
On numbers which are the sum of two squares ∗

Leonhard Euler

1. Arithmeticians are accustomed to investigating the nature of numbers in
many ways where they show their source, either by addition or by multiplication.
Of the aforementioned kind, the simplest is composition from units, by which
all integers are understood to arise from units. Then numbers can also thus be
considered as they are formed from the addition of two or more other integers,
which pertains to the problem of the partition of numbers, the solution of which
I have published in the last several years, in which is asked, in how many
different ways any proposed number can result from the addition of two or
more smaller numbers. This, however, creates an arrangement of numbers to
analyze carefully, arising from the addition of two squares. In this way, seeing
that not all numbers arise, since vast is the multitude which cannot be produced
by the addition of two squares, I will investigate those which are sums of two
squares, their nature and properties. Even though most of their properties are
now known, elicited as it were by induction1, still the greatest part remain
without solid proof. Since a considerable part relies on the truth of Diophantine
analysis, in this dissertation of many such propositions, which until now have
been accepted without proofs, I will furnish proofs of their truth, while I will
certainly also keep those in mind, which as far as I could see still could not be
proved, although we cannot doubt their truth in any way.

2. First, therefore, since the square numbers are 0, 1, 4, 9, 16, 25, 36, 49,
64, 81, 100, 121, 144, 169, 196, etc., it will be helpful to consider those numbers
which arise from the sums of two squares, which, therefore, I list here, up to
200: 0, 1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26, 29, 32, 34, 36, 37, 40, 41,
45, 49, 50, 52, 53, 58, 61, 64, 65, 68, 72, 73, 74, 80, 81, 82, 85, 89, 90, 97, 98,
100, 101, 104, 106, 109, 113, 116, 117, 121, 122, 125, 128, 130, 136, 137, 144,
145, 146, 148, 149, 153, 157, 160, 162, 164, 169, 170, 173, 178, 180, 181, 185,
193, 194, 196, 197, 200, etc. These truly are all the numbers up to 200 which
arise from the addition of two squares: and these numbers with all in sequences
to infinity I will call the sums of two squares, which therefore it is clear are
expressed in this general formula xx + yy, where all integers 0, 1, 2, 3, 4, 5, 6,

∗Originally published as De numeris, qui sunt aggregata duorum quadratorum, Novi Com-
mentarii academiae scientiarum Petropolitanae 4 (1758), pp. 3–40. E228 in the Eneström
index. Translated from the Latin by Paul R. Bialek, Department of Mathematics, Trinity
International University, Deerfield, Illinois, email: pbialek@tiu.edu

1Translator: Logical induction, not mathematical induction.
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etc. are successively substituted for x and y. Numbers, therefore, which are not
found among these are not sums of two squares, which up to 200 are thus: 3, 6,
7, 11, 12, 14, 15, 19, 21, 22, 23, 24, 27, 28, 30, 31, 33, 35, 38, 39, 42, 43, 44, 46,
47, 48, 51, 54, 55, 56, 57, 59, 60, 62, 63, 66, 67, 69, 70, 71, 75, 76, 77, 78, 79,
83, 84, 86, 87, 88, 91, 92, 93, 94, 95, 96, 99, 102, 103, 105, 107, 108, 110, 111,
112, 114, 115, 118, 119, 120, 123, 124, 126, 127, 129, 131, 132, 133, 134, 135,
138, 139, 140, 141, 142, 143, 147, 150, 151, 152, 154, 155, 156, 158, 159, 161,
163, 165, 166, 167, 168, 171, 172, 174, 175, 176, 177, 179, 182, 183, 184, 186,
187, 188, 189, 190, 191, 192, 195, 198, 199, etc. From this, it is evident, at least
up to 200, that the multitude of numbers which are not sums of two squares is
greater than the multitude which are sums of two squares. By examining the
rest, it will be immediately clear that neither series of those numbers is to be
composed by a fixed and assignable rule; and on account of this, it will be more
difficult to investigate the nature of either.

3. Because each square number is either even, in which case it is divisible
by 4 and contained in the form 4a, or odd, in which case it is contained in the
form 8b+ 1, each number formed from two squares will be either

first, a sum of two even squares and will be of the form 4a + 4b, and will
therefore be divisible by 4, or

second, a sum of two squares, one odd and one even, and therefore of the
form 4a+ 8b+ 1, or, really, will be contained in the form 4a+ 1: it will exceed
a multiple of four by one, or

third, a sum of two odd squares and will thus be of the form 8a+ 1 + 8b+ 1,
or, really, will be contained in the form 8a+2. Namely, this will be an unevenly
even number 2 and will exceed a multiple of eight by two.

Therefore because all odd numbers either exceed a multiple of four by one
and are of the form 4n + 1 or are one less than a multiple of four and are of
the form 4n− 1, it is evident that no odd numbers of the latter form 4n− 1 are
sums of two squares, and all numbers contained in this form 4n−1 are excluded
from the series of numbers which are sums of two squares.

Then, because all unequally even numbers either exceed a multiple of eight
by two so that they are 8n + 2 or are two less than a multiple of eight so that
they are 8n−2, it is evident that no numbers of the latter form are sums of two
squares, and thus numbers of this form 8n − 2 are excluded from the series of
numbers which are sums of two squares.

