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1. When I had recently considered numbers which arise from the addition of two squares,

I proved several properties which such numbers possess. However, I could not explain my

thoughts to the extent that I would have been able to show fully the truth of the theorem,

which Fermat once conjectured, and left to be proven by the Geometers. I next put forth an

attempt of the proof from which the validity of this theorem is revealed much more clearly,

even if it should be set aside by the standards of rigorous proof. Nor did I doubt that

by following these same methods, the desired proof could at last be obtained quite easily;

because indeed from that time it came to me by experimentation in such a way that, if a

certain other consideration should agree, the attempt would transform into a rigorous proof.

Indeed I am not able to boast that I have shown anything new in this matter since Fermat

himself claims that he has already produced a proof of this theorem; but because he did not

∗L. Euler, Demonstratio theorematis Fermatiani omnem numerum primum formae 4n + 1 esse summam

duorum quadratorum (E241). Acta Novi Commentarii academiae scientiarum Petropolitanae 5, 1760, pp.

3-13. Reprinted in Opera Omnia: Series 1, Volume 2, pp. 328 - 337, and in Commentat. arithm. 1, 1849,

pp. 210-215 [E241a]. Original article available online at www.eulerarchive.org.
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make it public anywhere, just as with the loss of this and many other famous ideas of this

man, it follows that the ideas which now at last we recover, as if they were lost, should not

undeservedly be considered as new findings. For since no one has ever entered so happily

into the mysteries of numbers as Fermat, every effort expended even more in this field seems

to be expended in vain, unless first the things which had already been investigated by this

excellent man should be brought to light as if new. For even if after him many more learned

men have applied their powers in this area of studies, still for the most part they pursued

nothing which could be compared to the talent of this man.

2. But in order that I may begin a proof of the theorem which I consider here, two

propositions must be called upon for help, a proof of which I have already given elsewhere.

One is, that all numbers which are divisors of the sum of two squares and which are prime

numbers unto each other [relatively prime], should themselves be the sum of two squares.

Thus, if a and b should be prime numbers unto each other and the number formed from

these, a2 + b2, is divisible by d, d also will be the sum of two squares. I gave a proof of this

theorem in a writing recounted previously where I considered numbers which are the sums

of two squares. A second proposition, which the following proof requires, is as follows: If p

is a prime number and some numbers a and b are not divisible by p, ap−1 − bp−1 will always

be divisible by the prime number p; I have already given a proof of this matter in Comment.

Acad. Petrop. Volume. VIII†.

3. Now if 4n + 1 is a prime number, all numbers of this form a4n − b4n will be divisible

by it [4n + 1], if in fact neither of the numbers a and b separately are divisible by 4n + 1.

†Available line at www.eulerarchive.com, article E54.
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Therefore if a and b should be numbers smaller than 4n+1, (zero excepted), then the number

formed, a4n − b4n, without any limitation [i.e., for any n], will be divisible by the proposed

prime number 4n+1. But since a4n + b4n [Ed: believed to be a4n− b4n] is a product of these

factors a2n + b2n and a2n− b2n, it is necessary that one of the two of these factors be divisible

by 4n + 1. For it is not possible that either neither [factor] or each [factor] would have the

divisor 4n + 1 at the same time. Now if it could be shown that cases arise in which the form

a2n + b2n is divisible by 4n + 1, since a2n + b2n, because of the even exponent 2n, is the sum

of two squares of which neither separately is divisible by 4n + 1, then it would follow that

this number 4n + 1 is the sum of two squares.

4. But as often as the sum of a2n + b2n will be divisible by 4n+1, so too the difference of

a2n− b2n is not divisible by the same number. Therefore, the one who denies that the prime

number 4n + 1 is the sum of two squares is compelled to deny that any number of the form

a2n + b2n is divisible by 4n+1; thus, one must affirm the same [statement]: that all numbers

of the form a2n − b2n are divisible by 4n + 1, if indeed neither a nor b is divisible by 4n + 1.

And for this reason I had to prove that not all numbers of the form a2n − b2n are divisible

by 4n + 1. Indeed, for if I show this, it will be certain that cases arise, or numbers can be

substituted for a and b, in which the form a2n− b2n is not divisible by 4n + 1. Therefore, for

those cases, the other form a2n + b2n by necessity will be divisible by 4n+1. From this then,

since a2n and b2n are square numbers, that which is proposed will be proven; obviously, that

the number 4n + 1 is the sum of two squares.

5. Therefore, so that I might prove that not all numbers of this form, a2n − b2n, or that
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not all differences among the paired exponentials of the power 2n are divisible by 4n + 1, I

shall consider a series of these exponentials from one up to the (exponential) which is formed

by the base 4n.

