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SUMMARY

In this essay and several following, which treat similar topics, an entirely new field, as it were, is opened

in Analysis, in which it becomes possible to compare with one another the integrals of various formulas

which individually resist all techniques of integration. For example, by means of the known relationships

among angles, the relation between the two variables x and y satisfying the differential equation

mdx√
(1− xx)

=
ndy√
(1− yy)

can be expressed algebraically, although neither formula can be integrated algebraically by itself, but rather

expresses an angle or an arc of a circle. Now this relation can be seen to come simply from the fact that

the sines of angles which have a given rational ratio to one another satisfy an algebraic relation. But it

would seem that such a relation could not exist unless both formulas could be integrated, either in terms

of angles or in terms of logarithms. To be sure, whenever the solution of any problem can be reduced

to a differential equation of the form X dx = Y dy, where X is a function of x and Y a function of y,

then, since the variables are separated from one another, the problem is generally considered to have been

essentially solved, inasmuch as the solution could be constructed by means of the quadratures of two curves,

of which the area of the one is expressed by
∫
X dx, the other by

∫
Y dy. Nevertheless, if, for any given

value of x, it is required to determine the corresponding value of y, it appears that both quadratures would

be required, without which there would be no way to express the relation between x and y. How much

more astonishing, therefore, will it appear, that, even though the integral of the formula dz√
(1−z4)

cannot be

expressed either by means of angles or of logarithms, the only transcendental quantities thought suitable

for such expressions, nevertheless for the proposed differential equation the relation between x and y can

be exhibited algebraically, so that the curved line whose indefinite arc is expressed by the integral formula
dz√

(1−z4)
enjoys a property similar to that of the circle, namely that all its arcs can be compared with one

another; or, if any of its arcs be given, it is possible to determine geometrically any other arc which has

a given ratio with the first. Indeed, what amount to the same thing, the equation for the integral of the

given differential equation, which gives the true relation between x and y, not only does not involve such

an integral, but will in fact be algebraic.

And furthermore, this holds not just in a particular case, but, what is more, the complete integral,

which involves an arbitrary constant quantity, will be algebraic. Nor indeed does this admirable result hold

only for that particular differential equation, but in an entirely similar way the celebrated Author shows

that this much more general differential equation

mdx√
(A+Bx2 + Cx4)

=
ndy√

(A+By2 + Cy4)

can be completely integrated by means of an algebraic equation, provided that the numbers m and n are

rational; and indeed he extends the same method of integration to the even more general equation

mdx√
(A+Bx+ Cx2 +Dx3 +Ex4)

=
ndy√

(A+By + Cy2 +Dy3 + Ey4)
,
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where all the powers of x and y up to the fourth occur in the radicals in the denominators. From this, one

might conjecture that the same algebraic integration would continue to hold, even if the expressions were

continued to higher powers; but apart from the fact that the Author’s method is limited to that fourth

power, it is easy to show that, at least for the sixth power, an algebraic integration is in general excluded.

For if the coefficients are taken in such a way that it is possible to extract the square root, it is clear just

from the one case mdx
1+x3 = n dy

1+y3 that there is no way to express the relation between x and y algebraically,

inasmuch as the integrals of both formulas would involve angles as well as logarithms; but clearly angles

and logarithms do not admit algebraic comparisons with one another. Meanwhile, on the other hand, by

means of a particular method, the integration of the equation

mdx√
(A+Bx2 + Cx4 +Dx6)

=
ndy√

(A+By2 + Cy4 +Dy6)

will be shown algebraically, whence it is clear that this essay contains many more investigations that its

title seems to indicate.

1. When, prompted by the discoveries of the illustrious Count Fagnano, I first considered this equation,
I found indeed an algebraic relation between the variables x and y which satisfied the equation;1) but this
relation could not have been the equation of the complete integral, as it did not involve an arbitrary constant
quantity, such as is always brought into the calculation by integration. Hence, as is well known, it is customary
to distinguish between incomplete2) and particular integrals, of which the former exhaust the whole force of
the differential equation, whereas the latter satisfy it, to be sure, though there are other expressions besides
which satisfy it equally well. Moreover, the criterion for a complete integral consists in this, that it must
involve a constant quantity which does not appear in the differential equation.