Nevertheless, it is still to be properly observed that not all numbers contained
in this form 4n+ 1 nor in this form 8n+ 2 are sums of two squares. And so, for
example, the numbers of the former form which are excluded are 21, 33, 57, 69,
77, 93, 105, 129, etc. and certainly of the latter form are those numbers 42, 66,
114, 138, 154, etc. I will investigate their rule in turn.

2Translator: This is Euler’s term for even numbers which are not divisible by four.
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4. Nevertheless, still, numbers which are sums of two squares are so con-
nected by a tie between themselves in a certain way that from one number of
this kind, infinitely many others of the same nature can be formed. Because by
it this will be more easily observed, I will add the following lemmas which are
certainly known well enough by all.

I. If a number p is a sum of two squares, then the numbers 4p, 9p, 16p and, in
general, nnp will be sums of two squares. Certainly, because p = aa+bb, we will
have 4p = 4aa+4bb, 9p = 9aa+9bb, 16p = 16aa+16bb and nnpp = nnaa+nnbb,
which are similarly sums of two squares.

II. If a number p is a sum of two squares, then so will be 2p and, in general,
2nnp will be a sum of two squares. Let p = aa+bb; we will have 2p = 2aa+2bb.
But 2aa+2bb = (a+b)2+(a−b)2, from which we will have 2p = (a+b)2+(a−b)2,
and therefore also the sum of two squares. From this, moreover, we will have
2nnp = nn(a+ b)2 + nn(a− b)2.

III. If the even number 2p is a sum of two squares, then half of it, p, will
also be a sum of two squares. Let 2p = aa+ bb; the numbers a and b will both
be even or odd. From this, in either case, both (a+ b)/2 and (a− b)/2 will be
integers. Certainly aa+bb = 2((a+b)/2)2+2((a−b)/2)2, which, by substituting
values, is p = ((a+ b)/2)2 + ((a− b)/2)2.

From this, therefore, all even numbers which are sums of two squares, by con-
tinual halving, are finally returned to odd numbers of the same nature. There-
fore, again, if only odd numbers which are sums of two squares are known, all
such even numbers will be derived from these as well, by continual duplication.

5. Next it is proper to record the following theorem, by which the nature of
the numbers which are sums of two squares is not usually shown.

Theorem

If p and q are two numbers, each of which is the sum of two squares, then
their product pq will also be the sum of two squares.

Proof

Let p = aa + bb and q = cc + dd. We will have pq = (aa + bb)(cc + dd) =
aacc + aadd + bbcc + bbdd, which expression can be represented in this way
so that pq = aacc + 2abcd + bbdd + aadd − 2abcd + bbcc and for that reason
pq = (ac + bd)2 + (ad − bc)2, from which the product pq will be a sum of two
squares. Q. E. D.

From this proposition it follows that when however many numbers which
individually are sums of two squares are multiplied together, the product will
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always be a sum of two squares. And from the given general form, it is evident
that the product of two such numbers doubled just recently3 can be partitioned
into two squares: so if p = aa+bb and q = cc+dd, then pq = (ac+bd)2+(ad−bc)2
and pq = (ac− bd)2 + (ad+ bc)2, which will be a different formula, unless either
a = b or c = d. Thus, since 5 = 1 + 4 and 13 = 4 + 9, the product 5·13 will be the
sum of two squares in two ways, namely 65 = (1·3+2·2)2+(2·3−1·2)2 = 49+16,
and 65 = (2 · 2 − 1 · 3)2 + (2 · 3 + 1 · 2)2 = 1 + 64. Also, if a product of many
numbers is considered, the terms of which are sums of two squares, it can
be partitioned in many ways into the sum of two squares. So if the number
1105 = 5 · 13 · 17 is put forward, its partitions into two squares will be these:
1105 = 332 + 42 = 322 + 92 = 312 + 122 = 242 + 232, namely, the four partitions
here.

6. Although it happens that if the factors p and q are sums of two squares
then the product pq will also be a sum of two squares, the converse of this
proposition does not follow from this; so if the product is a sum of two squares,
neither the rules of logic prove the conclusion that its factors are also numbers
of the same nature, nor does the nature itself of the thing. For example, the
number 45 = 36 + 9 is a sum of two squares, nevertheless, neither of its factors
3·15 is a sum of two squares. Rather, however, this firm conclusion is seen: if the
product pq and one factor p are the sum of two squares, then the other factor
q will be a sum of two squares also. Even though this conclusion is perhaps
true, it is not confirmed by the rules of reasoning, nor because has been proved
that if both factors p and q of the product pq are sums of two squares then pq
itself will be a sum of two squares can the legitimate consequence therefore be
inferred: if the product pq and one factor p are sums of two squares, then the
other factor q will also be a sum of two squares. Truly, such a consequence is
not legitimate; indeed this example clearly contradicts it: it is certain that if
two factors p and q are even numbers, then their product will also be even. If
however one wishes to conclude by this that if the product pq and one factor p
are even numbers then the other factor q will also be even, that person is quite
mistaken.

7. Therefore if it is true that when the product pq and either factor, say
p, are the sum of two squares then the other factor q will be a sum of two
squares also, this proposition cannot be inferred from what was shown above,
but should be defended by a special proof. This proof however is not as clear
as the preceding one and cannot be constructed apart from many details, and
certainly the proof which I found seems to be constructed so that it does not
require average reasoning ability. On account of this matter, the propositions,
from which not only this truth is obtained but also other notable properties of
numbers which are the sum of two squares, are known when I put forward here
their own proofs sequentially, and I will be careful so that nothing whatsoever
can be desired in rigor of proof. Though up to this point, these facts about

3Translator: Euler may be referring to the proof of Section 4, Lemma II, where he uses a
similar argument.
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the given numbers are trivial and in common knowledge, nevertheless I will use
them in the form of lemmas for the following proofs.

