝑠𝑑𝑡

e𝑝
=
𝑠𝑑𝑝
𝑟
,																																																																									[25] 

such that H]
]
= ^Ha

bT^a
 which when substituted [into Eqs. 23 and 24] gives 

𝑑𝑟(𝑠 − 𝑟𝑢) =
1
2
𝑟𝑟𝑑𝑢 + 𝑑𝑢 Y−𝐴 − 𝐵 −

𝐶
(𝑢 + 1)/

+
𝐶
𝑢𝑢
Z																																							[26] 

𝑑𝑠(𝑠 − 𝑟𝑢) =
1
2
𝑟𝑠𝑑𝑢 + 𝑑𝑢[𝐴 −

𝐴
(𝑢 + 1)/

−
𝐵 ∓ 𝐶
𝑢𝑢

\,																																										[27] 

which when combined give: 

1
2
𝑟(𝑟𝑑𝑠 − 𝑠𝑑𝑟) + 𝑑𝑠 Y−𝐴 − 𝐵 −

𝐶
(𝑢 + 1)/

+
𝐶
𝑢𝑢
Z − 𝑑𝑟 [𝐴 −

𝐴
(𝑢 + 1)/

−
𝐵 ∓ 𝐶
𝑢𝑢

\ = 0.																		[28] 

6.  We see that we have two first-order differential equations [Eqs. 26 and  27] among three variables 𝑟, 
𝑠	and 𝑢,  whence if it were possible to determine 𝑟 and 𝑠  in terms of of 𝑢, and then one would have the 

complete solution of the problem. Thence, in fact,  𝑝 would become known from the formula H]
]
= ^Ha

bT^a
, and 

hence furthermore 𝑞 = 𝑝𝑢. Thereafter, the particular time 𝑡 would be given from the equation 𝑑𝑡 = H]√]
^

=
]Ha
bT^a

; and finally, for a given time 𝑡, the distances 𝑥, 𝑦, 𝑧 would be obtained as given in § 2. 

7. Since the two differential equations [Eqs. 26 and 27] found are 

𝑑𝑟(𝑠 − 𝑟𝑢) =
1
2
𝑟𝑟𝑑𝑢 + 𝑑𝑢 Y−𝐴 − 𝐵 −

𝐶
(𝑢 + 1)/

+
𝐶
𝑢𝑢
Z 

𝑑𝑠(𝑠 − 𝑟𝑢) =
1
2
𝑟𝑠𝑑𝑢 + 𝑑𝑢 Y𝐴 −

𝐴
(𝑢 + 1)/

−
𝐵 − 𝐶
𝑢𝑢

Z, 

then, it is clear that both are satisfied by taking the quantity 𝑢 constant and 𝑠 − 𝑟𝑢 = 0, whence a particular 
solution is obtained. If 𝑢 =∝ and 𝑠 =∝ 𝑟 [then from Eq. 28 we have that:] 

−(𝐴 + 𝐵) ∝ −
𝐶 ∝

(∝ +1)/
+
𝐶
∝
= 𝐴 −

𝐴
(∝ +1)/

−
𝐵 ∓ 𝐶
∝∝

,																																														[29] 

or 

0 = 𝐴 Y∝ +1 −
1

(∝ +1)/
Z + 𝐵 Y∝ −

1
∝∝

Z + 𝐶 Y
∝

(∝ +1)/
−
1
∝
−

1
∝∝

Z,																														[30] 

or else 

		0 = 𝐴
[(∝ +1)g − 1]
(∝ +1)/

+
𝐵(∝g− 1)

∝∝
+
𝐶[∝g− (∝ +1)g]
∝∝ (∝ +1)/

;																														[31] 
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hence, 

𝐶(1 + 3 ∝ +3 ∝∝) = 𝐴 ∝g (∝∝ +3 ∝ +3) + 𝐵(∝ +1)/(∝g− 1).																																					[32] 

 Thus it is possible to determine the quantity ∝ from this equation of the fifth degree : 

(𝐴 + 𝐵) ∝h+ (3𝐴 + 2𝐵) ∝i+ (3𝐴 + 𝐵) ∝g− (𝐵 + 3𝐶) ∝/− (2𝐵 + 3𝐶) ∝ −𝐵 − 𝐶 = 0. 4														[33] 

Thence, truly from the relation between 𝑟	and 𝑝 [Eq. 21] this equation is  obtained 

𝑑𝑟 =
𝑟𝑑𝑝
2𝑝

+
𝑑𝑝
𝑝𝑟
Y−𝐴 − 𝐵 −

𝐶
(∝ +1)/

+
𝐶
∝∝

Z																																																									[34] 

or by putting 𝐴 + 𝐵 + R
(∝Oj)L

− R
∝∝
= j

/
𝐷, [then, from Eq. 34 we have] 