2. In order to make this clearer, it will suffice to consider the simplest differential equation dx = dy,
which is certainly satisfied by the integral x = y; in fact, however, this integral is less general than the
differential dx = dy, since that is satisfied also by the integral x = y∓a, which is much more general, a being
taken to be an arbitrary constant quantity; now this last integral can be seen to exhaust the whole force of
the differential equation dx = dy, and thus we call it the equation of the complete integral, since it contains
the constant quantity a which did not occur in the differential equation. But if in place of that indefinite
constant a determinate values are substituted, we will obtain from the complete integral particular integrals,
which for that very reason are less general than the given differential equation.

3. Now it is frequently possible to give an algebraic particular integral for a differential equation, even
though the complete integral is transcendental; this comes about, evidently, if the transcendental part is
multiplied by the arbitrary constant, so that if that constant is set equal to zero the transcendental part will
vanish, and an algebraic particular integral will remain. Thus the equation dy = dx + (y − x) dx is clearly
satisfied by the value y = x, which, however, gives only a particular integral, since the complete integral is
y = x + aex, where e denotes the number whose logarithm is = 1. Thus, unless the arbitrary constant a is
made to vanish, the integral will always be transcendental.

4. Since therefore it can occur that a differential equation admits an algebraic particular integral, even
though the complete integral is transcendental, there is also reason to suspect that the complete integral of
the proposed differential equation

mdx√
(1 − x4)

=
n dy√
(1− y4)

would involve transcendental quantities, although we can exhibit an algebraic particular integral for it. For
the complete integral is

m

∫
dx√

(1− x4)
= n

∫
dy√

(1 − y4)
+ C;

1) See “Observationes de comparatione arcuum curvarum irrectificabilium” (E 252), Theorema 4 (Opera
Omnia, I20, p. 92). Tr.

2) The text has incompleta, but Euler seems to intend “complete”. Tr.
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but there is no way to determine these integrals, whether by means of the quadrature of the circle or of the
hyperbola, so that it seems very unlikely that these formulas, whose nature is so transcendental, could be
developed into an algebraic relation between x and y, as long as the constant C remains indeterminate.

5. It is known, however, that the complete integral of the differential equation

mdx√
(1− xx)

=
n dy√
(1− yy)

can always be given algebraically, so long as the ratio of the coefficients m and n is rational. But since the
integral of each formula produces an arc of a circle, the complete integral will be mAsin. x = nAsin. y+C;
and since the sines of arcs whose ratio to one another is rational have a mutual relation which can be
expressed algebraically, it is not surprising that in these cases the complete integral can also be exhibited
algebraically. Since however there is no similar way to work out the transcendental formulas

∫
dx√

(1−x4)
and∫

dx√
(1−x4)

, or at any rate none is known, the reduction of the integral to algebraic quantities cannot be

expected.

6. Nonetheless, I discovered that, for the differential equation

mdx√
(1− x4)

=
n dy√
(1− y4)

,

once again the complete integral, which we know has to contain an arbitrary constant quantity, can always be
expressed algebraically whenever the ratio m : n is rational; which to me indeed seems the more noteworthy,
in that I was not led to this integral by any definite method, but rather found it by guesswork, or by trial
and error. On this account there is no doubt but that a direct method for evaluating this integral would
enlarge the boundaries of Analysis not a little; therefore it seems appropriate to recommend to Analysts
that it be investigated with all diligence.

7. Now I was able to get the complete integral of that differential equation, whenever the ratio of the
coefficients m and n is rational, from the complete integral of the equation

dx√
(1− x4)

=
dy√

(1− y4)
;

for, this being granted, I will present a definite method by which the complete integral of the more general
equation

mdx√
(1 − x4)

=
n dy√
(1− y4)

can be obtained from it. More generally still, this method can also be applied to determine the integrals of
equations of the form mX dx = nY dy, given the complete integral of X dx = Y dy, where Y is a function
of y and X a function of x.

8. Let me therefore begin with the equation

dx√
(1− x4)

=
dy√

(1− y4)
.

It is clear, indeed, at first glance, that this equation is satisfied by the equation x = y, which consequently
is a particular integral of it. In addition, however, this same equation is also satisfied by the algebraic value

x = −
√
1− yy

1 + yy
;

for since

dx = +
2y dy

(1 + yy)
√
(1 − yy)(1 + yy)

and
√
(1− x4) =

2y

1 + yy
,
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it follows that
dx√

(1− x4)
=

dy√
(1− y4)

.