Proposition I

8. If the product pq is a sum of two squares and one factor p is a prime
number and similarly a sum of two squares, then the other factor q will also be
a sum of two squares.

Proof

Let pq = aa+ bb and p = cc+dd; because p is a prime number, the numbers
c and d will be prime between themselves. And so, q = aa+bb

cc+dd , and for this
reason, because q is an integer, the numerator aa + bb will be divisible by the
denominator cc+ dd. From this, the number cc(aa+ bb) = aacc+ bbcc will also
be divisible by cc + dd; and because the number aa(cc + dd) = aacc + aadd
is also divisible by cc + dd, it is necessary for the difference of these numbers,
aacc+ bbcc− aacc− aadd, or bbcc− aadd, to be divisible by cc+ dd. However,
because cc + dd is a prime number, and bbcc − aadd has factors bc + ad and
bc − ad, one of these factors, certainly bc ± ad, will be divisible by cc + dd. So
let bc± ad = mcc+mdd: however, whatever numbers a and b may be, they can
expressed as b = mc+x and a = ±md+ y, x and y appearing as either positive
or negative integers. Certainly having substituted these values for b and a, the
equation bc± ad = mcc+mdd will take on this form: mcc+ cx+mdd± dy =
mcc + mdd, or, cx ± dy = 0. From this, x

y = ∓d
c , and because d and c are

prime between themselves, it is necessary that x = nd and y = ∓nc, from
which is obtained a = ±md∓ nc and b = mc+ nd, namely, the numbers a and
b ought to have values such that the number pq = aa + bb is divisible by the
prime number p = cc+dd. However, substituting those values for a and b makes
pq = mmdd−2mncd+nncc+mmcc+2mncd+nndd, or, pq = (mm+nn)(cc+dd).
Now because p = cc+dd, we will have q = mm+nn; and therefore if the product
pq is the sum of two squares and one factor p is a prime number and similarly
a sum of two squares cc+ dd, it necessarily follows that the other factor q will
be a sum of two squares. Q. E. D.

Corollary 1

Therefore, if the sum of two squares is divisible by a prime number which
itself is a sum of two squares, the quotient resulting from the division will also
be a sum of two squares. So if the sum of two squares is divisible by some
number from these prime numbers 2, 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97,
etc., the quotient will always be a sum of two squares.
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Corollary 2

10. Therefore, if the letters α, β, γ, δ, etc. denote such prime numbers which
are sums of two squares, it is evident from this that if the product αq is a sum
of two squares, then the factor q will also be a sum of two squares.

Corollary 3

11. Furthermore, from this it is easily obtained later on that if the product
αβq is a sum of two squares, the factor q will also be a sum of two squares.
Indeed, because αβq is a sum of two squares, by the corollary above, βq will
also be a sum of two squares; and by the same reasoning q will also be a sum
of two squares.

Corollary 4

12. In the same way, it is evident that if the product αβγδεq is a sum of two
squares, then the factor q is also a sum of two squares; hence, if the product pq
is a sum of two squares, and the factor p is a product of however many prime
numbers, each of which is a sum of two squares, then the other factor q will also
be a sum of two squares.

Scholium

13. The rules of logic do not permit this proposition to be inverted, that
whenever the factor q is a sum of two squares,4 then the other factor p can
be declared either a sum of two squares, if it is prime, or a product of prime
numbers, each of which is a sum of two squares. Indeed, this itself has not yet
been established, whether a product of several prime numbers which themselves
are not sums of two squares cannot be a sum of two squares: rather, to the
contrary, we already have a case that the product 45 = 3 · 3 · 5 is a sum of two
squares although its factors 3 and 3 are not of this kind. In truth, the proposi-
tion can thus be inverted correctly only to the extent that if the consequent is
negated, then the negation of the antecedent is concluded; because of its very
great importance, I will deal with the converse in this proposition.

Proposition II

14. If the product pq is a sum of two squares but its factor q is not a sum of
two squares, then the other factor p, if it is a prime number, will not be a sum
of two squares, but if however it is not prime, it will certainly have at least one
prime factor which is not a sum of two squares.

4Translator: Here it is assumed that the product pq is a sum of two squares.
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Proof

Because one factor p is either a prime number or composite, it is proper to
analyze each case separately. First, let p be a prime number; if it were a sum
of two squares, the other factor q would also be a sum of two squares, which is
false according to the hypothesis. It follows that the factor p is not a sum of two
squares. Second, let p be a composite number; it has been established previously
that if all of its prime factors are sums of squares, then the other factor q will
also be of the same nature. Therefore, because according to hypothesis, q is not
a sum of two squares, it follows that not all factors of p itself are sums of two
squares. Q. E. D.

Corollary 1

15. If therefore the product pq is a sum of two squares, but one of its factors
q cannot be expressed as two squares, then the other factor p is either itself
not a sum of two squares or will have at least one prime factor which cannot
be expressed as two squares. For example, if pq = 45 and q = 3, then p = 15,
which has a factor 3 that is not the sum of two squares.

Corollary 2

16. From this however one cannot yet conclude that the other factor p is
clearly not a sum of two squares, however certain this may be in the case when
p is a prime number. It still has not yet been established in the case when p is
a composite number, because p can have a factor which cannot be written as
the sum of two squares even though p itself is a sum of two squares.

