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Foreword

Euler wrote a number of papers in Astronomy, most of them in Latin. This is a commented translation of
E304 -- Considerationes de motu corporum coelestium (Considerations on the motion of celestial bodies). In
this publication, Euler essentially focuses on the solution of two particular motions of a three-body problem
consisting of Sun, Earth and Moon. The first motion, represents a hypothetical situation of these three
celestial bodies in perpetual alignment in syzygy — the three-body problem on a straight line —, for which
the parameter that controls the distances among the planets was found to be given by a quintic function.
The conclusion was that if the Moon were four times more distant from the Earth (either in conjunction or in
opposition), a motion of this kind would have been possible to exist, such that the Moon would appear
always connected to the Sun. The second motion considered by Euler was Moon libration, when these
planets are aligned in regular syzygy. Here, perhaps for the first time, Euler introduces an archaic form of a
Fourier sine series expansion to describe the Moon’s wagging motion. However, as Euler himself recognizes,
the calculations turned out very tedious, and led him to greatly simplify his model in order to obtain some
numerical values for the phenomenon.
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Although there is no doubt that the laws of motion of celestial bodies observed by Kepler and confirmed by
Newton have brought very great gains to [the discipline of] Astronomy, nevertheless it is certain that no
body in the heavens is met with that in its own motion follows these laws perfectly, since, instead, in all [of
the motions of these bodies] deviations from these laws, that are by no means slight, are detected. Of
course, it is true that the cause of all heavenly motions resides in the mutual attraction of these bodies, by
which each and every [body] is attracted toward each of the others singly by forces consisting of a ratio

" The translator used the best of his abilities and knowledge to make this translation technically and grammatically as
sound as possible. Nonetheless, interested readers are encouraged to make suggestions for corrections as they see
fitting.
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composed directly by the un-squared [amount] of the masses [of the bodies], and inversely by the squared
[amounts] of the distances. However, it is always convenient to consider that one force stands out among
the remaining, and thus, the motion would approximately follows Kepler’s rules; and thus the relatively very
small effect arising from the others can be determined by methods of approximation. Without this
simplification, we would be at the utmost ignorance about the celestial motion, since to date no method has
been discovered by the application of which the motion, of three or more bodies mutually attracting each
other, might require to be ascribed; unless, perchance, one force surpasses the others.

2. Yet indeed this case—in which [case] alone Geometers do not squander their work at all points in
vain — cannot be taken as conclusive since the method of approximation itself, which Geometers are
accustomed to use, is bound up with a great many difficulties besides, and an unlimited multitude of small
perturbations is neglected, by which [fact] it becomes so that this approximation by itself [only] minimally
carries through the business [of determining the motions], but on the contrary, for it to be completed, still
more supports are desired. Wherefore, although from this Theory the motion of the Moon is determined
accurately enough, that [fact of sufficient accuracy] ought to be ascribed more to special circumstances that
obtain for the Moon than to any perfection to which [perfection] a general Theory would be required to
measure up. For if the Moon were two or three times as far from the Earth, or if its orbit were more
eccentric, then all the labors endured to this point would be lacking in all fruit [because they would be
inapplicable], and by the way, not even its motion could be recalled to any fixed rule.

3. Therefore, much have stood before the Theory of Astronomy to be considered, for instance, if
under the fictitious hypothesis that in case the Moon were much away from the earth, it would be certainly
an excess to think that its motion could be evaluated with the maximum aid of this science. If, for instance,
the Moon would have been a hundred times more distant from the earth, there is no doubt that the laws of
motion of the main planet would no longer be followed as if it were a satellite of the earth, as one would
expect. But if, on the other hand, the distance were ten times greater, its motion could then be compared,
so that no doubt would remain, even with primary or secondary planets being added. To such an extent that
it certainly would disagree from all the motions observed in the sky, such that it can hardly give an idea even
on how the average motion can be resolved. Perhaps, innumerable observations could reveal a certain law,
from which, in a subsequent application, it can somehow give a clear prediction; however, by no means so
evident, to such an extent that the Theory that should explain this type of motion may not be adapted. The
very wise creator is seen to have being mindful of our weakness, because none of the bodies placed in the
sky are such that their motion could be described neither by the law of the main planets nor of the satellites.