Hence that value also, in other words the equation xxyy + xx + yy − 1 = 0, is a particular integral of the
given differential equation. It follows that the complete integral, which has to contain an arbitrary constant,
must be such that it produces

x = y

when that constant is assigned a certain value, but produces

x = −
√
1− yy

1 + yy
or xxyy + xx + yy − 1 = 0

when that same constant is assigned some other value.

THEOREM

9. I say therefore that the complete integral of the differential equation

dx√
(1 − x4)

=
dy√

(1− y4)

is
xx+ yy + ccxxyy = cc+ 2xy

√
(1− c4).

PROOF

For by taking the differential of this equation, we will get

x dx+ y dy + ccxy(x dy + y dx) = (x dy + y dx)
√
(1− c4),

whence
dx

(
x+ ccxyy − y

√
(1− c4)

)
+ dy

(
y + ccxxy − x

√
(1− c4)

)
= 0.

But solving the same equation, we obtain

y =
x
√
(1− c4) + c

√
(1− x4)

1 + ccxx
and x =

y
√
(1− c4)− c

√
(1− y4)

1 + ccyy
.

For if the radical
√
(1− x4) is given the sign +, then the radical

√
(1− y4) must be given the sign −, so

that setting x = 0 in both formulas the same value y = c will be produced. Thus we will have

x+ ccxyy − y
√
(1− c4) = −c

√
(1− y4),

y + ccxxy − x
√
(1− c4) = c

√
(1− x4),

and these values being substituted into the differential equation, the result is

−c dx
√
(1− y4) + c dy

√
(1− x4) = 0

or
dx√

(1− x4)
=

dy√
(1− y4)

.

Hence an integral of this differential equation is

xx+ yy + ccxxyy = cc+ 2xy
√
(1− c4),
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and since it contains the constant c which depends on our arbitrary choice, it will also be the complete
integral. Q. E. D.

10. Therefore, for the equation dx√
(1−x4)

= dy√
(1−y4) , the value of x coming from the complete integral is

x =
y
√
(1− c4)± c

√
(1− y4)

1 + ccyy
,

whence, if the arbitrary constant c vanishes, we get x = y; but if we put c = 1, we have x = ±
√
(1−y4)

1+yy =√
1−yy
1+yy , which are the two particular values already mentioned above. From this formula can be obtained

other particular values which are especially simple, though they may become imaginary. Thus by setting
c = ∞ we get

x =

√−1
y

and by setting cc = −1, we get
x =

√
yy + 1

yy − 1
,

which likewise satisfy the given equation.

11. But in order to make the nature of this integral more clearly evident, consider the curve AM (Fig. 1),
having the following property: setting the abscissa AP = u, let the corresponding arc be AM =

∫
du√

(1−u4)
.

A

M

P

Fig. 1

a

d

b

m

p

Fig. 2

µ

π

Then, describing the same curve once again (Fig. 2), take the abscissa ap = x; so that arc am =
∫

dx√
(1−x4)

.

Therefore, if we let

x =
u
√
(1− c4)± c

√
(1− u4)

1 + ccuu
,

it will follow that dx√
(1−x4)

= du√
(1−u4)

, and hence arc. am = arc. AM + Const. Determining the constant by

setting u = 0, in which case the arc AM vanishes, produces x = c. Thus if the abscissa ab = c is taken, to
which the arc ad corresponds, it will follow that arc dm = arc AM .

12. By means, therefore, of the complete integration of the equation dx√
(1−x4)

= du√
(1−u4)

, it will be

possible to cut off in the given curve an arc dm, beginning at a given point d, which is equal to any given
arc AM , corresponding to the abscissa AP = u. For taking the abscissa corresponding to the given point d
to be ab = c, if we take the abscissa

ap = x =
c
√
(1− u4) + u

√
(1− c4)

1 + ccuu
,

then the arc dm will be equal to the arc AM . But in the same way, inasmuch as
√
(1− c4) could be taken

to be negative, if we take the abscissa

aπ =
c
√
(1− u4)− u

√
(1− c4)

1 + ccuu
,
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the arc dµ will likewise be equal to the arc AM , so that in this curve, from any given point d, it is possible
to cut off arcs dm and dµ in both directions, which are equal to the arc AM .

13. From this it is therefore clear that if the arc ad is taken to be equal to the arc AM , or c = u, then

the arc am will be double the arc AM . Hence if we let ap = x = 2u
√
(1−u4)

1+u4 , then arc am = 2 arc.AM .

