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Just as plane rectilinear figures, whose nature is commonly investi-
gated in Geometry, have certain well known general properties, such
as that the number of angles is equal to the number of sides and that
the sum of the angles is equal to a number of right angles which is four
less than twice the number of sides, so have I recently outlined the first
principles of a Solid Geometry of the same type, including similar prop-
erties belonging to solids enclosed by plane faces. In Solid Geometry
those bodies which are bounded on all sides by plane faces rightly merit
first consideration, just as rectilinear figures do in Planar Geometry, or
what is properly called Geometry. I have decided to establish simi-
lar principles of Solid Geometry which govern the formation of solids
and on the basis of which their properties can especially be proved.
In this matter it is quite surprising that although Solid Geometry has
been studied for as many centuries as Geometry, its first principles are
practically unknown. Nor has anyone, in such a long time, attempted
to investigate this subject and put it into order. And so I undertook
this task. But, although I had uncovered many properties which are
common to all bodies enclosed by plane faces and which seemed to be
completely analogous to those which are commonly included among
the first principles of rectilinear plane figures, still, not without a great
deal of surprise did I realize that the most important of those principles
were so recondite that all the time and effort spent looking for a proof
of them had been fruitless. Nor, when I consulted my friends, who
are otherwise extremely versed in these matters and with whom I had
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shared those properties, were they able to shed any light from which
I could derive these missing proofs. After the consideration of many
types of solids I came to the point where I understood that the proper-
ties which I had perceived in them clearly extended to all solids, even
if it was not possible for me to show this in a rigorous proof. Thus, I
thought that those properties should be included in that class of truths
which we can, at any rate, acknowledge, but which it is not possible to
prove.

However, the general properties of solids, which still require proof,
depend upon one property in such a way that if it were possible to
prove this property, then all of the first principles of Solid Geometry
which I have proposed would be equally as firm as the first principles
of Geometry. So that property, not yet proved, which contains so many
properties in itself, is found in the following proposition:

In every solid enclosed by plane faces the number of solid angles,

along with the number of faces, exceeds the number of edges by two.

From this I have derived another equally notable property common
to all solids of this type, which is stated as follows:

In every solid enclosed by plane faces the sum of all of the plane

angles which make up the solid angles is equal to a number of right

angles which is eight less than four times the number solid angles.

This proposition is so connected to the previous one that if the one
can be proved, then the proof of the other is obtained at the same time;
hence, a deficiency in the first principles of Solid Geometry that I have
published will be remedied if a proof of either of these two propositions
is found.

When I had considered this proposition anew, I finally found the de-
sired proofs of these propositions. I arrived at proofs similar to the one
customarily used for the analogous proposition from Geometry regard-
ing the sum of the angles of any rectilinear figure. In Geometry any
rectilinear figure can be ultimately reduced to a triangle by successive
division of angles. Likewise, given any solid enclosed by plane faces,
I observed that the solid angles can be continuously divided so that,
finally, a triangular pyramid remains. Since a triangular pyramid is
the most simple figure among solids, I perceived that on the basis of
its known properties one could generalize to the properties of all solids.
For in any triangular pyramid the number of solid angles is four, the
number of faces is four and the number of edges is six, whose double,
twelve, gives the number of plane angles, whose sum is equal to eight
right angles.

If straight lines are drawn from any point within a solid to each solid
angle, then the solid will be divided into as many pyramids as there
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are faces, in as much as each face will form the base of a pyramid,
while their vertices meet at the point. These pyramids, if they are
not triangular, will be quite easily dissected into triangular pyramids.
But this method of dividing any solid into triangular pyramids is not
relevant to the present inquiry. Here I will explain a second method
by which any solid is reduced by successive cutting of its solid angles
to triangular pyramids. From here, finally, a proof of the principles I
have mentioned will easily be obtained.

This operation is similar to that by
which any rectilinear figure is custom-
arily reduced to a triangle by successive
cuttings of its angles. For if we have a
plane figure with sides ABCDEFGA

(Fig. 1), and if the triangle CDE is cut
from it by the line CE, the figure that
remains is ABCEFGA, whose number
of angles will be less by one. Now if,
again, the triangle CFE is cut by the
line CF the figure ABCFGA will re-
main. If, from this, we next remove the triangle BCF and then the
triangle BGF , finally the triangle ABG will remain.