4. This sort of research, which is seen not to surpass the strength of the human mind, is certainly not
suited to be undertaken hastily, but on the contrary, it will require that our efforts be undertaken step by
step. Then, the general problem of three bodies mutually attracted to each other will be conveniently
restricted to the case where one of the masses almost vanishes in front of the two remaining, where it is
agreed that certainly it will be convenient that the two larger bodies are set in motion according to Kepler’s
laws, and that every perturbation on the third [body] is disconsidered, and in case its position and motion
will be compared since the beginning, such that if it is attracted to both larger [bodies] with almost equal
force, we shall have in this manner a case, whose investigation demands a distinctly new approach. A great
deal is lacking to venture an approach towards this problem before fatiguing in vain to unfold it, as | am
forced to admit; however, in fact, this is a complete singular case as | have already observed, and with a
remarkable simplification, in which the motion of the Moon would appear constantly connected or in
opposition to the Sun, which is the case to be considered, with great utility in this very difficult matter
should not be abandoned, and by no means to be seen with indifference.



5. Hence, the motion of the Sun and the Moon seen from Earth is assumed to take place in the
ecliptic plane’, with the earth resting in T, and after a certain time has elapsed, | place the Sun in S, the
Moon in L, and after laying a fixed straight line T4, directed to the First Star of Aries?, | ascribe the following
angles: ATS=6, ATL=¢, and STL=¢ -0 =7, and the distances TS=u, TL=v and LS =

\/uu — 2uv cosn + vv = z. Be further the mean longitude of the Sun® = ¢, and its mean distance from the

Earth = a, and from these we have for the motion of the Sun in its canonical form*:

2dudf + uddé ddu —udf? a3
d—(z=0and d—(z+;=o,

and for the motion of the moon”:

2dvde + vdd¢p a3 ud\ |
a2 —z 1—Z—3 sinny = 0,and

3

ddv —vd¢p? n?c® a3v ad us
a2 + 2 +Z—3+; 1—Z—3 cosn =20

where c is the mean distance which the Moon is solicited by the force of the Earth, and for the mean motion
of revolution, there is a n: 1 relation between the mean motion of the Moon and the mean motion of the
Sun. Besides, regarding the differentials of the second degree, it should be noticed that the element d{ is
assumed to be constant.

6. All the difficulties in the resolution of both equations, consist on finding at any instant of time, the
mean longitude of the Sun {, as well as the distance v, and the angle ¢. Since so far, in general, the
Geometers cannot proceed in their work, unless in case in which the distance v is much smaller than u and
the number n is rather big, suitable approximations have been found, yet much is still justly needed in this
matter. However this pair of equations in a general aspect, without any consideration to the Moon dwelling,

'The ecliptic plane contains most of the objects which are orbiting the sun, and is tilted with respect to the Earth’s spin
axis at 23.5°.

® The First Star of Aries (or First Point of Aries), also known as the Cusp of Aries, is the location of the vernal equinox.
*The Sun's ecliptical longitude is defined as the angle subtended at the earth between the vernal equinox and the Sun.
The mean longitude is the ecliptical longitude that the planet would have if the orbit were a perfect circle.

*The development of these equations can be found in E112 Recherches sur le mouvement des corps célestes en general.
> The development of these equations can be found in L. Euler, Considerationes de theoria motus lunae perficienda et
imprimis de eius variatione, Novi Commentarii Academie Scientiarum Imperialis Petropolitanae, Tom. Xlll, pro Anno
1768.

®The angles were added to this figure by the Translator to facilitate the comprehension.



which certainly has to be explained, can solve the problem completely. Such motion can take place in the
sky, and it is in our ability to know it completely, even if its reasoning does not agree at all with the regular
motion.