Corollary 3

17. However, one can conclude this: If p is a sum of two squares then it
has not just one but at least two prime factors which cannot be written as the
sum of two squares. For example, let p = αβγδ, where δ is that factor which
cannot be written as a sum of two squares; it is clear that if p is a sum of two
squares, then, in light of the deleted factor δ, in addition the remaining factor
αβγ should have a factor which cannot be written as the sum of two squares5.

Scholion

5Translator: This follows from applying Proposition II to q = δ and p = αβγ.
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18. Although an inquiry has been undertaken concerning the divisors of
numbers which are sums of two squares, about the sum of squares aa + bb,
the cases are properly distinguished depending on whether the squares aa and
bb, or, equivalently, their roots a and b, are prime between themselves or not.
For instance, if a and b are not prime between themselves but have a common
divisor n so that a = nc and b = nd, the sum of squares will be nncc+ nndd =
nn(cc+ dd), and therefore will have a divisor n which can be any number. But
if the roots a and b are numbers prime between themselves, then the sum of
squares aa + bb does not admit many numbers as divisors. For example, it is
evident that such a sum of two squares aa + bb is never divisible by 3. For by
hypothesis, the squares cannot both be divisible by 3, because otherwise they
would not be prime between themselves. If the sum were divisible by 3, then
neither term could be divisible by 3. Therefore if either of these roots exist,
they are of the form 3m + 1 or 3m − 1. But the sum of two such squares,
divided by 3, always leaves a remainder 2, and is therefore never divisible by 3.
In the same way, it is understood that the sum of two squares aa + bb, prime
between themselves, is never divisible by 7 or 11 or 19, etc. In general, it is
not easy to determine in this way which numbers can never be divisors of the
sums of two squares prime between themselves. It is fitting therefore to prove
the proposition certainly known well enough elsewhere, that the sum of two
squares prime between themselves does not admit other prime divisors, unless
they themselves are sums of two squares. But the following proposition should
be given.

Proposition III

19. If the sum of two squares primes between themselves aa+ bb is divisible
by a prime number p, a sum of two other squares cc+dd can always be generated
which is divisible by that same number p so that the sum cc+ dd is not greater
than 1

2pp.

Proof

Let the sum of two squares prime between themselves aa + bb be divisible
by the number p, and let a and b be numbers of any size. Therefore, because
neither a nor b is divisible by p, the numbers a and b can be expressed as
a = mp± c and b = np± d, where one may select m and n so that c and d do
not exceed 1

2p. Therefore aa + bb = mmpp ± 2mcp + cc + nnpp ± 2ndp + dd.
Because both this whole expression is divisible by p, by hypothesis, and a part
of it, mmpp ± 2mcp + nnpp ± 2ndp by itself has p as a divisor, it is necessary
that the other part cc+ dd, which is a sum of two squares, is similarly divisible
by p. But because the roots c and d do not exceed 1

2p, neither of the formulas
in the sum of squares cc + dd will exceed the square pp, and therefore a sum
of two squares cc + dd can be produced which is not greater than 1

2pp, but is
nonetheless divisible by p. Q. E. D.
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Corollary 1

20. Therefore, if there is no sum of two squares prime between themselves,
divisible by p, and not exceeding 1

2pp, then there is no sum of two squares prime
between themselves which is divisible by the number p.

Corollary 2

21. Therefore, if there is no sum of squares prime between themselves, less
than 1

232 (namely 4 1
2 ), and divisible by 3, then it clearly follows that there is no

sum of two squares prime between themselves which is divisible by 3. And in a
similar way by the number 7, because there is no sum of two squares less than
1
272 (namely 24 1

2 ), and divisible by 7, it follows that certainly neither among
larger numbers is there a sum of two squares prime between themselves which
is divisible by 7.

Proposition IV

22. The sum of two squares prime between themselves cannot be divided by
any number which itself is not a sum of two squares.

Proof

Concerning what is to be proved, let us suppose that the sum of two squares
prime between themselves aa+bb is divisible by the number p, which is not a sum
of two squares. Therefore, another sum of two squares prime between themselves
can be generated, cc + dd, which is not greater than 1

2pp and is divisible by p.
Therefore, let cc + dd = pq. Since p is not a sum of two squares, either the
number q itself will not be such a sum or will have at least one factor r which
is not a sum of two squares. Indeed, because pq < 1

2pp, we have q < 1
2p and,

furthermore, r < 1
2p. Therefore because cc + dd is also divisible by r < 1

2p, by
the preceding proposition, a sum of two squares ee+ff can be generated which
is divisible by the same number r and does not exceed 1

2rr or, furthermore,
1
8pp, And since r is not a sum of two squares, proceeding continuously in a
similar way, one reaches smaller sums of two squares which are divisible by a
number that is not a sum of two squares. On account of this, because there is
no sum of two squares prime between themselves among the smallest numbers
and divisible by a number that is not the sum of two squares, neither among
the greatest numbers will there be such sums of two squares which are divisible
by numbers that are not themselves sums of two squares. Q. E. D.

Corollary 1
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23. If therefore the sum of two squares prime between themselves is not a
prime number, all of its prime factors will also be sums of two squares. There-
fore, just as the product of however many prime numbers which themselves are
sums of two squares will similarly be a sum of two squares, so now the converse of
this proposition is proved, that the sum of two squares prime between themselves
cannot be created by multiplication except from numbers which themselves are
sums of two squares.