From this division both outstanding properties of plane figures are
easily proved. Let the number of sides of figure ABCDEFG be equal
to L and the number of its angles be equal to A. If angle D is cut off by
a straight line CE, the number of angles in the remaining figure will be
A− 1, and, because the two sides CD and DE have been removed but
in their place a new side CE has been added, the number of sides will
equal L − 1. From this it is clear that if one angle is cut off again the
number of angles will equal A − 2 and the number of sides will equal
L − 2. If now, in this way, n angles are cut off, the number of angles
in the remaining figure will equal A − n and the number of sides will
equal L − n. When this remaining figure is a triangle, A − n = 3 and
L−n = 3, from which it follows that L = A. That is, in any rectilinear
figure the number of sides is equal to the number of angles.

Next let R be the number of right angles to which all of the angles
of the proposed figure ABCDEFG, taken together, are equal. With
the removal of angle D, that is, triangle CDE, the three angles of the
triangle CDE would be removed from the angles of the figure. Since
the removed angles are equal to two right angles the sum of the angles
of the remaining figure ABCEFG will equal R − 2 right angles. The
remaining number of angles now equals A − 1. If an angle is cut away
again so that the number of angles is equal to A − 2, their sum will
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equal R− 4 right angles. And if, now, we remove n angles the number
of the angles in the remaining figure will be A − n and their sum
would equal R− 2n right angles. When that remaining figure is now a
triangle, in other words A − n = 3, since the sum of the angles equals
two right angles, R − 2n = 2. Thus 2A − 2n = 6, and if, from this,
we subtract the former equation, then 2A − R = 4. In other words,
R = 2A− 4 = 2L− 4. So it is established that in any polygon the sum
of all of the angles is equal to a number of right angles which is four
less than twice the number of sides.

Therefore, in the same manner in which I have elicited from such a
cutting of rectilinear figures the two crucial properties of figures of this
type, I shall initiate an investigation for solids. By successive cuttings
of solid angles I shall reduce all solids enclosed by plane faces, finally, to
triangular pyramids. When I arrive at that point the number of solid
angles, the number of faces, the number of edges and the sum of all
the plane angles will be known. So that these things might be clearer
I will present the entire matter in the following propositions.

PROPOSITION 1. PROBLEM

1. Given a solid enclosed everywhere by plane faces, cut a given solid

angle from it in such a way that in the resulting solid the number of

solid angles is lesser by one.

SOLUTION

Let O (Fig. 2) be the solid angle
to be cut off, where the edges AO,
BO, CO, DO, EO, FO meet in such a
way that O is formed by the plane an-
gles AOB, BOC, COD, DOE, EOF ,
FOE, and points A,B,C,D,E, F rep-
resent the adjacent solid angles of the
body which are connected to O by
straight lines AO, BO, CO, DO, EO,
FO. Now, a part must be separated
from the solid in such a way that solid
angle O is completely removed but everything else remains, without,
however, forming a new solid angle. So, the first cutting should be
made through an adjacent angle, B, along the plane ABC until it
reaches angles A and C; then let there be a cutting beginning at O

along AOC. In this way the triangular pyramid OABC will be cut
away from the solid. Then, by applying the knife to AC, let a cutting
be directed to angle F through the plane AFC, and from O let there
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be another cutting along FOC so that the triangular pyramid OACF

is separated. Next, let the solid be cut along the plane CDF and let
another cutting from O be made to DF with the result that in this way
the triangular pyramid OCDF is cut away. Finally, a cutting made
along DEF will cut away the triangular pyramid ODEF . And thus
the solid angle O will have been completely cut off. Because the rest
of the solid angles remain and no new solid angle has been formed by
the cuttings, the number of solid angles in the resulting solid will be
diminished by one. Q[uod] E[rat] F[aciendum]

COROLLARY 1

2. If the solid itself is a triangular pyramid it will be completely
removed by a cutting of this type so that nothing is left. But, because
we have begun this cutting in order to reduce the solid to a triangular
pyramid in the end, if it is already a pyramid of this type there will
clearly be no need for cutting.