Similarly, if we take arc ad = 2AM or c = 2u
√
(1−u4)

1+u4 , and let x = c
√
(1−u4)+u

√
(1−c4)

1+ccuu , we will get arc
am = 3 arc. AM . And if that value of x is once again substituted for c, so that ad = 3AM , and we again let

x = c
√
(1−u4)+u

√
(1−c4)

1+ccuu , the resulting arc am will be quadruple arc AM ; and thus in succession any desired
multiples of the arc AM can be determined geometrically.

14. Let the arc ad = n · AM and ab = z, so that

∫
dz√

(1− z4)
= n

∫
du√

(1− u4)
;

and from this it is clear, taking

x =
z
√
(1 − u4) + u

√
(1− z4)

1 + uuzz
,

that ∫
dx√

(1 − x4)
= (n+ 1)

∫
du√

(1 − u4)
;

on the other hand, if we took

x =
z
√
(1 − u4)− u

√
(1− z4)

1 + uuzz
,

then we would get ∫
dx√

(1 − x4)
= (n− 1)

∫
du√

(1 − u4)
.

If therefore the equation dz√
(1−z4)

= ndu√
(1−u4)

is integrated to get the required value of z, then it will also be

possible to integrate the equation dx√
(1−x4)

= (n±1) du√
(1−u4)

, and indeed the integral will be x = z
√
(1−u4)±u

√
(1−z4)

1+uuzz .

Thus, assuming that we have the complete value of z, which, as we know, must involve an arbitrary constant,
then we can also get the complete value of x.

15. From this it is therefore clear how the complete integral belonging to the differential equation
dx√

(1−x4)
= ndu√

(1−u4)
should be found, so long as n is a whole number. But in a similar way it will be

possible to determine y so that dy√
(1−y4) =

mdu√
(1−u4)

; whence, if an equation between x and y is obtained by

eliminating u, it will be an integral of the equation mdx√
(1−x4)

= n dy√
(1−y4) , no matter which rational numbers

are substituted for m and n; and in order that this be the complete integral, it will suffice on the other hand
just to have determined the complete values of x and y in terms of u, since in this way a new arbitrary
constant will be brought into the calculation.

16. Although the method which I have used in the proof of this theorem is not derived from the nature of
the problem, but rather leads indirectly to the desired result, it is nevertheless of much broader applicability;
for in a similar way we can determine that the complete integral of the differential equation

dx√
(1 +mxx + nx4)

=
dy√

(1 +myy + ny4)

is
0 = cc− xx− yy + nccxxyy + 2xy

√
(1 +mcc+ nc4).

And in turn, by applying the previous reasoning, we can also get the complete integral of the equation

µ dx√
(1 +mxx+ nx4)

=
ν dy√

(1 +myy + ny4)
,
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where the letters µ and ν designate whole numbers.

17. Now the study of this integration can be carried out as follows: Let us first set up arbitrarily a
relation between the variables x and y given by the equation

(1) αxx+ αyy = 2βxy + γxxyy + δ,

which by differentiation gives

αxdx + αy dy = βx dy + βy dx+ γxyy dx+ γxxy dy,

whence, collecting terms,

(2) dx(αx − βy − γxyy) + dy(αy − βx− γxxy) = 0.

Then, in equation (1), solve for the values of each of the variables

x =
βy +

√(
αδ + (ββ − αα− γδ)yy + αγy4

)
α− γyy

,

y =
βx−√(

αδ + (ββ − αα− γδ)xx+ αγx4
)

α− γxx
.

Thus we get

(3) αx− βy − γxyy =
√(

αδ + (ββ − αα− γδ)yy + αγy4
)
,

(4) αy − βx− γxxy = −
√(

αδ + (ββ − αα− γδ)xx+ αγx4
)
.

Substituting in equation (2), this gives

(5)
dx√(

αδ + (ββ − αα − γδ)xx+ αγx4
) =

dy√(
αδ + (ββ − αα− γδ)yy + αγy4

) ,

so that the integral of this equation is equation (1).

18. In order to put this into a simpler form, let us take

αδ = A, ββ − αα− γδ = C, αγ = E,

whence we will have

δ =
A

α
, γ =

E

α
, and β =

√(
C + αα+

AE

αα

)
.

It follows that the equation for the integral of the differential equation

(6)
dx√

(A+ Cxx+ Ex4)
=

dy√
(A+ Cyy + Ey4)

is

(7) α(xx + yy) =
A

α
+

E

α
xxyy + 2xy

√(
C + αα +

AE

αα

)
,

which is also the complete integral.