Corollary 2

24. Therefore, all numbers which are sums of two squares prime between
themselves are either themselves contained in this series of prime numbers: 2,
5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, etc. or are constructed
by multiplication of two or more numbers from this series. Moreover, all these
prime numbers except 2 exceed a multiple of 4 by 1, or namely, are contained
in the form 4n+ 1.

Corollary 3

25. Therefore, if the sum of two squares aa + bb is divisible by a number
which is not a sum of two squares, then from this it is understood that those
squares aa and bb are not prime between themselves, and thus neither are their
roots, a and b.

Corollary 4

26. Let a = nc and b = nd. Since the sum of the two squares aa + bb =
nn(cc+ dd) can be divided by any number n that is not a sum of two squares,
it is divisible not only by n but also by nn. It is evident that if the sum of two
squares is divisible by some number which is not a sum of two squares, then it
will also be divisible by the square of this number. Thus, because 45 = 36 + 9
is divisible by 3, it is also divisible by 9.

Corollary 5

27. Because no number contained in the form 4n−1 is a sum of two squares, it
is also clear that no sum of two squares prime between themselves can be divided
by any prime number contained in the form 4n − 1. These prime numbers are
3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, 79, 83, 103, 107, etc.

Scholium
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28. All prime numbers which are sums of two squares, except 2, form this
series: 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, etc. Not
only are these contained in the form 4n + 1, but also, however far the series is
continued, we find that every prime number of the form 4n+1 occurs. From this,
we can conclude by induction 6 that it is likely enough that there is no prime
number of the form 4n+1 which is not also a sum of two squares. Nevertheless,
induction, however extensive, cannot fulfill the role of proof. Even if no one
doubts the truth of the statement that all prime numbers of the form 4n+1 are
sums of two squares, until now mathematics could not add this to its established
truths. Even Fermat declared that he had found a proof, but because he did
not publish it anywhere, we properly extend confidence toward the assertion of
this most profound man, and we believe that property of the numbers, but this
recognition of ours rests on pure faith without knowledge. Although I labored
much in vain on a proof to be discarded, nevertheless I have discovered another
argument to be given for this truth, which, even it if it is not fully rigorous, still
appears to be equivalent to induction connected with nearly rigorous proof.

Proposition V

28.7 Every prime number which exceeds a multiple of four by one is a sum
of two squares.

Attempt at a Proof

The prime numbers which this discussion concerns are contained in the form
4n+ 1. Now if the number 4n+ 1 is prime, I showed that the form a4n − b4n is
always divisible by it, regardless of what numbers are substituted for a and b,
provided that neither is divisible by 4n+1. Because a4n−b4n = (a2n−b2n)(a2n+
b2n), it is necessary that one of the factors, either a2n − b2n or a2n + b2n, be
divisible by the prime number 4n + 1. Accordingly, as a and b assume some
values or others, in some cases the formula a2n − b2n and in other cases the
formula a2n + b2n will divisible by 4n+ 1. From this, one may assume, if indeed
I am not yet able to overcome this with a solid proof, that such numbers can
always be assigned for a and b so that the formula a2n − b2n is not divisible by
4n + 1; therefore, in these cases, the other formula a2n + b2n must necessarily
be divisible by 4n+ 1. Let an = p and bn = q. The sum of two squares pp+ qq
obtained is divisible by 4n+1 even though neither square pp nor qq individually
has 4n+1 as a divisor. And therefore, even if perhaps pp and qq have a common
divisor mm, so that pp + qq = mm(rr + ss), because the common factor mm
does not have 4n + 1 as a divisor, it is necessary that the sum of two squares
prime between themselves rr+ss has 4n+1 as a divisor. Consequently, because
such a sum of two squares does not allow other divisors, it is necessary that the
prime number 4n+ 1 be a sum of two squares.

6Translator: Logical induction, not mathematical induction.
7Translator: Original version mistakenly has two sections numbered 28.
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Corollary 1

29. This proof would therefore be perfect if one could only prove that there
always exist such values to be substituted for a and b for which the formula
a2n − b2n would not be made divisible by the prime number 4n+ 1, namely, in
these cases, the formula a2n + b2n is necessarily divisible by 4n+ 1.

Corollary 2

30. But if anyone attacks this matter by calculation, he will discover not
only many cases but infinitely many cases of the formula a2n − b2n for which it
is not divisible by a prime number 4n + 1, but also one can set b equal to one
so that this simpler formula a2n − 1 is again and again not divisible by 4n+ 1.