COROLLARY 2

3. If a solid angle O which is to be cut away from the solid is formed
from only three plane angles, i.e., if only three edges come together in
it, then it will be separated from the solid by a single cutting and in
this way a single triangular pyramid will be removed.

COROLLARY 3

4. If solid angle O is formed
by four plane angles and the same
number of edges come together in
it, then two triangular pyramids
must be cut off in order to re-
move it. This can be done in two
ways (Fig. 3): two pyramids will
have to be cut away, either OABC

and OACD or OABD and OBCD.
And if points A,B,C,D are not in
the same plane the resulting solids
will have a different shape accord-
ingly.

COROLLARY 4
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5. If the solid angle is formed from five plane angles, and the straight
lines which meet at it are extended to five other solid angles, then an-
gle O will be cut away by separating three triangular pyramids. This
can be accomplished in five different ways which also yield different re-
sults unless the five adjacent solid angles are situated in the same plane.

COROLLARY 5

6. The cutting off of one solid angle can be undertaken at any angle
of the proposed solid, and, unless only three plane angles come together
to form the solid angle, that cutting can be undertaken in many ways.
Therefore, it is clear that unless it is already a triangular pyramid, any
solid body can be shorn of one solid angle in many ways.

COROLLARY 6

7. Thus, no matter how many solid angles the proposed body pos-
sesses, provided that the number is continually diminished by one in
this way, eventually, when only four solid angles remain, it will have
been reduced to a triangular pyramid. Because each part that has been
removed is a triangular pyramid, by this method the entire solid will
be divided into triangular pyramids.

SCHOLION

8. If the number of solid angles in
the proposed body equals S, then, af-
ter one of them has been cut away in
the manner indicated, the number of
solid angles in the resulting body will
be S − 1. Since the force of the propo-
sition is contained in this diminution it
seems to require qualification in many
instances. If the proposed solid is a tri-
angular pyramid (Fig. 4), then when
one angle is cut away the whole pyra-
mid is removed at the same time such
that nothing remains. For, when a
cutting is made along the plane ABC,
which constitutes the base of the pyramid OABC, the entire pyramid
is cut away at the same time. But in this case the matter can be con-
ceived as if the base ABC were left behind. Even though it is a plane
figure endowed with no thickness, it can be regarded as the image of a
solid consisting of only three angles, and which must be thought of as



7

having two faces and three edges. It will render, as it were, a triangular
prism of vanishing height in which the lateral faces diminish to nothing
and the upper base, with its angles, falls into the lower base. In this
way, both of the above mentioned properties of solids remain in force.
Because the number of solid angles in this case would be S = 3, the
number of faces H = 2, and the number of edges A = 3, it is clear that
S + H = A + 2. Moreover, the sum of the plane angles contained in
each face is equal to four right angles, which number equals 4S − 8.
The same thing happens in all pyramids. If the vertical angle O is cut
away from it when the whole pyramid is removed at the same time,
then the base alone should be conceived of as remaining. If it is a
polygon of n sides, it will be able to be looked at as the image of a
solid in which the number of solid angles would be S = n, the number
of faces H = 2, and the number of edges A = n such that, once again,
S +H = A+2. Furthermore, since each face is a polygon of n sides all
the angles contained in both will equal 4n − 8 = 4S − 8 right angles,
just as the second Theorem postulates. However, even if these cases
do not oppose the truth, still, in the present discussion, there is no
need to pay attention to them. Since it has been proposed to reduce
all solids to triangular pyramids, if the solid were already a pyramid of
that type, there would be no need whatsoever for the removal of any
angles. If it should be a pyramid having a base of many sides, then it
will be convenient to cut off not the vertex angle, but one of the angles
situated on the base which are formed by only three plane angles. In
this way, after the cutting, a pyramid will always remain whose number
of solid angles will be one less than previously. In general, whatever
solid is proposed, it will always be suitable for the cutting to begin at
the solid angle which is formed from as few plane angles as possible
so that some portion of the solid remains, until it arrives at the shape
of a triangular pyramid. Meanwhile, however, the force of the follow-
ing proofs does not depend on this requirement, and so I have simply
added it at the end of the discussion so that an apparent difficulty will
nevertheless not be ignored.