2𝑑𝑟 =
𝑑𝑝
𝑝
Y𝑟 −

𝐷
𝑟
Z 	or			

𝑑𝑝
𝑝
=

2𝑟𝑑𝑟
𝑟𝑟 − 𝐷

,																																																																				[35	a, b] 

which [upon integration of Eq. 35b] gives 

𝑝 = 𝛽(𝑟𝑟 − 𝐷),																																																																																																		[36] 

[where 𝜁 is a constant of integration], and then [since 𝑞 = 𝑝𝑢 = 𝑝 ∝]  

𝑞 =∝ 𝛽(𝑟𝑟 − 𝐷),																																																																																																[37] 

and [since] 𝑑𝑡 = H]√]
^

 or 𝑑𝑡 = 2𝛽𝑑𝑟e𝛽(𝑟𝑟 − 𝐷), hence 

𝑡 = 𝛽𝑟e𝛽(𝑟𝑟 − 𝐷) − 𝛽/𝐷p
𝑑𝑟

e𝛽(𝑟𝑟 − 𝐷)
.																																																																							[38] 

8. This particular case,  in which the solution succeeds, deserves to be unfolded carefully. Firstly, I observe 
that the value of  ∝, since it is obtained from an equation of the fifth degree, is unique and always a positive 
real quantity, because there is only one sign variation5, and then, of course, there is no reason for any 
ambiguity; however, the value of this  ∝ can be seen to depend on the masses of the three bodies 𝐴, 𝐵, 𝐶. 

The number ∝  having been found, we get the quantity 𝐷 = 2(𝐴 + 𝐵) − /R(/∝Oj)
∝∝(∝Oj)L

, where it should be 

observed that the quantity 𝐷  can never vanish. In fact, if 𝐷 = 0, then 𝐵 = R(/∝Oj)
∝∝(∝Oj)L

− 𝐴, which, when 

substituted [into Eq. 32] would give: 

𝐶(1 + 3 ∝ +3 ∝∝) = 𝐴 ∝g (∝∝ +3 ∝ +3) +
𝐶(2 ∝ +1)(∝g− 1)

∝∝
− 𝐴(∝ +1)/(∝g− 1),														[39] 

or 

𝐶
∝∝

(∝i+ 2 ∝g +∝∝ +2 ∝ +1) = 𝐴(∝i+ 2 ∝g +∝∝ +2 ∝ +1),																																							[40] 

                                                             
4 Equation [28], from which the fifth-degree equation [33] for ∝ is ultimately derived, is obtained from [26] and [27] by 
eliminating 𝑑𝑢/(𝑠	 − 	𝑟𝑢) between them. But, in the special solution that Euler considers, namely, 𝑢 =∝, 𝑠 =∝ 𝑟, both 
sides of [26] and [27] become identically 0. In this case, therefore, [26] and [27] could be true, regardless of whether 
[28] holds or not. So, despite the ingenuity with which Euler investigates the consequences of the fifth-degree equation 
[33], it is not clear that his analysis is well-founded. 
5 Descartes' Rule of Signs states that if the terms of a single-variable polynomial with real coefficients are ordered by 
descending variable exponent, then the number of positive roots of the polynomial is either equal to the number of 
sign differences between consecutive nonzero coefficients, or is less than it by an even number. 
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and, therefore, 𝐶 = 𝐴 ∝∝ and 𝐵 = M(/∝Oj)
(∝Oj)L

− 𝐴 = TM∝∝
(∝Oj)L

, and then, 𝐵 would be a negative mass, which is 

absurd. Even less possible is that the quantity 𝐷 could be negative. In fact, assuming [that r
/
= −∆, where ∆ 

is a positive quantity ]: 

𝐵 =
𝐶(2 ∝ +1)
∝∝ (∝ +1)/

− 𝐴 − ∆,																																																																							[41] 

it would then give [when substituted into Eq. 32]: 

𝐶
∝∝

= 𝐴 −
∆(∝ +1)/(∝g− 1)

∝i+ 2 ∝g +∝∝ +2 ∝ +1
,																																																															[42] 

hence [by isolating 𝐴 in the first term of Eq. 42, and substituting the resulting expression into Eq. 41] 

𝐵 =
𝐶(2 ∝ +1)
∝∝ (∝ +1)/

−
𝐶
∝∝

−
∆(∝h+ 3 ∝i+ 3 ∝g)

∝i+ 2 ∝g +∝∝ +2 ∝ +1
,																																																	[43] 

and then, 𝐵 would be a much more negative quantity, since it is necessary that the value of ∝ itself be 
positive. 