7. First of all, | should observe that these two equations admit a closed form solution for the case in
whichn = 0, or ¢ = 6, when the Moon is seen to be in continuous communication with the Sun. Since
sinn = 0,and cosn = 1, then z = u — v, and our equations will assume the following forms:

2dvd6 + vdd6

e = 0,and
ddv — vd6? N n?c3 N adv N a® —3u’v +3uv® —v3 0
d{? v2  (u—v)3 u? (u—v)3 B
ddv — vd6? N n?c3 N a*v(2u® — 3uv +v?) 0
or dg? v2 u?(u —v)3 -

which can be immediately compared with the given formulas for the motion of the Sun considering that
v = au, which it is certainly satisfied by the prior established equations. Hence the other equation for the
Moon will be transformed into

a(ddu —udf?) n?c® aa’®(2-3a+a?®)
d{? a’u? (1—-a)3u?

And since the other equation for the Sun is
ddu — ud6? N a3 0
dg? u? ’
it is necessary that

, n*c® aa*(2-3a+a?)

aa

a? (1-a)3

or
n?c® 3a—3a%+ad
a?a3 1-a)? ’
. n?c3 . . . n?c3
where, since —— is a constant quantity, let us put for conciseness S =m, and then
a

m(l — a)? = a?(3a — 3a? + a?)
or
m(l—a)? =a? - a?(1 —a)d.
Once putted 2—oc= x, then mx? = (1 — x3)(1 — x)?, or

1—2x+x%2—mx?—x3+2x*—x5=0.7

" A fifth degree polynomial was also obtained by Euler in E327 -- De motu rectilineo trium corporum se mutuo
attrahentium. In this publication, Euler considers three bodies laying on a straight line, which are attracted to each
other by central forces inversely proportional to the square of their separation distance (inverse-square law).



8. Then, it will be necessary the determination of the number a or x from an equation of the fifth
degree, which for its resolution, it is necessary to first observe that m should be a rather small fraction, and
then

m(1 — a)? = 3a® — 3a* + ab,

3 2
likewise, it is evident that a will also have a small value, which can be approximated by «= 3\/% = 2 /%, or

cu 3|n?

more precisely o= \/% \/: —mmto m3 % However, a first approximation gives v = — {3
whence, since u = a, and n? = 175,® gives, v = 4c, approximately; or if the Moon were four times more
distant from us, a motion of this kind would have been possible to exist, such that it [the Moon] would
appear always connected to the Sun. It would then be possible to regard a Satellite of the Earth as if it were
the Moon, and its motion would be most regular, however, deviating from the rules of Kepler the more close
to the Sun than to the Earth, though it may revolved with the same time, because the force of the Earth in
relation to the force of the Sun is reduced in the same proportion, although it may linger with a longer
periodic time. Because the distance to the earth would be almost four times greater than the distance that
Moon actually stands apart, as much as a limit would permit, so that bodies far more removed from the
principal planets, in fact closer to the satellites of the Earth should permit. Similar limits in relation to other
planets will be possible to be established.

9. As the evolved case of a permanent continuous communication with the Sun, indeed in
continuous opposition, gives a similar case. In this case, let us putn = 180°, and then sinn=0,cosn =
—1,and ¢ = 180° + 6, and then d¢ = df, and also z = u + v. Thus, the equations for the motion of the
Moon will assume the following forms:

2dvd6 + vdd6

a7 = 0,and
ddv — vd6? N n?c3 N a’v a u3 3
dq? vZ  (u+v)? u? (u+v)3 ’

and the latter one reducing to the following:

ddv —vdf8? n?c® ad a

T T Ry cyarps vl

First, considering also the motion of the Sun, gives at once v = au, which transform this equation into

o (ddu —udf?) n?c® a3 a3
¢z «2u?z u?z (1+o)2u?
. ddu—ud6? 3 . L
Yet, for the motion % = —%, which transforms the equation into
2.3 a3
—x a® + -a*+——==0,0r
(14+x)

¥ The Moon completes an orbit around the Earth once every 27.32 days. The Earth takes a year (365 days) to revolve
around the Sun. Therefore, in a year period, the Moon completes n = 365/27,32 = 13,36 revolutions around the
Earth, and then n? = 178,5.