PROPOSITION 2. PROBLEM

9. If any solid angle is removed from the proposed body in the man-

ner previously explained, and in this way the number of solid angles is

diminished by one, determine both the number of faces and the number

of edges in the remaining solid, and likewise determine the sum of all

the plane angles.
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SOLUTION

For the proposed solid, let the number of solid angles equal S, the
number of faces equal H, the number of edges equal A and the sum of
all of the plane angles equal R right angles. Now, let the solid angle O

(Fig. 2) be cut away in such a way that when it has been cut away, the
number of solid angles in the remaining solid will equal S−1. So that we
might understand the remaining dispositions of the resulting solid let
us consider first the sum of the plane angles, which in the original solid
we posited as equalling R right angles. First of all, with the cutting
away of angle O, all of the angles contained in triangles AOB, BOC,
COD, DOE, EOF , and FOA are subtracted from the computation of
the plane angles since these triangles are separated from the surface of
the body. Let n be the number of these triangles, or of the adjacent
angles A, B, C, D, etc. The sum of the subtracted angles will be 2n
right angles. But, when these triangles have been removed, the face of
the solid in their place will now be bounded by triangles ABC, ACF ,
CFD, and DFE whose number is smaller than that number by two,
and so, is n−2. When the angles of these triangles whose sum is 2n−4
right angles, are added, it is manifest that through the cutting away of
solid angle O the sum of the plane angles R is diminished at first by
two 2n right angles, then, however, it is increased again by 2n−4 right
angles. So, the total diminution will be 4 right angles. Thus, in the
resulting solid the sum of all the plane angles will be equal to R − 4
right angles. In this way, whatever solid angle is cut away, the sum of
all the plane angles is diminished by 4 right angles.

If all the faces which come together at O are triangles, the cutting off
of the angle O means that all of those faces are removed. If the number
of those faces is said to be n, the number of faces H will be diminished
by n. But, in place of these faces new triangular faces which arose in
the cutting will appear on the surface of the solid, that is, ABC, ACF ,
CFD, and DFE, whose number number is n− 2. Thus the number of
faces, which was previously H, will now be

H − n + (n − 2) = H − 2.

But, if it should happen that two or more of these triangles are situated
in the same plane, such as if the triangles ABC and ACF are positioned
in the same plane, they now will be reckoned to exhibit not two, but a
single quadrilateral face such that the number of faces will be H−3. If
it happens that the triangles of two faces of this type fall into the same
plane µ times, the number of faces will equal H−2−µ. But, if not all of
the faces which come together at O are triangular, but one, for example
AOFQP , consists of many sides, it is clear that by the cutting away of
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triangle AOF the face is not entirely removed, but the remaining part
AFQP still enters into the count of faces. Thus, the number of faces
will be H − 2 − µ + 1. If among the faces which come together at O

there are found ν nontriangular faces, the number of faces remaining
will be H − 2 − µ + ν. As for the number of edges which will be left
after the cutting away of angle O, let us suppose for the beginning of
our investigation, as previously, that all the faces which come together
at O are triangular. First of all, edges OA, OB, OC, OD, etc., whose
number equals n, will be subtracted from the number of edges. But in
their place the new edges AC, CF , FD, whose number equals n − 3,
will be added. Thus the number of edges will be

A − n + (n − 3) = A − 3,

if, in fact, the new faces ABC, ACF , etc. are inclined with respect
to each other. But if two of them, ABC and ACF , are situated in
the same plane with the result that they are reckoned to constitute a
single face, edge AC will disappear and the number of edges will be
A − 3 − 1. If it happens that the triangles of two such faces fall upon
the same plane µ times, as we have described earlier, the number of
edges will be A − 3 − µ. Moreover, if any of the faces which form the
angle O is not triangular, for example face AOFQP , then with the
separation of triangle AOF a new edge appears, AF , which was not
present before, whence the number of edges, in this case, is increased
by one. But if, as we have explained previously, among the faces com-
ing together at O, ν faces are found to be nontriangular, the number
of edges in the proposed solid after the removal of the angle O will be
A−3−µ+ν although previously it had been equal to A. Q[uod] E[rat]
I[nvestigandum]

COROLLARY 1

10. So, if a solid enclosed by plane faces is shorn by one solid angle
with the result that the number of solid angles is now equal to S − 1,
while previously it was equal to S, the sum of all of the plane angles is
diminished by four right angles. In other words, while it had been pre-
viously equal to R right angles, now it will be equal to R−4 right angles.