19. Now let us take

A = fαα, C = gαα and E = hαα,
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to get the differential equation

dx√
(f + gxx+ hx4)

=
dy√

(f + gyy + hy4)
,

of which consequently the equation of the complete integral will be

xx+ yy = f + hxxyy + 2xy
√
(1 + g + fh);

which, although it does not appear to involve a new constant, is nevertheless complete, since in the differential
it is only the ratio of the quantities f , g, and h that matters, so that it is permissible to write fcc, gcc and
hcc, whence we get the obviously complete integral

xx+ yy = fcc+ hccxxyy + 2xy
√
(1 + gcc+ fhc4)

or
f(xx+ yy) = fee+ heexxyy + 2xy

√
f(f + gee+ he4),

where cc = ee
f .

20. So if the differential equation

dx√
(f + gxx+ hx4)

=
dy√

(f + gyy + hy4)

is given, the value of y can be expressed as an algebraic function of x, namely1)

y =
x
√
(1 + gcc+ fhc4)± c

√
(1 + gxx+ fhx4)

1− hccxx

or

y =
x
√
f(f + gee+ he4)± e

√
f(f + gxx+ hx4)

f − heexx
.

And in particular if we set g = 0, getting the differential equation

dx√
(f + hx4)

=
dy√

(f + hy4)
,

the value of y from the complete integral will be

y =
x
√
f(f + he4)± e

√
f(f + hx4)

f − heexx
,

whence, fixing the constant e as we like, innumerable particular values for y can be found.

21. Furthermore, by the method I used above, it will also be possible, if m and n are rational numbers,
to exhibit the complete integral of the equation

mdx√
(f + gxx+ hx4)

=
n dy√

(f + gyy + hy4)
,

and in fact that complete integral is algebraic.

22. Although, in the equation which was considered above, the variables x and y were set up symmet-
rically, so that the two formulas came out similar to one another, by putting aside that restriction we will
come to the study of formulas involving unlike differentials. Let us therefore take

(1) αxx + βyy = 2γxy + δxxyy + ε,

1) The second term in the numerator of the first equation should be ±c
√
(f + gxx+ hx4). Tr.
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whence we have

x =
γy +

√(
αε+ (γγ − δε − αβ)yy + βδy4

)
α− δyy

and

y =
γx−√(

βε+ (γγ − δε− αβ)xx + αδy4
)

β − δxx

and hence

(2) αx− γy − δxyy =
√(

αε+ (γγ − δε − αβ)yy + βδy4
)
,

(3) βy − γx− δxxy = −
√(

βε + (γγ − δε− αβ)xx + αδx4
)
;

now differentiating equation (1) gives

dx(αx − γy − δxyy) + dy(βy − γx− δxxy) = 0,

whence we obtain the differential equation

dx√(
βε + (γγ − δε− αβ)xx + αδx4

) =
dy√(

αε+ (γγ − δε− αβ)yy + βδy4
) ,

whose integral therefore is the given equation.

23. Indeed, the disparity here is easily removed by substituting z
√

α
β in place of y, the reason for which

could have been seen immediately from the equations we began with. But there is another way to produce
dissimilar formulas, of which the following example should be sufficient. Let the equation

x4 + 2axxyy + 2bxx = c

be taken, whose differential is
dx(x3 + axyy + bx) + axxy dy = 0

or
dx

xy
=

−a dy

xx+ ayy + b
.

Now first let xy be found in terms of x from the original equation, so that

xy =

√
c− 2bxx− x4

2a
,

then xx+ ayy + b in terms of y; but from (xx + ayy + b)2 = c+ (ayy + b)2 we will get

xx + ayy + b =
√(

c+ (ayy + b)2
)
.

From this we will have the differential equation

dx
√
2a√

(c− 2bxx− x4)
=

−a dy√
(c+ bb+ 2abyy + aay4)

,

of which therefore the integral is the given equation, or y =
√
(c−2bxx−x4)

x
√
2a

.

24. And although this integral is not complete, nevertheless from the above formulas the complete
integral can easily be obtained. For suppose we take

a dy√
(c+ bb+ 2abyy + aay4)

=
a dz√

(c+ bb+ 2abzz + aaz4)
;



Euler, On a Differential Equation (tr. Langton) 

from f = c+ bb, g = 2ab, h = aa, we will get

y =
z
√
(c+ bb)(c+ bb+ 2abee+ aae4)± e

√
(c+ bb)(c+ bb+ 2abzz + aaz4)

c+ bb− aaeezz
;

therefore let this value be set equal to
√
(c−2bxx−x4)

x
√
2a

, and the resulting equation between x and z will be the

complete integral of the differential equation

dx
√
2a√

(c− 2bxx− x4)
=

−a dz√
(c+ bb+ 2abzz + aaz4)

.