1, 22n, 32n, 42n, 52n, 62n . . . (4n)2n

And so I say that not all differences among the paired terms of this series are divisible by

4n + 1. For if the first differences, one by one,

22n − 1; 32n − 22n; 42n − 32n; 52n − 42n; . . . (4n)2n − (4n− 1)2n‡

should be divisible by 4n + 1, the differences of this progression, which are the second

differences of that series, would also be divisible by 4n + 1; and so for this same reason, the

third differences, the fourth, fifth, etc.; all would be divisible by 4n + 1. And finally also

the differences of the order 2n, which are, as is agreed, all equal among themselves. The

differences of the order 2n are = 1.2.3.4 . . . 2n,§ which therefore, are not divisible by the

prime number 4n + 1. From this it follows in turn that not all first differences are divisible

by 4n + 1.

6. So that the force of this proof should be better ascertained, it must be noted that the

differences of order 2n, to be taken from the 2n + 1 expressions of the proposed series, all

of which, if they should be taken from the beginning, are arranged in such a way that the

differences of any paired expression should be divisible by 4n+1, if the truth of the theorem

‡Ed: Believed to be 22n − 1, 32n − 22n, 42n − 32n, 52n − 42n, . . . (4n)2n − (4n− 1)2n throughout the paper.
§Ed: 1.2.3 . . . 2n = 1 · 2 · 3 . . . (2n) = (2n)! throughout the paper.
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should be denied. But if, however, more expressions should be put together to determine

this last value, and these extend beyond the expression (4n)2n, since the differences, which

arise from the following expression (4n + 1)2n do not pertain to the propositions of the

theorem, the proof would have no force. From here then, because the final difference, which

we have considered, depends so much from the 2n + 1 expression, the conclusion, which we

have deduced therefrom, is entirely correct. It follows that first differences arise, such as

a2n − (a− 1)2n, which are not divisible by 4n + 1, and so indeed, a becomes not larger than

2n + 1. From here, then, it is correctly inferred that the sum a2n + (a − 1)2n, and likewise

the sum of two squares, is by necessity divisible by 4n + 1; and for that reason the prime

number 4n + 1 is the sum of two squares.

7. Since the difference of the order 2n depends on the 2n + 1 expressions of the series of

powers, let us consider the same number of expressions taken just from the beginning:

1; 22n; 32n; 42n; 52n; 62n . . . (2n)2n; (2n + 1)2n

from which the first differences will be:

22n − 1; 32n − 22n; 42n − 32n; 52n − 42n; . . . (2n + 1)2n − (2n)2n

the number of expressions of this progression is = 2n. And thus from the proceeding proof

it is clear that not all expressions of this progression of differences are divisible by the prime

number 4n + 1; nor do we understand from this part how many and which ones are those

expressions not divisible by 4n + 1. For proof (of this) it is sufficient if even one expression,

whatever that is, not be divisible by 4n + 1. Now if we should reveal special cases in which
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4n+1 is a prime number from those differences of which the number is = 2n, we will discover

that the half [factor] is always divisible by 4n+1, while the other half [factor] is not divisible;

though this observation does not relate to the force of the proof, still it helps significantly

to illustrate it. Therefore it will help to submit a few special cases to the test.

8. The smallest prime number of the form 4n + 1 = 5, which arises if n = 1, from which

the two differences 22 − 1 and 32 − 22 will be considered, of which the first is not divisible

by 5, but the other is divisible [by 5]. For the remaining cases we use the sign d to indicate

the differences which are divisible [Ed. by 4n + 1] and with the sign ◦ we note those which

are not divisible [Ed. by 4n + 1]; these signs for the differences for whatever case we write

below:

Differences

4n + 1

13 26 − 1; 36 − 26; 46 − 36; 56 − 46; 66 − 56; 76 − 66;

o o d o d d

17 28 − 1; 38 − 28; 48 − 38; 58 − 48; 68 − 58; 78 − 68; 88 − 78; 98 − 88;

d o o o d d o d

29 214 − 1; 314 − 214; 414 − 314; 514 − 414; 614 − 514; 714 − 614; 814 − 714; 914 − 814;

o d o d d d o o

1014 − 914; 1114 − 1014; 1214 − 1114; 1314 − 1214; 1414 − 1314; 1514 − 1414

o d d o o d

From here it is evident that the divisible and non-divisible expressions are held by no fixed

rule even if each be equal in number; still it is clear, in and of itself, that the last expression

(2n+1)2n−(2n)2n is always divisible by 4n+1 since it has the factor (2n+1)2−4nn = 4n+1,

but from the rest nothing certain can be determined.

9. Furthermore, it must also be noted, to ascertain the force of the proof more completely,

that the proof is only valid if the number 4n + 1 is prime; of course, as the nature of the
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theorem demands. For if 4n + 1 should not be prime, neither would the proof be affirmed

from it, because it is the sum of two squares, nor by necessity would the form a4n − b4n be

divisible by it. Indeed, the final conclusion should be clear, where we have asserted that

those differences of the order 2n, which are = 1.2.3.4 . . . 2n, are not divisible by 4n + 1. For

if 4n+1 should not be a prime number but should have factors which would be less than 2n,

then, of course, the product 1.2.3.4. . . . 2n would contain these factors and would therefore

be divisible by 4n + 1. But if 4n + 1 is a prime number, then indeed one can assert that the

product 1.2.3.4. . . . 2n is clearly not divisible by 4n + 1, since this product can be divided by

no other numbers except those factors which enter into that [product].