9. Then, since it is necessary that the quantity 𝐷 be positive, it can be assumed that 𝐷 = 𝑎𝑎, and if also the 
number ∝ is  considered as given, therefore the masses of the three bodies will be obtained as [from Eq. 43, 
with ∆= uu

/
]:  

𝐵 =
(∝h+ 3 ∝i+ 3 ∝g)𝑎𝑎

2(∝i+ 2 ∝g +∝∝ +2 ∝ +1)
−

𝐶
(∝ +1)/

;																																																													[44] 

and [from Eq. 42, with ∆= −uu
/

 ]: 

𝐴 =
𝐶
∝∝

−
(∝ +1)/(∝g− 1)𝑎𝑎

2(∝i+ 2 ∝g +∝∝ +2 ∝ +1)
,																																																															[45] 

from which it is necessary that the quantity /R
v∝wO/∝xO∝∝O/∝Ojy

∝∝(∝Oj)Luu
 be bound between the limits (∝ +1)g − 1 

and ∝g− 1. Then, once the quantity 𝑎𝑎 with the number ∝ are introduced into the calculations, two cases 
should be examined, according to the sign of the quantity 𝛽 (positive or negative) , which we shall examine 
separately.  

Case I. 

10. Be first 𝛽 = 𝑛𝑛, and then 𝑝 = 𝑛𝑛(𝑟𝑟 − 𝑎𝑎) [from Eq. 36] and 𝑞 =∝ 𝑛𝑛(𝑟𝑟 − 𝑎𝑎) [from Eq. 37], and by 
putting the constants 𝐸 and 𝐹	equal to zero, the locations of the three bodies 𝐴, 𝐵, 𝐶 , whose center of 
gravity is now located in 𝑂, are defined by 𝑟 such that: 

𝑥 = 𝑂𝐴 =
−𝑛𝑛(𝑟𝑟 − 𝑎𝑎)
𝐴 + 𝐵 + 𝐶

(𝐵 + 𝐶 + 𝐶 ∝),																																																			[46] 

𝑦 = 𝑂𝐵 =
𝑛𝑛(𝑟𝑟 − 𝑎𝑎)
𝐴 + 𝐵 + 𝐶

(𝐴 − 𝐶 ∝),																																																															[47] 

𝑧 = 𝑂𝐶 =
𝑛𝑛(𝑟𝑟 − 𝑎𝑎)
𝐴 + 𝐵 + 𝐶

(𝐴 + (𝐴 + 𝐵) ∝).																																																				[48] 

Yet, the relation between 𝑟 and the time 𝑡 is [Eq. 38] 
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𝑡 = 𝑛g𝑟√𝑟𝑟 − 𝑎𝑎 − 𝑛g𝑎𝑎p
𝑑𝑟

√𝑟𝑟 − 𝑎𝑎
,																																																								[49] 

or 

𝑡 = 𝑛g𝑟√𝑟𝑟 − 𝑎𝑎 − 𝑛g𝑎𝑎	𝑙𝑛 |
𝑟 + √𝑟𝑟 − 𝑎𝑎

∆
|.																																																		[50] 

Assuming that the constant ∆= 𝑎, then, for the time 𝑡 = 0, 𝑟 = 𝑎, meaning that all bodies are concentrated 
in the center of gravity [𝑂], whence they will be driven out with an almost infinite velocities, and then, these 
[distances] are similar to each other as the quantities of: −𝐵 − 𝐶 − 𝐶 ∝, 𝐴 − 𝐶 ∝, 𝐴 + (𝐴 + 𝐵) ∝ ; also, 
with the passage of time 𝑡 the quantity 𝑟 increases even more; however, for any other time, the velocity of 

each of the bodies becomes known from the formula HI
H^
= 2𝑛g√𝑟𝑟 − 𝑎𝑎. However, noting that the inter 

body distances preserve the same proportion. 

Case II. 

11. Be now 𝛽 = −𝑛𝑛, and then 𝑝 = 𝑛𝑛(𝑎𝑎 − 𝑟𝑟) [from Eq. 36] and 𝑞 =∝ 𝑛𝑛(𝑎𝑎 − 𝑟𝑟) [from Eq. 37], and 
the locations of the bodies are defined by 𝑟  from: 

𝑥 = 𝑂𝐴 =
−𝑛𝑛(𝑎𝑎 − 𝑟𝑟)
𝐴 + 𝐵 + 𝐶

(𝐵 + (1+∝)𝐶),																																																			[51] 

𝑦 = 𝑂𝐵 =
𝑛𝑛(𝑎𝑎 − 𝑟𝑟)
𝐴 + 𝐵 + 𝐶

(𝐴 − 𝐶 ∝),																																																															[52] 

𝑧 = 𝑂𝐶 =
𝑛𝑛(𝑎𝑎 − 𝑟𝑟)
𝐴 + 𝐵 + 𝐶

(𝐴(∝ +1) + 𝐵 ∝).																																																				[53] 