Furthermore, from what has been done it will clear how the complete integral should be found, if the two
sides are also multiplied by any rational numbers whatever.

25. Now, putting aside unlike members, let us consider the formation of similar members in a more
general way; let us therefore take

(1) 0 = α+ 2β(x+ y) + γ(xx+ yy) + 2δxy + 2εxy(x+ y) + ζxxyy,

whence by differentiation we will get

dx(β + γx+ δy + 2εxy + εyy + ζxyy) + dy(β + γy + δx+ 2εxy + εxx+ ζxxy) = 0

and therefore

(2)
dy

β + γx+ δy + 2εxy + εyy + ζxyy
=

−dx

β + γy + δx+ 2εxy + εxx + ζxxy
.

But solving the original equation, we get

y =
−β−δx−εxx±

√(
ββ−αγ+2(βδ−αε−βγ)x+(δδ−γγ−αζ−2βε)xx+2(δε−βζ−γε)x3+(εε−γζ)x4

)
γ+2εx+ζxx .

Putting, for the sake of brevity,

ββ − αγ=A, βδ − αε− βγ=B,
δδ − γγ − αζ − 2βε = C

εε − γζ =E, δε − βζ − γε=D,

we will have

β + δx+ εxx+ γy + 2εxy + ζxxy = ±
√
(A+ 2Bx+ Cxx+ 2Dx3 + Ex4),

β + δy + εyy + γx+ 2εxy + ζxyy = ∓
√
(A+ 2By + Cyy + 2Dy3 + Ey4).

26. We conclude therefore that for the differential equation

dx√
(A+ 2Bx+ Cxx + 2Dx3 + Ex4)

=
dy√

(A+ 2By + Cyy + 2Dy3 + Ey4)
,

the equation of the complete integral is

0 = α+ 2β(x+ y) + γ(xx+ yy) + 2δxy + 2εxy(x+ y) + ζxxyy,

where of course the coefficients must be determined as above. To do this, first let β or ε be defined by the
equation

BB(εε − E)−DD(ββ −A)

Aεε− Eββ
+

2ADε− 2BEβ

Bε−Dβ
= C;
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then we will have

γ =
Aεε− Eββ

Bε−Dβ
, α =

ββ −A

γ
, ζ =

εε− E

γ

and

δ =
Bβ(εε − E)−Dε(ββ −A)

Aεε− Eββ
+ γ or δ = γ +

B + αε

β
.

27. Hence therefore it is clear that the differential equation

dx√
(A+ 2Dx3)

=
dy√

(A+ 2Dy3)

can also be integrated; for from B = 0, C = 0 and E = 0 we will get

−DD(ββ −A)

Aεε
− 2Aε

β
= 0 or ε =

3

√
DD

2AA
β(A− ββ),

but the values we get in this way are too complicated. An easier computation will result from solving the
equations for the vanishing letters B, C and E; for

E = 0 gives ζ =
εε

γ
; then B = 0 gives δ = γ +

αε

β

and

C = 0 gives δδ − γγ = αζ + 2βε =
αεε

γ
+ 2βε =

α2εε

ββ
+

2αγε

β
,

whose factors are ββ = αγ and αεε + 2βγε = 0. But if ββ = αγ, then A = 0; on the other hand if ε = 0,
then ζ = 0 and D = 0, contrary to our intention. We must therefore have αε = −2βγ; whence

α = −2βγ

ε
, δ = −γ and ζ =

εε

γ
.

Finally,

ββ +
2βγγ

ε
= A and − 2γε− βεε

γ
= D.

From this we have ε = 2βγγ
A−ββ , and from γD

ε = −(2γγ + βε) and 2γγ + βε = Aε
β we will get γD

ε = −Aε
β , and

hence εε = −βγD
A . Therefore

4βγ3

(A− ββ)2
+

D

A
= 0.

28. Now although only the ratio of the letters A and D affects the outcome, this last equation will
enable us to find the actual value of A itself, which, however, it is not necessary to know. The letters γ and β
will therefore remain indeterminate. Therefore let

γ = −Ac and β = Dc;

then εε = DDcc or

ε = Dc so that δ = Ac, ζ = −DDc

A
and α = 2Ac.