10. Since, in short, the proposed proof relies on this foundation, inasmuch for the series

of powers 1, 22n, 32n, 42n, etc., the differences of the order 2n are constant and all =

1.2.3.4. . . . 2n, it seems that this should be explained more fully, although it is found clearly

explained here and there in the books of the analysts. Therefore, it first must be noted, if

a general expression of any series, or perhaps one which corresponds to x with an indefinite

exponent, becomes = Axm+Bxm−1+Cxm−2+Dxm−3+Exm−4+etc., that this series is carried

out to step m, since m is the exponent of the greatest power of x itself. Then, if the general

expression should be carried out from the following A(x+1)m +B(x+1)m−1 +C(x+1)m−2+

etc., it will turn out to be a general expression of a series of differences in which the exponent

of the highest power of x itself will be = m− 1, and for that reason a series of differences to

the lesser step m− 1 will apply. In similar fashion from a general expression for a series of

first differences will be deduced a general expression for a series of second differences which
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therefore, in turn, will apply to the lesser step m− 2.

11. Thus, if a proposed series should be carried to step m, a series of first differences,

it will be carried to step m − 1; next a series of second differences to step m − 2, a series

of third differences to step m − 3; a series of fourth differences to step m − 4; and in the

same way a series of values of the order n will extend to the step m − n. From which the

series of differences of the order m will reach to the step m−n = 0, and therefore its general

expression, since the greatest power of x itself is the power = x0 = 1, will be a constant

quantity, and therefore all the values of the order m will be equal among themselves. From

here, the first step of a series, of which the general expression is = Ax+B, the first differences

are now equal among themselves; but the second steps of a series, which are contained in

the general expression Ax2 + Bx + C, the second differences are equal, and so on.

12. Now we should consider some series of powers

1, 2m, 3m, 4m, 5m, 6m, 7m, 8metc.

its general expression of which is = xm, or more accurately, the series which corresponds

to the unit x, of differences of the order m will be consistent from expressions equal among

themselves. But for a series of first differences the general expression will be = (x+1)m−xm,

which, when subtracted from the following (x+2)m−(x+1)m, will give the general expression

for a series of second differences, which will be = (x + 2)m − 2(x + 1)m + xm. From here,

then, for a series of third differences the general expression will be = (x + 3)m− 3(x + 2)m +

3(x + 1)m − xm; and finally for the series of differences of the order m results in the general

expression
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= (x + m)m −m(x + m− 1)m + m(m−1)
1.2

(x + m− 2)m − m(m−1)(m−2)
1.2.3

(x + m− 3)m + etc.,

which, when it becomes a constant quantity will be the same should any number be substi-

tuted for x; and will be therefore:

either = (m)m −m(m− 1)m + m(m−1)
1. 2

(m− 2)m − m(m−1)(m−2)
1. 2. 3

(m− 3)m + etc.

or

= (m + 1)m −m.mm + m(m−1)
1. 2

(m− 1)m − m(m−1)(m−2)
1. 2. 3

(m− 2)m + etc.

where in the first formula we placed x = 0, in the second, x = 1.

13. Now let us develop special cases of this series and let us ascend from the lowest powers

to the higher ones. And so, with m = 1 as the first example, for the series 1, 2, 3, 4, 5, 6,

etc. the general expression of first differences will be = 11 − 1.01 = 1; or = 21 − 1.1 = 1.

If m = 2, for the series 1; 22; 32; 42; 52 . . . etc. the second differences are either 22 − 2.12,¶

or 32 − 2.22 + 1.12; but 22 − 2.12 = 2(21 − 1.11), from which these second differences are

= 2.1. Let m = 3, and for the series 1, 23, 33, 43, 53, etc., the third differences will be either

= 33− 3.23 +3.13 or 43− 3.33 +3.23− 1.13; but 33− 3.23 +3.13 = 3(32− 2.22 +1.12) = 3.2.1,

since from the preceding case 32 − 2.22 + 1.12 = 2.1. In a similar fashion, if m = 4,

for the series 1, 24, 34, 44, 54, etc. the fourth differences will be 44 − 4.34 + 6.24 − 4.14; or

54−4.44 +6.34−4.24 +1.14. But 44−4.34 +6.24−4.14 = 4(43−3.33 +3.23−1.13) = 4.3.2.1.

14. So that this progression might be better understood, for the series 1, 2m, 3m, 4m, 5m,

etc. let the differences of the order be m be = P ; for the series 1; 2m+1; 3m+1; 4m+1; 5m+1etc.‖

the differences of order m + 1 = Q. [The expression] P will be

¶Ed. Adding a 0 to the beginning of the series.
‖Ed: Believed to be 1, 2m+1, 3m+1, 4m+1, 5m+1etc
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P = (m + 1)m −m.mm + m(m−1)
1. 2

(m− 1)m − m(m−1)(m−2)
1. 2. 3

(m− 2)m + etc.