COROLLARY 2

11. Since the number of faces, which was previously equal to H, now
after the cutting off of angle O is equal to H − 2 − µ + ν, it is clearly
possible that the number of faces would turn out to be greater. This
will happen if ν > 2 + µ where µ and ν have those values which were
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assigned in the solution.

COROLLARY 3

12. It is clear that the same thing can happen in the number edges,
which, while before the removal of the angle O was equal to A, now
has been found to equal A − 3 − µ + ν. This number is greater than
the former total if ν > 3 + µ. Therefore, in this case, the number of
faces increases even more.

COROLLARY 4

13. Since, in the expressions H − 2 − µ + ν and A − 3 − µ + ν,
the letters µ and ν signify the same thing, it is clear that the decrease
in the number of edges A is greater by one than the decrease in the
number of faces. Thus, after the cutting away of one solid angle, if
the number of faces becomes equal to H − α, the number of edges will
become equal to A − α − 1.

COROLLARY 5

14. Therefore, it follows that the difference between the number
of faces and the number of edges, which in the beginning was equal
to A − H, now after the removal of one solid angle will be equal to
A−H −1. Of course, in whatever way the resulting solid is composed,
this difference always becomes smaller by one through the computation
of the variables µ and ν.

SCHOLION

15. From the preceding it will now be possible, very easily, to obtain
proofs of the Theorems mentioned above. These proofs are in no way
inferior to those proofs used in Geometry except that here due to the
nature of solids one must use more imagination, in as much as solids
are being depicted on a flat surface. But if corporeal figures of this type
were to be fashioned, all things would be just as clear. But the things
which I have assumed in the solution of that problem are clear in and
of themselves, for if you take a polygon ABCDEF bounded by n sides
it will quickly become apparent to one paying only slight attention that
if that figure is dissected into triangles with diagonal lines, the number
of those triangles will be n − 2 and the number of diagonals drawn in
this way will equal n − 3. A quadrilateral is divided by one diagonal
into two triangles, a pentagon is divided by two diagonals into three
triangles, a hexagon is divided by three diagonals into four triangles,
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and so on.

PROPOSITION 3. THEOREM

16. In every solid enclosed by plane faces, the sum of all the plane

angles which exist in its faces is equal to a number of right angles which

is four times the number of solid angles minus eight; that is, if the num-

ber of solid angles is equal to S, the sum of all of the plane angles is

equal to 4S − 8 right angles.

PROOF

In any solid, let the number of solid angles be equal to S and the
sum of all of the plane angles be equal to R right angles. So it is to
be proved that R = 4S − 8. Now, in the method previously indicated,
let a single solid angle be separated from the solid, so that the number
of solid angles which it will have is equal to S − 1, and the sum of the
plane angles will be equal to R − 4 right angles. If a solid angle will
again be cut away so that the number remaining is S − 2, the sum of
the plane angles will be equal to R − 8. By continuing in this way, it
will be clear, for any number of solid angles, what the sum of all the
plane angles will be, as the following table indicates.

Number of solid angles Sum of all the plane angles
S R

S − 1 R − 4
S − 2 R − 8
S − 3 R − 12

...
...

S − n R − 4n

Therefore, when, by this continual shearing away of pieces, we have
arrived at S − n solid angles, the sum of the plane angles will be equal
to R − 4n right angles. But in this way we shall finally arrive at four
solid angles, in which case the solid will take the form of a triangular
pyramid, in which it is agreed that the sum of all of the plane angles
is equal to 8 right angles. That is, if S − n = 4, then R − 4n = 8, or
R = 4n + 8. Hence, n = S − 4, and when this value is substituted here
we get

R = 4S − 16 + 8 = 4S − 8.