On the other hand, for the time 𝑡 to be obtained, 𝑡 = 2𝑛g𝑑𝑟e(𝑎𝑎 − 𝑟𝑟𝑟) , 

or 

𝑡 = 𝑛g𝑟√𝑎𝑎 − 𝑟𝑟 + 𝑛g𝑎𝑎p
𝑑𝑟

√𝑎𝑎 − 𝑟𝑟
,																																																										[54] 

hence, 

𝑡 = 𝑛g𝑟√𝑎𝑎 − 𝑟𝑟 + 𝑛g𝑎𝑎	𝑠𝑖𝑛Tj ~
𝑟
𝑎
�.																																																														[55] 

But, by putting 𝑠𝑖𝑛Tj ~^
u
� = 𝜙, such that 𝑟 = 𝑎𝑠𝑖𝑛𝜙, then 𝑡 = 𝑛g𝑎𝑎(𝜙 + 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙), and at any time, the 

inter distances are proportional to 𝑐𝑜𝑠/𝜙 .6 Whence, if at the beginning when 𝑡 = 0, also 𝜙 = 0, thus 𝑟 = 0, 

and HI
H^
= 2𝑛g𝑎, then the distances will be: 

𝑥 = 𝑂𝐴 =
−𝑛𝑛𝑎𝑎
𝐴 + 𝐵 + 𝐶

(𝐵 + (1+∝)𝐶),																																																			[56] 

𝑦 = 𝑂𝐵 =
𝑛𝑛𝑎𝑎

𝐴 + 𝐵 + 𝐶
(𝐴 − 𝐶 ∝),																																																												[57] 

𝑧 = 𝑂𝐶 =
𝑛𝑛𝑎𝑎

𝐴 + 𝐵 + 𝐶
(𝐴(∝ +1) + 𝐵 ∝),																																														[58] 

                                                             
6 According to Eqs. 51-53, the distances are proportional to (𝑎/ − 𝑟/) = 	 ~𝑎/ − 𝑎/ ^

L

uL
� = 𝑎/(1 − 𝑠𝑖𝑛/𝜙) = 𝑎/𝑐𝑜𝑠/𝜙.   
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and in that place the bodies are at rest. On the other hand, once it has been assumed that 𝜙 = 90º, or after 
the time 𝑡 = 𝑛g𝑎𝑎 ∙ 90º has elapsed, the bodies approach the center of gravity with infinity velocity.7 

___________________ 

An Application by the Translator 

For 𝐴 = 𝐵 = 𝐶 = 1 unit, the fifth order polynomial [Eq.33] reduces to  

2 ∝h+ 5 ∝i+ 4 ∝g− 4 ∝/− 5 ∝ −2 = 0, 

which, by inspection, gives ∝= 1 as the single positive root.  

For Case I, and from Eqs. 46-48, the positions of these masses are given by 𝑥 = −𝑛𝑛(𝑟𝑟 − 𝑎𝑎), 𝑦 = 0, and 
𝑧 = 𝑛𝑛(𝑟𝑟 − 𝑎𝑎), which show that one of the masses occupies the center of gravity, whereas the two other 
masses occupy symmetrical positions in relation to the center of gravity, and that these positions depend on 
(𝑟𝑟 − 𝑎𝑎).  

For Case II, and when 𝑡 = 0, the motion begins in a symmetrical configuration of the masses in relation to 
the center of gravity, however, according to Eqs. 56-58, the positions of these masses are now given by 𝑥 =
−𝑛𝑛𝑎𝑎, 𝑦 = 0, and 𝑧 = 𝑛𝑛𝑎𝑎. For any other instant of time, the positions of the masses will be given by 𝑥 =
−𝑛𝑛(𝑎𝑎 − 𝑟𝑟), 𝑦 = 0, and 𝑧 = 𝑛𝑛(𝑎𝑎 − 𝑟𝑟), which show that the symmetrical configuration is preserved, 
however, the positions of the masses now depend on (𝑎𝑎 − 𝑟𝑟) instead.  

The conclusion is that for these particular cases, the configuration of the masses during the motion is such 
that one of the masses occupies the center of gravity, with the two other masses remaining on the same 
straight line, and moving symmetrically around the center of gravity of the system. This could represent a 
hypothetical situation of Sun, Earth and Moon in perpetual alignment in syzygy, for which the parameter 
that controls the distances among the planets was found to be given by a quintic function.   

                                                             
7 Since 𝑑𝑡 = −2𝑛𝑛𝑑𝑟e𝑛𝑛(𝑎𝑎 − 𝑟𝑟), or 

𝑑𝑟

𝑑𝑡
= − 1

2𝑛3e(𝑎𝑎−𝑟𝑟)
, which for 𝜙 = 90º	(𝑟 = 𝑎)  gives 

𝑑𝑟

𝑑𝑡
= −∞. 