Q = (m + 1)m+1 − (m + 1)(m)m+1 + (m+1)m
1. 2

(m− 1)m+1 − (m+1)m(m−1)
1. 2. 3

(m− 1)m+1 + etc. ∗∗

where we have described P from the latter pattern, but Q from the former. Here, it is

first clear that in each statement the number of terms is equal and each of the terms of the

statement P correspond to each of the terms of the statement Q, as 1 is to m + 1. For it is

(m + 1)m : (m + 1)m+1 = 1 : m + 1;

m.mm : (m + 1)mm+1 = 1 : m + 1;

m(m−1)
1. 2

(m− 1)m : (m+1)m
1. 2

(m− 1)m+1 = 1 : m + 1;

m(m−1)(m−2)
1. 2. 3

(m− 2)m : (m+1)m(m−1)
1. 2. 3

(m− 2)m+1 = 1 : m + 1;

On account of this it will be P : Q = 1 : m + 1, and likewise Q = (m + 1)P .

15. From here, therefore, it is clear that there will be

for the series the differences

1; 2; 3; 4; 5; etc. First = 1

1; 22; 32; 42; 52; etc. Second = 1.2

1; 23; 33; 43; 53; etc. Third = 1.2.3

1; 24; 34; 44; 54; etc. Fourth = 1.2.3.4

1; 2m; 3m; 4m; 5m; etc. Of the order m = 1.2.3 . . . m,

Therefore

1; 22n; 32n; 42n; 52n; etc. Of the order 2n = 1.2.3 . . . 2n

And so we have thus also shown that for the series of powers 1; 22n; 32n; 42n; 52n; etc. the

differences of the order 2n not only are constant but also equal the product 1. 2. 3. . . . 2n

∗∗Believed to be Q = (m+1)m+1− (m+1)(m)m+1 + (m+1)m
1. 2 (m− 1)m+1− (m+1)m(m−1)

1. 2. 3 (m− 2)m+1 +etc.
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as we have asserted in the proof of the proposed theorem.

Theorem 1

From the series of squares 1, 4, 9, 16, 25 etc., no numbers are divisible by the prime number

p unless the roots of these are divisible by the same number p.

Proof

For if some square number aa, which consists of the factors a and a, will be divisible by the

prime number p, it is necessary that one of the two be a factor divisible by p, therefore the

square number aa cannot be divisible by the prime number p, unless its root a be divisible

by p.

Corollary 1

Therefore, square numbers divisible by the prime number p arise from the roots p, 2p, 3p, 4p . . . ,

etc. and are therefore pp, 4pp, 9pp, 16pp, etc. and all the remaining square numbers will

not be divisible by the prime number p.
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Demonstatio Theorematis Fermatiani Omnem Numerum Primum

Formae 4n + 1 Esse Summam Duorum Quadratorum

Auctore Leonardo Eulero

1. Cum nuper eos essem contemplatus numeros, qui ex additione duorum quadratorum

oriuntur, plures demonstravi proprietates, quibus tales numeri sunt praediti: neque tamen

meas meditationes eo usque perducere licuit, ut huius theorematis, quod Fermatius olim Ge-

ometris demonstrandum proposuit, veritatem solide ostendere potuissem. Tentamen tamen

demonstrationis tum exposui, unde certitudo huius theorematis multo luculentius elucet,

etiamsi criteriis rigidae demonstrationis destituatur: neque dubitavi, quin iisdem vestigiis

insistuendo tandem demonstratio desiderata facilius obtineri possit; quod quidem ex eo tem-

pore mihi ipsi usu venit, ita, ut tentamen illud, si alia quaedam levis consideratio accedat,

in rigidam demonstrationem abeat. Nihil quidem novi in hac re me praestitisse gloriari pos-

sum, cum ipse Fermatius iam demonstrationem huius theorematis elicuisse se profiteatur;

verum, quod eam nusquam publici iuris fecit, eius iactura perinde ac plurimorum aliorum

egregiorum huius viri inventorum efficit, ut, quae nunc demum de his deperditis rebus quasi

recuperamus, ea non immerito pro novis inventis habeantur. Cum enim nemo unquam tam

feliciter in arcana numerorum penetraverit, quam Fermatius, omnis opera in hac scientia ul-

terius excolenda frustra impendi videtur, nisi ante, quae ab hoc excellenti Viro iam fuerunt

investigata, quasi de novo in lucem protrahantur. Etsi enim post eum plures Viri docti in

hoc studiorum genere vires suas exercuerunt, nihil tamen plerumque sunt consecuti, quod
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cum ingenio huius Viri comparari posset.