So, in any solid the sum of the plane angles will equal a number of
right angles which is four times the number of solid angles minus eight.
Q.E.D.
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SCHOLION

17. A second theorem depends on this one in such away that when
this one has been proved, the truth of the other is vindicated at the
same time. Nevertheless, on the basis of the forgoing problem a proof
of the other theorem as well can be produced in the following manner.

PROPOSITION 4. THEOREM

18. In every solid enclosed by plane faces, the number of faces along

with the number of solid angles exceeds the number of edges by two.

PROOF

Let it be that in any proposed solid:

Number of solid angles = S,
Number of faces = H,
Number of edges = A.

As we saw before, if, by cutting away one solid angle, the number S

is diminished by 1, with the result that it is S − 1, then the difference
between the number of edges and the number of faces will be equal to
A − H − 1. Therefore by continuing this process of shearing off,

if the number of solid the excess of the number of
angles is edges over and above

the number of faces is
S A − H

S − 1 A − H − 1
S − 2 A − H − 2
S − 3 A − H − 3

...
...

S − n A − H − n

Therefore, in this way we will arrive at a triangular pyramid in which
the number of solid angles is equal to 4, the number of faces is equal
to 4, and the number of edges is equal to 6, so that the excess of the
number of edges over and above the number of faces will be equal to
two. It is evident that if S − n = 4, then A − H − n = 2. From which
it follows that n = S − 4, and thus n = A−H − 2. Thus it holds that

S − 4 = A − H − 2, or, H + S = A + 2.

From this it is clear that for every solid enclosed by plane faces the
number of faces, H, along with the number of solid angles, S, exceeds
the number of edges, A, by two. Q.E.D.
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SCHOLION

19. Now that these Theorems have been proved the first principles
of Solid Geometry, which I explained some time ago, have been forti-
fied with very sound proofs, so that they yield not a bit to the first
principles of Geometry. However, I admit that I have thus brought to
light only the first principles of Solid Geometry, on which this science
should be built as it develops further. No doubt it contains many out-
standing qualities of solids of which we are so far completely ignorant.
However, since the volume of any proposed solid is accustomed to be
sought after, I shall provide, as an appendix, a method for finding the
volume of any triangular pyramid. For since when any point is taken
on the inside of a solid enclosed by plane faces, the solid is resolved into
as many pyramids as it has faces such that every face forms the base
of a pyramid, and any pyramid whose base is not triangular is easily
resolved into triangular pyramids, it is sufficient to have found the vol-
ume a triangular pyramid. Since this is true, if the base is multiplied by
one third of the altitude, I will show how when the sides of the pyramid
have been given, from those the volume can be determined, just as the
area of a triangle is accustomed to be determined from three given sides.

PROPOSITION 5. PROBLEM

20. Given six sides or edges of a triangular pyramid, find its volume.

SOLUTION

Let there be a triangular pyramid
ABCD (Fig. 5) whose base is the tri-
angle ABC and vertex D, and let it
have sides: AB = a, AC = b, BC = c,
AD = d, BD = e, and CD = f . Now,
in faces ADB and ADC let perpendic-
ular lines DP and DQ be sent from
D to the bases opposite, and in base
ABC from points P and Q let there
be led toward sides AB and AC nor-
mal lines PO and QO intersecting at
O. DO will be a straight perpendicu-
lar line from vertex D to base ABC, whence the volume of the pyramid
will be 1

3
DO × area ABC; and when AO has been drawn

DO =
√

AD2 − AO2 =
√

AD2 − AP 2 − PO2.
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Now, from the basic principles of geometry it is clear that

AP =
aa + dd − ee

2a
and AQ =

bb + dd − ff

2b
.

From here when QO is extended into S if the angle BAC is called α,
then

QS = AQ tan α and AS =
AQ

cos α
,

thus

PS =
AQ

cos α
− AP.