Thus an integral of the differential equation

dx√
(A+ 2Dx3)

=
dy√

(A+ 2Dy3)
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is

0 = 2A+ 2D(x+ y)−A(xx + yy) + 2Axy + 2Dxy(x+ y)− DD

A
xxyy.

Again, this integral is not complete, but can be made so by taking γ = −A and β = Dcc, whence εε = DDcc
and ε = Dc; next we will have δ = A, ζ = −DDcc

A , α = 2Ac, so that the complete integral is

0 = 2Ac+ 2Dcc(x+ y)−A(xx + yy) + 2Axy + 2Dcxy(x+ y)− DDcc

A
xxyy,

where c is a constant depending on our arbitrary choice; whence

y =
Dcc+Ax+Dcxx ±

√
c
(
2A+ DD

A c3
)
(A+ 2Dx3)

A− 2Dcx+ DDcc
A xx

.

29. The case where A = 1 and D = 1
2 deserves to be mentioned, in which case we will have the

differential equation
dx√

(1 + x3)
=

dy√
(1 + y3)

,

where, in order to remove fractions, write 2c in place of c, and the complete integral will be

0 = 4c+ 4cc(x+ y)− xx − yy + 2xy + 2cxy(x+ y)− ccxxyy

or

y =
2cc+ x+ cxx± 2

√
c(1 + c3)(1 + x3)

1− 2cx+ ccxx
.

Therefore some particular integrals will be

I. if c = 0, y = x;

II. if c = ∞, y =
2± 2

√
(1 + x3)

xx
;

III. if c = −1, y =
2 + x− xx

1 + 2x+ xx
=

2− x

1 + x
.

30. By the same token, if in §26 the letters A, B, C, D, E are each multiplied by any quantity p, the
differential equation will still be

dx√
(A+ 2Bx+ Cxx+ 2Dx3 + Ex4)

=
dy√

(A+ 2By + Cyy + 2Dy3 + Ey4)

and it will be found that

p =
BBεε−DDββ

BBE −ADD
+ 2

(ADε−BEβ)(Aεε − Eββ)

(Bε −Dβ)(BBE −ADD)
− C(Aεε − Eββ)

BBE −ADD
;

then

γ =
Aεε− Eββ

Bε −Dβ
, α =

ββ −Ap

γ
, ζ =

εε− Ep

γ
, and δ = γ +

αε +Bp

β
,

so, keeping the letters β and ε indeterminate, the equation of the integral will become

0 = α+ 2β(x+ y) + γ(xx+ yy) + 2δxy + 2εxy(x+ y) + ζxxyy,

whence

y =
−β − δx− εxx±√

p(A+ 2Bx+ Cxx + 2Dx3 + Ex4)

γ + 2εx+ ζxx
.
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31. Finally it should be noted that not only the differential equation whose complete integral I have
just presented, but also this much more general one

mdx√
(A+ 2Bx+ Cxx+ 2Dx3 + Ex4)

=
n dy√

(A+ 2By + Cyy + 2Dy3 + Ey4)

can always be integrated algebraically and nevertheless completely, as long as the ratio of the coefficients
m and n is rational; for this integration is carried out in a way similar to that which I used earlier to integrate
the equation I originally started with. Indeed this method, of which I have given examples here, seems to me
to be of such a nature, that through diligent cultivation it would be apt to produce significant applications,
whence benefits by no means to be despised would redound to Analysis.

32. Here, however, I note that by generalizing the formula given in §26, it will be possible to compare
differentials which are unlike, and indeed the example of dissimilarity already given (§22) could have been
obtained in this way, so that everything which has been presented so far will be contained in the following
general investigation. In particular, take the following equation representing an integral

(1) αxxyy + 2βxxy + 2γxyy + δxx + εyy + 2ζxy + 2ηx+ 2θy + κ = 0,

from which we have

(2) y =
−βxx − ζx− θ +

√(
(βxx + ζx+ θ)2 − (αxx + 2γx+ ε)(δxx + 2ηx+ κ)

)
αxx + 2γx+ ε

,

(3) x =
−γyy − ζy − η −√(

(γyy + ζy + η)2 − (αyy + 2βy + δ)(εyy + 2θy + κ)
)

αyy + 2βy + δ
.