2. Ut autem demonstrationem theorematis, quod hic considero, instituam, duas propo-

sitiones in subsidium vocari oportet, quarum demonstrationem iam alibi dedi. Altera est,

quod omnes numeri, qui sunt divisores summae duorum quadratorum inter se primorum, ipsi

sint summae duorum quadratorum; sic si a et b sint numeri inter se primi, atque numeri ex iis

formati aa + bb divisor fit d, erit quoque d summa duorum quadratorum: huius theorematis

demonstrationem dedi in scripto ante memorato, quo numeros, qui sunt duorum quadra-

torum summae, sum contemplatus. Altera propositio, qua demonstratio sequens indiget,

ita se habet: si p fit numerus primus, atque a et b numeri quicunque per p non divisibiles,

erit semper ap−1 − bp−1 per numerum primum p divisibilis: demonstrationem huius rei iam

dudum in Comment. Acad. Petrop. Tom. VIII dedi.

3. Quodsi iam 4n + 1 fit numerus primus, per eum omnes numeri in hac forma a4n −

b4n contenti erunt divisibiles, siquidem neuter numerorum a et b seorsim per 4n + 1 fuerit

divisibilis. Quare si a et b sint numeri minores, quam 4n + 1, (cyphra tamen excepta),

numerus inde formatus a4n − b4n sine ulla limitatione per numerum primum propositum

4n + 1 erit divisibilis. Cum autem a4n + b4n [Ed: Believed to be a4n − b4n.] fit productum

horum factorum a2n +b2n et a2n−b2n, necesse est, ut alteruter horum factorum fit per 4n+1

divisibilis; fieri enim nequit, ut vel neuter, vel uterque simul divisorem habeat 4n+1. Quodsi

iam demonstrari posset, dari casus, quibus forma a2n + b2n fit divisibilis per 4n+1, quoniam

a2n + b2n, ob exponentem 2n parem, est summa duorum quadratorum, quorum neutrum

seorsim per 4n + 1 divisibile existit, inde sequeretur, hunc numerum 4n + 1 esse summam
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duorum quadratorum.

4. Verum summa a2n + b2n toties erit per 4n + 1 divisibilis, quoties differentia a2n − b2n

per eundem numerum non est divisibilis. Quare qui negaverit, numerum primum 4n+1 esse

summam duorum quadratorum, is negare cogitur, ullum numerum huius formae a2n+b2n per

4n + 1 esse divisibilem: eundem propterea affirmare oportet, omnes numeros in hac forma

a2n − b2n contentos per 4n + 1 esse divisibiles; siquidem neque a, neque b per 4n + 1 fit

divisibile. Quamobrem mihi hic demonstrandum est, non omnes numeros in forma a2n− b2n

contentos per 4n + 1 esse divisibiles; hoc enim si praestitero, certum erit, dari casus, seu

numeros pro a et b substituendos, quibus forma a2n − b2n non fit per 4n + 1 divisibilis; illis

ergo casibus altera forma a2n + b2n necessario per 4n + 1 erit divisibilis: unde cum a2n et b2n

sint numeri quadrati conficietur id, quod proponitur, scilicet numerum 4n + 1 esse summam

duorum quadratorum.

5. Ut igitur demonstrem, non omnes numeros in hac forma a2n − b2n contentos, seu non

omnes differentias inter binas potestates dignitatis 2n esse per 4n+1 divisibiles, considerabo

seriem harum potestatum ab unitate usque ad eam, quae a radice 4n formatur.

1, 22n, 32n, 42n, 52n, 62n . . . (4n)2n

ac iam dico, non omnes differentias inter binos terminos huius seriei esse per 4n+1 divisibiles.

Si enim singulae differentiae primae

22n − 1; 32n − 22n; 42n − 32n; 52n − 42n; . . . (4n)2n − (4n− 1)2n††

per 4n + 1 essent divisibiles, etiam differentiae huius progressionis, quae sunt differentiae

††Ed: Believed to be 22n − 1, 32n − 22n, 42n − 32n, 52n − 42n, . . . (4n)2n − (4n− 1)2n
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secundae illius seriei per 4n + 1 essent divisibiles: atque ob eandem rationem differentiae

tertiae, quartae, quintae etc. omnes forent per 4n+1 divisibiles; ac denique etiam differentiae

ordinis 2n, qui sunt, ut constat, omnes inter se aequales. Differentiae autem ordinis 2n sunt

= 1. 2. 3. 4. . . . 2n,‡‡ quae ergo per numerum primum 4n + 1 non sunt divisibiles, ex quo

vicissim sequitur, ne omnes quidem differentias primas per 4n + 1 esse divisibiles.

6. Quo vis huius demonstrationis melius perspiciatur, notandum est, differentiam ordinis

2n produci ex 2n + 1 terminis seriei propositae, qui si ab initio capiantur, omnes ita sunt

comparati, ut binorum quorumvis differentiae per 4n+1 divisibiles esse debeant, si theorema-

tis veritas negetur. Sin autem plures termini ad hanc differentiam ultimam constituendam

concurrerent, iique ultra terminum (4n)2n progrederentur, quoniam differentiae a termino

sequente (4n + 1)2n ortae ad enunciata theorematis non pertinent, demonstratio nullam vim

retineret. Hinc autem, quod differentia ultima, quam sumus contemplati, tantum ab 2n + 1

terminis pendet, conclusio, quam inde deduximus, omnino est legitima; indeque sequitur,

dari differentias primas, veluti a2n − (a − 1)2n, quae non sint per 4n + 1 divisibiles, atque

ita quidem, ut a non fit maior, quam 2n + 1. Hinc autem porro recte infertur, summam

a2n+(a−1)2n, ideoque summam duorum quadratorum per 4n+1 necessario esse divisibilem:

ideoque numerum primum 4n + 1 summam esse duorum quadratorum.