2.3 OCZ
—o? (14) + —— =
( ) (140<)?

2.3

and once put, for conciseness, = sm gives

m(1+a)? = a?(1 — a)d—a?

which is obtained from the equation of the same form above by taking m and a negative.

oc_af 13m2 s[m
TR Y

however, as a first approximation <= \/7and =— / as before.

Henceforth

10. These cases are most worthy to be commented, since they could be worked out absolutely
without any approximation, even if both forces of the Sun and of the Earth concur in producing motion,
since there is no other case which this can happen. However, the body would, in fact, move with such a
simple motion, provided it would be at the assigned distance, and while it would appear from the Earth in
conjunction or in opposition with the Sun, a motion of this type would be impressed, when it had began to
advance in the same pace with the Earth in the ecliptic plane. However, on the other hand, if the impressed
motion differs from this law, it would not, in fact, remain in continuous conjunction or in opposition with the
Sun, but it would perform tiny excursions and, because of this, as almost oscillating. In the case where the
motion had minimally differed from the formulation that was found, in the usual way, also by
approximation, it will be possible to define such motion; in this case with the threshold of irregular motions,
which still cannot be approached by any calculation, certainly it is seen with no lack of usefulness, if | will
seek more carefully the nature of such motion.

11. However, although this investigation is by no means involved by trivial difficulties, however, our
equations can be made conveniently easier to handle, when the distance v is much smaller than u, when it is

possible to produce a convenient approximation. Of course, because z = \/uu — 2uv cosn + vv, we have

. 1 1 , 3vcosn 3v? | 15v%cosn? ud 3w 3v? 2
apprOX|materZ—3 =5 + & oS + o and thus 1 — —5 = o, cosn— ﬁ(l — 5cosn*), from

which our equations that were found for the motion of the Moon will transform into the following forms:

2dvdp + vddp 3av 3a3v?
I. a2 —— 5 Sinncosn— sinn (1 —5cosn?) =
ddv —vd¢p? n?c® av 3a3v?
I1. + + 1—3cosn?+ 2

dq? v? z3

(3cosn — 5 cos 773)> =0.

Then, also, the calculation can be made easier, if we consider the mean motion of the Sun, then u = a, and
0 = {,and thusn = ¢ — {, or ¢ = n + {, whence arising the following equations

; 2dvdn + vddn N 2dv 3psi 3v? (1—5 2y

: 72 T vsinn cosn — ——sinn cosn?) =
”ddv (1+d )2+ 1-3 2)+n23+ i (3-5 =0
e T v cosn T cosn cosn?) =0,



where the last terms in these expressions can be omitted, since the fraction Z is very small, even establishing

that the distance of the Moon is four times larger.

12. Now, be reminded the case where the Moon will be seen hesitating in a almost oscillating
motion around the Sun, and let us assume that the angle n is as small as possible, such that sinn =1, and

cosn=1-— %nz, and then we have:

2dvdn + vdd 2dv
I. 1 1 +

3vm=0
d(z ac + 3vn
ddv dm? n2c3 5
Ild_(z_v(1+d_() + ‘172 —2‘17+3177’] =0.

Then, because the distance v is little changed, let us put v = b(1 + x), such that x is a small quantity, and

n?c3
further, be for brevity s =m, and hence
/ 2dxdn + xddn dd77_}_2dx+3 + 3 =0
S TE dgz T gg TOn TN =
2dn  2xdn dn? xdn?
II.d—(2—3—3x— A AR TRTE + 3n% + 3xn? + m — 2mx + 3mx? = 0.

whence, it is necessary to define the values of the quantities x and 1 for every angle {.

13. Since the angle 17 is minimum, and which alternates between negative and positive values, as the
Moon is seen passing to and fro the Sun: it is easily allowed to conceive the existence of a relation between a
certain angle w and ¢, and thus to define the following

n = Asinw + Bsin2w + Csin3w etc.®

and also dw = ad{. Then,

d_z = aAcosw + 2aBcos2w + 3aCcos3w,and
dd
d_(z = —a?Asinw—4a?Bsin2w—9a?Csin3w.