Next for the sake of brevity put

App= ββ − αδ Aqq = γγ − αε

2Bpp= 2βζ − 2αη − 2γδ 2Bqq = 2γζ − 2αθ − 2βε

Cpp= ζζ + 2βθ − ακ − δε − 4γη Cqq = ζζ + 2γη − ακ − δε − 4βθ

2Dpp= 2ζθ − 2γκ − 2εη 2Dqq = 2ζη − 2βκ − 2δθ

Epp= θθ − εκ Eqq = ηη − δκ

and we will get

(4) p
√
(Ax4 + 2Bx3 + Cxx + 2Dx+ E) = αxxy + 2γxy + εy + βxx + ζx+ θ,

(5) − q
√
(Ay4 + 2By3 + Cyy + 2Dy + E) = αxyy + 2βxy + δx+ γyy + ζy + η.

33. But if the given equation for the integral is differentiated, the result is

(6)
dx(αxyy + 2βxy + γyy + δx+ ζy + η)

+ dy(αxxy + βxx+ 2γxy + εy + ζx+ θ) = 0,

whence, if the values for the factors found in (4) and (5) are substituted, the result will be the following
differential equation

(7)
q dx√

(Ax4 + 2Bx3 + Cxx + 2Dx+ E)
=

p dy√
(Ay4 + 2By3 + Cyy + 2Dy + E)

,

of which the integral is therefore the given equation (1).
But since we have 10 equations above, while there are 9 coefficients α, β, γ, δ etc., of which one can be

taken arbitrarily, there will remain eight letters to be determined. Next, however, the two letters p and q
must also be defined, so that there are now ten unknown quantities, from which it seems that the coefficients
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A, B, C, D, E and A, B, C, D, E of the two formulas could be taken arbitrarily. It is clear, however, that
if the one set is taken arbitrarily, the others could not be completely arbitrary, for otherwise any formula
could be reduced to an algebraic one.

34. At this point, however, it is possible to obtain other, not inelegant, transformations of the given
formula, if in place of y we substitute other values. For example, if we put E = 0, or ηη = δκ, and set
y = zz, the result will be the following differential equation

(8)
q dx√

(Ax4 + 2Bx3 + Cxx + 2Dx+ E)
=

2p dz√
(Az6 + 2Bz4 + Cz2 + 2D)

,

of which, therefore, the integral is the given equation, if we take y = zz and set ηη = δκ, and the remaining
letters are determined accordingly. Furthermore, the complete integral can be found without difficulty; for
even though as it happens the integral we have just found does not involve a new constant, let

q dx√
(Ax4 + 2Bx3 + Cxx + 2Dx+ E)

=
q du√

(Au4 + 2Bu3 + Cuu+ 2Du+ E)

and the complete integral of this equation can be determined from the foregoing, so that we can construct
the complete integral, including constant, of the equation having unlike sides.

35. Just as the complete integral of this equation

dx√
(f + gx)

=
dy√

(f + gy)
,

to begin with the simplest, is

gg(xx+ yy)− 2ggxy − 2ccg(x+ y) + c4 − 4ccf = 0,

next, the complete integral of the differential equation

dx√
(f + gxx)

=
dy√

(f + gyy)

is
xx+ yy − 2xy

√
(1 + fgcc)− ccff = 0,

third, the complete integral of the differential equation

dx√
(f + gx3)

=
dy√

(f + gy3)

is
f(xx + yy) +

ggcc

4f
xxyy − gcxy(x+ y)− 2fxy − gcc(x+ y)− 2fc = 0,

fourth, the complete integral found for the differential equation

dx√
(f + gx4)

=
dy√

(f + gy4)

is
f(xx+ yy)− fcc− gccxxyy − 2xy

√
f(f + gc4) = 0,

and in addition the complete integral of the equation

dx√
(f + gx6)

=
dy√

(f + gy6)
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can also be found.

36. Let the values be determined, as in §33, which would produce the equation

dx√
(fx+ gx4)

=
dy√

(fy + gy4)
,

of which the complete integral turns out to be

gg(xx+ yy)− 4ggcxxyy − 4fgccxy(x+ y)− 2ggxy − 2fgc(x+ y) + ffcc = 0.

Now set x = tt and y = uu, to get the differential equation

dt√
(f + gt6)

=
du√

(f + gu6)
,

the complete integral of which will therefore be

gg(t4 + u4)− 4ggct4u4 − 4fgccttuu(tt+ uu)− 2ggttuu− 2fgc(tt+ uu) + ffcc = 0;

here the case resulting from the hypothesis c = ∞ should be mentioned, which gives

4gttuu(tt+ uu) = f.