7. Quoniam differentia ordinis 2n ab 2n + 1 terminis seriei potestatum pendet, totidem

tantum ab initio captos consideremus

1; 22n; 32n; 42n; 52n; 62n . . . (2n)2n; (2n + 1)2n

‡‡Ed: 1.2.3 . . . 2n = 1 · 2 · 3 . . . (2n) = (2n)! throughout the paper.
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unde differentiae primae erunt:

22n − 1; 32n − 22n; 42n − 32n; 52n − 42n; . . . (2n + 1)2n − (2n)2n

cuius progressionis terminorum numerus est = 2n. Ex demonstratione itaque praecedente

patet, non omnes terminos huius progressionis differentiarum esse per numerum primum

4n + 1 divisibiles; neque tamen hinc intelligimus, quot et quinam sint illi termini, per 4n + 1

non divisibiles. Ad demonstrationem enim sufficit, si vel unicus terminus, quisquis ille fit,

per 4n + 1 non sit divisibilis. Quodsi autem casus speciales evolvamus, quibus 4n + 1 est

numerus primus ex differentiis istis, quarum numerus est = 2n, reperiemus, semper semissem

esse per 4n + 1 divisibilem, alterum vero semissem non divisibilem: quae observatio etsi ad

vim demonstrationis non spectat, tamen ad eam illustrandam non parum confert, quare

aliquot casus speciales ad examen revocasse iuvabit.

8. Minimus numerus primus formae 4n + 1 est = 5, qui oritur, si n = 1; unde duae

habebuntur differentiae 22 − 1 et 32 − 22, quarum prior non est divisibilis per 5, altera vero

est divisibilis. Pro reliquis casibus utamur signo d ad eas differentias indicandas, quae sunt

divisibiles, at signo o eas notemus, quae non sunt divisibiles, quae signa differentiis pro quovis

casu, subscribamus:

Differentiae

4n + 1

13 26 − 1; 36 − 26; 46 − 36; 56 − 46; 66 − 56; 76 − 66;

o o d o d d

17 28 − 1; 38 − 28; 48 − 38; 58 − 48; 68 − 58; 78 − 68; 88 − 78; 98 − 88;

d o o o d d o d

29 214 − 1; 314 − 214; 414 − 314; 514 − 414; 614 − 514; 714 − 614; 814 − 714; 914 − 814;

o d o d d d o o

1014 − 914; 1114 − 1014; 1214 − 1114; 1314 − 1214; 1414 − 1314; 1514 − 1414

o d d o o d
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Hinc patet, terminos divisibiles et non divisibiles nulla certa lege contineri, etiamsi utrique

sint multitudine pares: tamen per se est perspicuum, ultimum terminum (2n + 1)2n − 2n2n

semper per 4n + 1 esse divisibilem, quia factorem habet (2n + 1)2 − 4nn = 4n + 1: at de

reliquis nihil certi statui potest.

9. Porro quoque ad vim demonstrationis penitius perspiciendam notari oportet, demon-

strationem tum solum locum habere, si numerus 4n+1 fit primus; prorius uti natura theore-

matis postulat. Nam si 4n+1 non esset numerus primus, neque de eo affirmari posset, quod

sit summa duorum quatratorum, neque forma a4n − b4n per eum esset necessario divisiblis.

Quin etiam ultima conclusio foret salsa, qua pronunciavimus, differentias illas ordinis 2n,

quae sunt = 1. 2. 3. 4. . . . 2n, non esse per 4n + 1 divisibiles. Si enim 4n + 1 non esset

numerus primus, sed factores haberet, qui essent minores, quam 2n, tum utique productum

1. 2. 3. 4. . . . 2n hos factores contineret, foretque idcirco per 4n + 1 divisibile. At si 4n + 1

est numerus primus, tum demum affirmare licet, productum 1. 2. 3. 4. . . . 2n plane non esse

per 4n + 1 divisibile: quia hoc productum per nullos alios numeros dividi potest, nisi qui

tanquam factores in illud ingrediuntur.

10. Cum denique demonstratio tradita hoc nitatur fundamento, quod seriei potestatum

1, 22n, 32n, 42n, etc. differentiae ordinis 2n sint constantes, omnesque = 1. 2. 3. 4. . . . 2n, hoc

uberius explicandum videtur, etsi passim in libris analyticorum solide expositum reperitur.