On account that the first equation can be transformed into

2dx  ddn+3nd{®
1+x dn+d{

which, upon integration gives

dn nd¢
2In(14+x)+In 1+d_( +3 = Const.

d .
or, because x and d—? are small quantities, then:

2 ., dn dn* dn’ 3 ndn? ndn®
2x— X2+ oxP e — 3fd——2 3f —3f = Const.10
xX—Xx +3x +d( 2d(2+3d(3+ nd¢ 277 + a ac ons

9 . . . . . .
This appears to be an archaic form of a Fourier sine series expansion.



Now, since d{ = %U, then
f d¢ = 4 5 2 ¢ 3
nd{ = acosw 2Olcos W 3Olcos W

2_1. 12
nc==-4 +ABcosa)—§A cos2w — ABcos3w

2
1
+=B? + AC

2
d772 1 242 2 1 242 2
— =—=a“A“ + 2a“ABcosw + —a“A“cos2w + 2a“ABcos3w
¢z 2 2

+2a?B? + 3a2AC
dn3

3
rral = a3A’B + Za3A3cosw + a2A%Bcos2w

+4a3AB?,

where we justly disregarded higher powers of the letters A, B, C.

14. Since
dn? 1 3 1
% = Za2A3sinw + EazAzBsinZw + —a?A3sin3w
3
+3a?AB? + 2a?B3 + EazAZC
3
—EazAZC + a?AB?,
and because d{ = %‘), then
dn? 1 3 1
1 d{n =— ZaAg’cosw - Z(ZAZBCOSZ(U - EaA3cos3w
1
—3aAB? — aB3 - EaAZC
3 1
— 2 _ - 2
+20(A c 2ozAB ,

where, since the series A, B, C had already decreased very much, further terms can be omitted. Then, since

77d773_733- 334- 733-
ac —80( A Bsmw+8a A szn2w+8a A°Bsin3w

Which upon integration gives

dn |, dn* dn?

10 . . . 1. dn> ndg — _
These integrals are the result of a series expansion of @ w e " aw and then, 3 f_1+ﬂ and(

ag ag

dn? dn?
3 ndn +3 [T =31



ndn? 7 4o 3 7
——— = ——a343Bcosw — — a3 A*cos2w — — a3 A3Bcos3w,
dq? 8 16 24
and finally, from the expressions above, and omitting the terms that are constants, the following equation is
obtained

2
2x —x% +=x3 + aAcosw + 2aBcos2w + 3aCcos3w = 0 11

3
1
—a’AB —ZaZAZ —a’AB
1 3 C
+ZQ3A3 —EQZAC _—
34 1 312
- +—-a°A“B +—-AB
a 3
3AB 3B A3
2 2a 2
3 3 1
_ A3 _AZ - 3A3
4a +4 +4a
3AC
2
9
——aA’B
4a

15. To find the value of x, let us put for conciseness

3 3 1
(a—E)A—(ocz +—)AB +Zoc(oc2 —-3)43 =9

2
4a? -3 (a® -3)
B — A% =
2a 4 B
302 -1 (2a? —3) 1, s
C— AB+-a(a®—1)A°>=C
a 2 4
such that
2In (1 + x) + Acosw + Becos2w + Ccos3w = 0,
and then

1 1 1
—5Acosw—5Bcos2w—5Ccos3w
l1+x=e 2 2 2 ,

whence we conclude that

1 1 1
X = —Eﬁlcosw — E%cosZw — EQZcos3w
+-AB  + ! A? +-UAB
8 16 8
1
__9r3 913
+ 64QI 19291
ndn3

2
" The expanded forms of the integrals 3 f% -3 f were not included in this equation.

dg?