Scholium

31. These cases of a for which the formula a2n − 1 is divisible by the prime
number 4n+ 1 can be easily determined. First, for instance, if a = pp, then the
formula a2n−1 = p4n−1 is always divisible by 4n+1, provided that p does not
equal 4n+ 1 or a multiple of it. Next, if a = pp± (4n+ 1)q, the formula a2n− 1
also has 4n+ 1 as a divisor, for a2n = (pp± (4n+ 1)q)2n can be broken up into
a series of terms, of which the first is p4n, and each of the subsequent terms is
divisible by 4n + 1. From this, it is evident that the appropriate values for a
are all the residues which remain after the squares p2 are divided by 4n + 1.
However, whether r or 4n + 1 + r or (4n + 1)q + r is substituted for a, these
same residues occur, from which all possible residues are obtained if p is set
equal to successive numbers 1, 2, 3, 4, 5, up to 4n. But setting p equal to the
value 4n yields the same residue as the value 1, and in a similar way, the values
2 and 4n − 1 give the same residue; so do 3 and 4n − 2; so do 4 and 4n − 3,
etc. Thus, whenever two residues arising from the numbers 1, 2, 3, up to 4n for
the roots of squares are equal, the number of different such resulting residues
will be 2n, and therefore this many numbers will be generated less than 4n+ 1,
numbers which cannot be residues arising from division of square numbers by
4n+ 1. And these numbers substituted for a always produce a number a2n − 1
which is not divisible by 4n + 1. Indeed, this similarly cannot be proven. And
yet, because in making the attempt, however many numbers are explored in this
way, not a single case will occur which contradicts this rule, its truth should be
acknowledged. I will attach several examples in which these things are observed
more clearly. First, let 4n+1 = 5; cases for which the formula a2−1 is divisible
by 5 will be obtained if for a is substituted the residues arising from division of
squares by 5; these residues are 1, 4. But if a is set equal to either 2 or 3, the
formula a2 − 1 will not be divisible by 5; in these cases therefore the formula
a2 + 1 will have 5 as a divisor. Now let 4n + 1 = 13, namely, let n = 3. The
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residues which are left after the division of square numbers by 13 are 1, 4, 9,
3, 12, 10. Consequently, if any of the remaining numbers 2, 5, 6, 7, 8, 11, are
substituted for a, then not the formula a6 − 1, but a6 + 1 will be divisible by
13. Next, if 4n + 1 = 17, that is, if n = 4, because the residues of squares
divided by 17 are 1, 4, 9, 16, 8, 2, 15, 13, if any of the remaining numbers 3,
5, 6, 7, 10, 11, 12, 14 is set equal to a, then the formula a8 − 1 will not be
divisible by 17, but a8 + 1 will be. Therefore, because this principle is observed
continually, this proof via induction will be judged almost complete. Hence, this
proposition seems so confirmed that one may not voice much doubt about its
truth. Nevertheless, it would be all the more worthwhile if anyone could show
a rigorous proof of this proposition by which we are more certain of its truth.
Indeed, there is no doubt that such a proof, sought in vain for so long, may
lead us to many other important properties of the numbers. Although the truth
of this proposition is beyond doubt, nevertheless, I will diligently note that I
will distinguish the consequences which depend on it from the others which are
supported by solid proof; however, from this unproved proposition follow these
corollaries which I wish to be designated by that name.

Corollary 3

32. Therefore, if a number of the form 4n+ 1 cannot be written in any way
as the sum of two squares, this is a sure sign that the number is not prime.
For if the number 4n + 1 were prime, it could certainly be written as the sum
of two squares. Thus, since the numbers 21, 33, 57, 69, 77, 93, etc., which are
contained in the form 4n+ 1, are not sums of two squares, from this fact itself
it is evident that they are not prime.

Corollary 4

33. Therefore, in the series of numbers which are sums of two squares, first,
all prime numbers of the form 4n + 1 are included, and all products of two or
more such prime numbers, and then products of these individual numbers in
pairs and any square numbers.

Corollary 5

34. All numbers n for which a prime number is generated by the formula
4n + 1 are sums of two triangular numbers. For when 4n + 1 is a sum of two
squares, its double 8n + 2 will be a sum of two unequal squares 8. Therefore,
let 8n+ 2 = (2x+ 1)2 + (2y + 1)2 so that n = xx+x

2 + yy+y
2 . Thus, if n is not a

sum of two triangular numbers, then the number 4n+ 1 is certainly not prime.

8Translator: Proved in Section 4.
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Proposition VI

35. If a number of the form 4n+ 1 can be written in only one way as a sum
of two squares prime between themselves, then it is certainly a prime number.

Proof

Since this number is a sum of two squares prime between themselves, if it is
not prime, then its individual factors are sums of two squares 9. Thus, if this
number is not prime, then at least two factors in such a number can be written
so that 4n+ 1 = (aa+ bb)(cc+ dd); in this case, however, there are two ways to
write it as a sum of two squares 10, namely,

I. 4n+ 1 = (ac+ bd)2 + (ad− bc)2

II. 4n+ 1 = (ad+ bc)2 + (ac− bd)2.

And these resolutions are always different, unless either ac + bd = ad + bc
or ac + bd = ac − bd. In the former case, ac + bd − ad − bc = 0, or namely,
(a−b)(c−d) = 0, and therefore either a = b or c = d and hence either aa+bb or
cc+dd is an even number which could not be a divisor of 4n+1 itself, since it is
odd. In the latter case, either b = 0 or d = 0 and therefore 4n+ 1 equals either
aa(cc+dd) or cc(aa+ bb), from which the two squares cannot be prime between
themselves, contrary to hypothesis. By these cases which have been noted, it
follows that 4n+ 1 is a composite number if it can be written as a sum of two
squares prime between themselves and can be written in at least two ways as
the sum of two squares. Therefore, if the number 4n+ 1 can be written in only
one way as the sum of two squares, then it will certainly not be composite, but
consequently will be prime. Q. E. D.

Corollary 1

36. If therefore one learns upon examination that some given number of the
form 4n + 1 can be written in only one way as the sum of two squares prime
between themselves, then from this we may safely conclude that the number is
prime, even if we have not tested its divisibility by prime numbers as is usually
done. Thus, because 73 is the sum of two squares in only one way, obviously 64
+ 9, we know that it is certainly prime.