Primum igitur notandum est, si seriei cuiuscunque terminus generalis, seu is qui exponenti

indefinito x respondet, fit = Axm + Bxm−1 + Cxm−2 + Dxm−3 + Exm−4 + etc. hanc se-

riem ad gradum m referri, quia m est exponens maximae potestatis ipsius x. Deinde si
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terminus generalis a sequente A(x + 1)m + B(x + 1)m−1 + C(x + 1)m−2 + etc. subtrahatur,

prodibit terminus generalis seriei differentiarum, in quo exponens summae potestatis ipsius

x erit = m − 1, ideoque series differentiarum ad gradum inferiorem m − 1 pertinebit. Pari

modo ex termino generali seriei differentiarum primarum colligetur terminus generalis serei

differentiarum secundarum, qui igitur denuo ad gradum depressiorem m− 2 pertinebit.

11. Ita si series proposita ad gradum m referatur, series differentiarum primarum, ad

gradum m − 1 referetur; series porro differentiarum secundarum ad gradum m − 2; series

differentiarum tertiarum ad gradum m−3; series differentiarum quartarum ad gradum m−4;

et in genere series differentiarum ordinis n ad gradum m− n pertinebit. Unde series differ-

entiarum ordinis m ad gradum m −m = 0 perveniet, eiusque ergo terminus generalis, quia

summa ipsius x potestas est = x0 = 1, erit quantitas constans, ideoque omnes differentiae

ordinis m inter se erunt aequales. Hinc serierum primi gradus, quarum terminus generalis

est = Ax+B, iam differentiae primae sunt inter se aequales: serierum autem secundi gradus,

quae hoc termino generali Ax2 + Bx + C continentur, differentiae secundae sunt aequales,

et ita porro.

12. Quodsi ergo seriem quamcunque potestatum consideremus

1, 2m, 3m, 4m, 5m, 6m, 7m, 8m, etc.

eius terminus generalis est = xm, seu is, qui indici x respondet, series differentiarum ordinis

m ex terminis inter se aequalibus constabit. At seriei differentiarum primarum terminus

generalis erit = (x+1)m−xm; qui a sequente (x+2)m− (x+1)m subractus dabit terminum

generalem seriei differentiarum secundarum, qui erit = (x+2)m−2(x+1)m +xm. Hinc porro

18



seriei differentiarum tertiarum erit terminus generalis = (x+3)m−3(x+2)m+3(x+1)m−xm;

ac tandem seriei differentiarum ordinis m concluditur terminus generalis = (x+m)m−m(x+

m−1)m+ m(m−1)
1. 2

(x+m−2)m−m(m−1)(m−2)
1. 2. 3

(x+m−3)m+etc. qui cum fit quantitas constans,

idem erit quicunque numerus pro x substituatur, erit ergo

vel = (m)m −m(m− 1)m + m(m−1)
1. 2

(m− 2)m − m(m−1)(m−2)
1. 2. 3

(m− 3)m + etc

vel = (m + 1)m −m.mm + m(m−1)
1. 2

(m− 1)m − m(m−1)(m−2)
1. 2. 3

(m− 2)m + etc

ubi in forma priori posuimus x = 0, in posteriori x = 1.

13. Evolvamus iam casus huius seriei speciales et a potestatibus minimis ad altiores

ascendamus: ac posito primo m = 1, seriei 1, 2, 3, 4, 5, 6, etc. terminus generalis

differentiarum primarum erit = 11 − 1.01 = 1; vel = 21 − 1.1 = 1. Si m = 2, seriei

1; 22; 32; 42; 52; etc. differentiae secundae sunt vel 22 − 2.12, vel 32 − 2.22 + 1.12; at

est 22 − 2.12 = 2(21 − 1.11), unde hae differentiae secundae sunt = 2.1. Sit m = 3,

et seriei 1, 23, 33, 43, 53, etc. differentiae tertiae erunt vel = 33 − 3.23 + 3.13, vel

43 − 3.33 + 3.23 − 1.13; at 33 − 3.23 + 3.13 = 3(32 − 2.22 + 1.12) = 3.2.1, quia ex casu

praecedente est 32 − 2.22 + 1.12 = 2.1. Simili modo si m = 4 seriei 1, 24, 34, 44, 54, etc.

differentiae quartae erunt vel 44− 4.34 + 6.24− 4.14; vel 54− 4.44 + 6.34− 4.24 + 1.14. At est

44 − 4.34 + 6.24 − 4.14 = 4(43 − 3.33 + 3.23 − 1.13) = 4.3.2.1.