Since QS : AQ : AS = PS : PO : OS,

PO =
AQ · PS

QS
=

PS

tan α
=

AQ

sin α
− AP

tan α
, that is, PO =

AQ − AP cos α

sin α
;

then, indeed

OS =
AS · PS

QS
=

PS

sin α
=

AQ

sin α cos α
− AP

sin α

in the same way

QO = QS − OS = AQ tan α − AQ

sin α cos α
+

AP

sin α
=

AP − AQ cos α

sin α
.

Hence it will be that

AO2 = AP 2 + PO2 =
AP 2 + AQ2 − 2AP · AQ cos α

sin2 α
;

In the same way

DO2 =
AD2 sin2 α − AP 2 − AQ2 + 2AP · AQ cos α

sin2 α
.

But the area of triangle ABC is equal to 1

2
ab sin α, from which the

volume of the pyramid equals

1

6
ab

√

AD2 sin2 α − AP 2 − AQ2 + 2AP · AQ cos α

=
1

6

√

(

aabbdd sin2 α − 1

4
bb(aa + dd − ee)2 − 1

4
aa(bb + dd − ff)2

+1

2
ab(aa + dd − ee)(bb + dd − ff) cos α

)

.

Finally, from triangle ABC it is the case that

cos α =
aa + bb − cc

2ab
and in the same way sin2 α = 1− 1

4aabb
(aa+bb−cc)2,
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and when these values are substituted the volume of the pyramid will
result:

1

12

√

(

4aabbdd − dd(aa + bb − cc)2 − bb(aa + dd − ee)2 − aa(bb + dd − ff)2

+(aa + bb − cc)(aa + dd − ee)(bb + dd − ff)

)

,

which, when the terms are expanded, can be expressed in the following
form

1

12

√

√

√

√

√

√

√









aaccdd + aabbee + aabbff + aaddff + bbccdd + bbddee

aaccff + aaeeff + bbccee + bbeeff + ccddee + ccddff

−aabbcc − aaddee − bbddff − cceeff

a4ff − aaf 4 − b4ee − bbe4 − c4dd − ccd4









,

which seems to be able to displayed still more conveniently as follows

1

12

√

√

√

√

√





aaff(bb + cc + dd + ee) − aaff(aa + ff) − aabbcc

+bbee(aa + cc + dd + ff) − bbee(bb + ee) − aaddee

+ccdd(aa + bb + ee + ff) − ccdd(cc + dd) − bbddff − cceeff



.

And thus from the six given sides a, b, c, d, e, f of the triangular pyramid
its volume is determined. Q.E.I.

SCHOLION 1

21. So that the method may be more clearly seen by which, in this
expression, the sides a, b, c, d, e, f are combined, it should be noted that
four triangles are formed from them. That is,

4ABC consists of sides a, b, c,

4ABD consists of sides a, d, e,

4ACD consists of sides b, d, f,

4BCD consists of sides c, e, f.

Whence it is clear that side a comes together with each of the remaining
sides to form triangles, except with side f , for which reason I shall call
these sides a and f disjoint, because they are not joined to each other.
In the same way sides b and e will be disjoint, likewise sides c and d.

Therefore, immediately after the radical sign there occur terms formed
from the disjoint sides aaff , bbee, ccdd, which are multiplied by the
sum of the remaining squares. Then the same terms, taken negatively,
are multiplied by the sum of their own squares, and from this, finally,
are subtracted the results from the squares of the three sides of each
triangle.

SCHOLION 2
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22. A somewhat simpler formula for the volume of a pyramid can
also be found if there are given only three sides converging on one solid
angle, along with the plane angles which they form there.

Let there be three sides coming together in a solid angle A,

AB = a, AC = b, AD = d,

then plane angles:

BAC = p, BAD = q, CAD = r.

And from these the volume of the pyramid will be

1

6
abd

√

1 − cos2 p − cos2 q − cos2 r + 2 cos p cos q cos r,

which is reduced to the following form:

1

3
abd

√

sin
p + q + r

2
sin

p + q − r

2
sin

p + r − q

2
sin

q + r − p

2
;

whence it is clear that in order for the result to be a real area two of
the three plane angles, p, q and r, which come together in any solid
angle, when taken together must be greater than the third.