Corollary 2

9Translator: Proved in Section 22.
10Translator: Proved in Section 5.
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37. Therefore, if a method is considered expedient, and with the use of it one
may easily investigate whether and in how many ways a given number in the
form 4n+1 can be written as the sum of two squares, then we can quickly judge
whether the number is prime; for instance, if it can be written in only one way
as the sum of two squares and the two squares are prime between themselves,
then it will certainly be regarded as prime.

Corollary 3

38. Moreover, it is clear that if some number is written as a sum of two
squares not prime between themselves, then that number is not prime. If how-
ever the given number is found to be nnaa+ nnbb, then it will have divisors n
and nn. Also, it is understood that if the given number is itself a square, say
aa+ 0, then it will have a as a divisor.

Scholium

39. This rule about testing prime numbers is restricted to odd numbers of
the form 4n + 1; for instance, when even numbers can be written in one way
as a sum of two squares, they are still not prime; so 10 can be written in only
one way as a sum of two squares, and yet it is not prime, the reason of which
is that in the product (aa + bb)(cc + dd), to which numbers of this form are
equal, either a = b or c = d, in which case the twofold solution (which is seen to
hold in general), reduces to a single one, just as explained in the demonstration.
Neither is this given rule diminished by this exception, because the case of even
numbers by themselves is easy. However, odd numbers of the other form, 4n−1
are thus themselves excluded, since they clearly cannot be written as a sum of
two squares. As for the other form, if a number 4n+ 1 either cannot be written
as a sum of two squares or can successfully be written in several ways, we have
already noted by the prior case that this number is certainly not prime, and yet
this depends on the preceding proposition, which was not proved with sufficient
rigor. Truly, this contention for the latter case will be conveyed in the following
proposition.

Proposition VII

40. A number which can be written in two or more different ways as a sum
of two squares is not prime but is composed of at least two factors.

Proof
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Let N be the proposed number which can be written in two ways as a sum of
two squares , namely, N = aa+ bb = cc+ dd. Since these squares are not equal,
otherwise N itself would not be prime, let a > b and c > d. Because these two
representations are different, a 6= c and b 6= d. Therefore, if a > c, then b < d,
so that one can set a = c + x and d = b + y. So because aa + bb = cc + dd,
2cx + xx = 2by + yy as a result . Let either form be xyz, because one side
is divisible by x and the other side is divisible by y. Then11, c = yz−x

2 , b =
xz−y

2 , a = yz+x
2 , d = xz+y

2 , so that N = aa + bb = xxzz+yy+yyzz+xx
4 , that is,

N = (yy+xx)(1+zz)
4 . Therefore, unless xx+ yy is divisible by 4, xx+ yy will be

a divisor of N itself; but if xx+ yy is divisible by 4 or is somehow a composite
number, some factor of it will certainly be a divisor of N itself. Therefore,
because x = a− c and y = d− b, the given number N = aa+ bb = cc+ dd will
have as a divisor either the number (a−c)2 +(d−b)2 itself or a half or a quarter
of it. And because one may permute the numbers a, b and c, d in any way, the
factors of N itself will be also be (a−d)2 +(c−b)2, or because the roots a, b, c, d
may assume negative values, (a± c)2 + (d± b)2 or (a± d)2 + (c± b)2 or half of
these formulas or some other portion. Thus, when a number can be written in
more than one way as a sum of two squares, that number will certainly not be
prime, but composite. Q. E. D.

Corollary 1

41. Therefore, when the number N = aa+ bb = cc+ dd is composite, it will
be of the form N = (pp + qq)(rr + ss). This, in turn, results in two ways to
express it as a sum of two squares; these will certainly be a = pr+qs, b = ps−qr
and c = ps + qr, d = pr − qs. Furthermore, from this is obtained a − d = 2qs
and c− b = 2qr, so r

s = c−b
a−d . Therefore, if the fraction c−b

a−d is reduced to lowest

terms so that c−b
a−d = r

s , from the fraction r
s arises a divisor rr+ss of the number

N , unless it is even, for if it is even, then it should be assumed to be half of
this.

Corollary 2

42. In a similar way, when one permits a, b and c, d to be permuted between
themselves and to take on negative values, if one reduces the fractions a±c

b±d or
a±d
b±c to lowest terms, they become r

s , and rr+ ss will always be a divisor of the
given number N .

Corollary 3

11Translator: Original version has x = yz−x
2

instead of c = yz−x
2

.
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43. Although from this more than two divisors appear to arise, different
formulas lead to the same divisor, so not more than two are produced, if indeed
the given number can be written in only two ways as a sum of two squares. Thus,
if N = 85 = 92 + 22 = 72 + 62, the formulas 9±7

6±2 ,
9±6
7±2 supply only these four

fractions in lowest terms: 2
1 ,

4
1 ,

5
3 ,

3
1 , of which the last two generate such a double

value, which arise from the first two. From this, it is clear that the factors will
be the two numbers 22 + 1 = 5 and 42 + 1 = 17. Very briefly, these factors are
found only if the roots of the odd and even squares are separately combined in
turn, and the combination of the evens with the odds is totally omitted, because
from this, fractions arise having odd numerator and denominator.