14. Quo hic progressus melius perspiciatur, sint seriei 1, 2m, 3m, 4m, 5m, etc. differentiae

ordinis m = P ; seriei 1; 2m+1; 3m+1; 4m+1; 5m+1 etc. differentiae ordinis m + 1 = Q. erit

P = (m + 1)m −m.mm + m(m−1)
1. 2

(m− 1)m − m(m−1)(m−2)
1. 2. 3

(m− 2)m + etc.
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Q = (m + 1)m+1 − (m + 1)(m)m+1 + (m+1)m
1. 2

(m− 1)m+1 − (m+1)m(m−1)
1. 2. 3

(m− 1)m+1 + etc. †

Ubi P ex forma posteriori, at Q ex forma priori expressimus. Hic primo patet, in utraque

expressione parem esse terminorum numerum, et singulos terminos expressionis P esse ad

singulos terminos expressionis Q, uti 1 ad m + 1. Namque est

(m + 1)m : (m + 1)m+1 = 1 : m + 1;

m.mm : (m + 1)mm+1 = 1 : m + 1;

m(m−1)
1. 2

(m− 1)m : (m+1)m
1. 2

(m− 1)m+1 = 1 : m + 1;

m(m−1)(m−2)
1. 2. 3

(m− 2)m : (m+1)m(m−1)
1. 2. 3

(m− 2)m+1 = 1 : m + 1;

Hanc ob rem erit P : Q = 1 : m + 1, ideoque Q = (m + 1)P .

15. Hinc ergo patet fore

seriei Differentias

1; 2; 3; 4; 5; etc. primas = 1

1; 22; 32; 42; 52; etc. secundas = 1.2

1; 23; 33; 43; 53; etc. tertias = 1.2.3

1; 24; 34; 44; 54; etc. quartas = 1.2.3.4

1; 2m; 3m; 4m; 5m; etc. ordinis m = 1.2.3 . . .m,

ergo

1; 22n; 32n; 42n; 52n; etc. ordinis 2n = 1.2.3 . . . 2n

Atque ita quoque demonstravimus, seriei potestatum 1; 22n, ; 32n; 42n; 52n; etc. differentias

ordinis 2n non solum esse constantes, sed etiam aequari producto 1. 2. 3. . . . 2n, uti in

demonstratione theorematis propositi assumsimus.

†Believed to be Q = (m+1)m+1− (m+1)(m)m+1 + (m+1)m
1. 2 (m− 1)m+1− (m+1)m(m−1)

1. 2. 3 (m− 2)m+1 +etc.
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THEOREMA 1.

1. Ex serie quadratorum 1, 4, 9, 16, 25, etc. nulli numeri per numerum primum p sunt

divisibiles, nisi quorum radices sunt per eundem numerum p divisibiles.

DEMONSTRATIO

Si enim quispiam numerus quadratus aa fuerit per numerum primum p divisibilis, qui ex

factoribus a et a constat, necesse est, ut alteruter factor per p fit divisibilis, quare numerus

quadratus aa per numerum primum p divisibilis esse nequit, nisi eius radix a fit divisibilis

per p.

COROLL. 1

2. Numeri ergo quadrati per numerum primum p divisibiles nascuntur ex radicibus p, 2p,

3p, 4p, etc. suntque ergo pp, 4pp, 9pp, 16pp, etc. et reliqui numeri quadrati omnes per

numerum primum p non erunt divisibiles.
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Proposition: Let m and n be natural numbers with 0 ≤ n ≤ m. Then

m∑

k=0

(−1)m−k

(
m

k

)
kn =





0 if 0 ≤ n < m, and

m! if n = m.

Corollary: Let m be a natural number. Then

m∑

k=0

(−1)k

(
m

k

)
(m− k)m = m!.

Proof of Proposition: The Binomial Theorem states that

(1 + x)m =
m∑

k=0

(
m

k

)
xk. (1)

Substituting x = −1 yields

0 =
m∑

k=0

(
m

k

)
(−1)k =

m∑

k=0

(
m

m− k

)
(−1)m−k =

m∑

k=0

(
m

k

)
(−1)m−k,

the n = 0 case. Differentiating (1) yields

m(1 + x)m−1 =
m∑

k=1

k

(
m

k

)
xk−1 =

m∑

k=0

k

(
m

k

)
xk−1.

Substituting x = −1 yields

0 =
m∑

k=0

k

(
m

k

)
(−1)k−1 ⇒

m∑

k=0

(−1)m−k

(
m

k

)
k = 0.

One more derivative of (1) yields

m(m− 1)(1 + x)m−2 =
m∑

k=1

k(k − 1)

(
m

k

)
xk−2,
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and by substituting x = −1 we learn that

0 =
m∑

k=0

k(k − 1)

(
m

k

)
(−1)k−2

=
m∑

k=0

k2

(
m

k

)
(−1)m−k −

m∑

k=0

k

(
m

k

)
(−1)m−k

=
m∑

k=0

(−1)m−k

(
m

k

)
k2.

Continuing in this fashion yields

m∑

k=0

(−1)m−k

(
m

k

)
kn = 0

for 0 ≤ n < m. When n = m, after differentiating m times we have

m!(1 + x)0 =
m∑

k=0

(
m

k

)
k!xk−m ⇒

m!(1 + x)0 =
m∑

k=0

(
m

k

)
k(k − 1)(k − 2) . . . (3)(2)(1)xk−m ⇒

m! =
m∑

k=0

(
m

k

)
k(k − 1)(k − 2) . . . (3)(2)(1)(−1)k−m
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