But for us not to be involved in excessively tedious calculations, we shall procure a less accurate expression,
by neglecting the triple angle, such that n = Asinw + Bsin2w, and then we have

) N € )

= Bcos?2
a cos2w
2 2
3(a“ —1)(a* - 3) 2
1602
where, for conciseness, we put
x = Ecosw + Fcos2w
such that
3 —a? 3 — 4qa? 3(a? - 1)(a? -3
E = Aand F = B+ ( X )AZ.

4o 16a?

16. When these values are substituted in the second equation, we will find out that'*:

ddx 2 2
d_{zz —a“Ecosw — 4a“Fcos2w
200 _4aE - 2a4 4aB
aq * “
—2aBE — aAE
2xdn
_ = —aAF
a¢ *
dnz_ 1 242 202AB 1 242

2 3 2 3 2
3nc = +§A + 3ABcosw —EA cos2w

m=+m
—2mx = —2mE —2mF
3 3
+3mx? = EmE2 + 3mEF + EmE2

whence we first conclude that®®:
3 1 3
m(l +§E2) =3+ aAE+§a2A2—EA2 =3

thence

xdn?
dg?

2 The reduced form of — from the second equation was not included in the calculations.

B The following expression is the result of equating the constant terms to zero.
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for the determination of the number m and then the distance b.

It is clear that m = 3, approximately, and thus b = ci/?. We have further that™
—a?E —9E — 2aA — 2aBE — aAF(+2a? + 3)AB + 9EF = 0

2
which, by neglecting terms which cannot be simply reduced to g = 32—3 , gives

(a?+9)(3—a?)+4a%? =0, o0r
a*+ 2a? — 27 = 0, and then, a? = /28 — 1.

Finally, the third equation gives®

3 1 3 9
— (42 _ A 222 22y Cp2
(4a“ + 9)F — 4aB ZA AE ZaA 2A +2E 0,
therefore:
(4a? — 3)(4a? +9) 3(a? —D(a? -3)4a?+9) )
B A?
4a 16a2
a’® -3
—4aB + A?
2 b =0
B (a* + 3)A2
2
9(a? —3)?
+ ¥A2
8a? J

which, after rearranging gives:

2
b1 ga?—27) = S a2 (13 — 702 + 24
B(16a* + 8a* — 27) 2A al13—-7a” + a )

orsince 27 = a* + 2a?, then

342
3B(5a? +2) = %(13 —7a? + 2a%),

and, therefore,

_13-7a®+2a* ,  67-11a®
2a(5a% + 2) 2a(5a% + 2)
291-94a2—23a* ,  165-24a’
8a?(5a? + 2) 4a2(5a2+2)"

Then, accordingly, the value of A is at our discretion, which depends on the digressions from the syzygy
line®, which it is proper to assume as being a very small fraction, such that the quadratic terms can be
considered of second order, being sufficient only the first terms. Then, for the distance v = b(1 + x), we

3 nz
have thatbh = c\/;, and the angle wis defined such thatw = a{ + £, and since a? =+/28 — 1, then,

“The following expression is the result of equating the coefficients of cosw to zero.

> The following expression is the result of equating the coefficients of cos2w to zero.

1% A kind of unity, namely an alignment of three celestial bodies (for example, the Sun, Earth, and Moon) such that one
body is directly between the other two, such as occurs at an eclipse (from the Wikipedia).
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2_
a? = 4.291502 and a = 2,071594 . Thereupon, putting n = Asinw and v =b (1 - %Acosw) or
v=>5b(1-0,311717Acosw).

The excursions are maximum for angles w equal to 90°,270° etc., therefore, between one maximum

digression to the next we have a{ = 180°and { = 86°, 53%: with the greatest of these digressions given by
v = b. But in case this kind of libration’ happens to be greater, its determination involves considerable
difficulties, because, as more accurately we wish to define all the variations, less certain we would be about
the remaining that we have overlooked.

s the wagging of the Moon perceived by Earth-bound observers caused by changes in their perspective. It permits an
observer to see slightly different halves of the surface at different times. It is similar in both cause and effect to the
changes in the Moon's apparent size due to changes in distance (from the Wikipedia).
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