Problem

44. To explore whether a given number of the form 4n+ 1 is prime or not.

Solution

According to the operation to be explained shortly, let a given number be
investigated as to whether or not it can be written as a sum of two squares,
and if it can, whether more than one way is successful. If there is no way to
write it as a sum of two squares, then by Section 32, this is a sure sign that
the given number is not prime, even if this conclusion follows from Proposition
5, which was not satisfactorily proved. Indeed, in this case, nothing is known
about its divisors. However, we can still certainly conclude that it has prime
divisors of the form 4m− 1, because if all its divisors were of the form 4m+ 1,
these certainly could be written as sums of two squares. But if the given number
can be written as a sum of two squares in only one way, then infallibly it will
be regarded as a prime. However, if it can be successfully represented as a sum
of squares in more than one way, then not only will it be known that it is not
prime, but also its divisors can be distributed according to Section 43. With
these matters carefully considered, I will pass on this rule with the help of which
the representation as sum of two squares can be explored.

A given number ends in 1, 3, 7, or 9. Here I omit the case in which it ends
in 5, because then 5 is clearly a divisor, which indicates that the number is
not prime. Then let square numbers starting with the greatest less than the
given number itself be subtracted from it, so that it is evident whether a square
number ever remains; indeed, however often this happens is the number of ways
it can be successfully written as a sum of two squares.

Now because square numbers cannot end in any of the numbers 2, 3, 7,
or 8, the subtraction of the square numbers which produce residues ending in
these numbers can be omitted. Consequently, the only work left is to find which
squares produce residues ending in 0, 1, 4, 5, 6, or 9 when they are subtracted
from the given number. Of course,
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if the given the squares to be and the roots of these
number ends in subtracted end in squares end in

1 0, 1, 5, 6 0, 1, 4, 5, 6, 9
3 4, 9 2, 3, 7, 8
7 1, 6 1, 4, 6, 9
9 0, 4, 5, 9 0, 2, 3, 5, 7, 8

Therefore, for any given number 4n+ 1 = N , however many operations are
separately undertaken, that many are suitable endings of roots. So let pp be
the greatest square of its kind which can be subtracted from a given number N ;
and then the squares (p−10)2, (p−20)2, (p−30)2, (p−40)2, etc. are subtracted
successively. Certainly from this, the residues emerging can be found readily in
this way by continual addition:

The given number N
from which is subtracted pp

= (N − pp)
is added (20p− 100)

= (N − (p− 10)2)

is added (20p− 300)
= (N − (p− 20)2)

is added (20p− 500)
= (N − (p− 30)2)

Therefore, the numbers to be added successively are 20p − 100, 20p − 300,
20p− 500, 20p− 700, etc. which decrease in an arithmetic progression with dif-
ference −200. Such an operation for individual numbers p, of which squares are
just less than the given number and which end in some of the figures indicated
above, is arranged and not contained beyond which half of the given number
N is reached. Indeed, if the number N is a sum of two squares, it is certainly
necessary for one to be less than half of N itself. When this is observed, however
many squares will be produced by this operation, in that many ways the given
number can be written as a sum of two squares.

The following examples will show that this long-anticipated operation is
not very burdensome compared with all other methods of searching for prime
numbers.

Example 1

45. To test whether or not the number 82421 is prime. The operation is
arranged in the following six columns:
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p 82421 p 82421 p 82421 p 82421 p 82421 p 82421

286 81796 285 81225 284 80656 281 78961 280 78400 279 77841
� 625 1196 1765 3460 4021 4580

5620 5600 5580 5520 5500 5480
6245 6796 7345 8980 9521 10060
5420 5400 5380 5320 5300 5280

11665 12196 12725 14300 14821 15340
5220 5200 5180 5120 5100 5080

16885 17396 17905 19420 19921 20420
5020 5000 4980 4920 4900 4880

21905 22396 22885 24340 24821 25300
4820 4800 4780 4720 4700 4680

26725 27196 27665 29060 29521 29980
4620 4600 4580 4520 4500 4480

31345 31796 32245 33580 34021 34460
4420 4400 4380 4320 4300 4280

35765 36196 36625 37900 38321 38740
4220 4200 4180 4120 4100 4080

39985 40396 40805 42020 42421 42820

So then, because here a square, 625, occurs only once, and thus the given
number 82421 can be written in only one way as a sum of two squares, namely,
252 + 2862, the number 82421 will be prime.

Scholium

46. In this computation, four columns where the remaining numbers end
in either 5 or 0 notably can be assembled omitting the columns which do not
end in 25 or 00. Because of this, in the columns in which the remainders end
in 5 or 0, first the next square which produces a remainder ending in 25 or
00 is subtracted, and let this square be designated pp so that the remainder is
N − pp; then, in the same way, the squares from the remainders of which the
endings arise will be (p − 50)2, (p − 100)2,(p − 150)2, etc., and therefore these
remainders will be obtained if, to N − pp, is continually added these numbers:
100p − 2500, 100p − 7500, 100p − 12500,12 which decrease arithmetically by a
second constant difference 5000; from this, these columns are next spread out
until the end, while the ones that are not more than half of the given number
is a work to be continued. Therefore, one will have the shortened situation
in numbers ending in 1 or 9, which are thus more easily arranged even if six
columns are required, as long as four columns are sufficient for the remaining
ones.

Example 2

12Translator: Original version has 100p− 2500, 100p− 17500, 100p− 125000.
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47. To test whether or not the number 100981 is prime.

p 100981 p 100981 p 100981 p 100981

316 99856 315 99225 309 95481 310 96100
1125 1756 5500 4881

29100 6200 28400 6100
30225 7956 33900 10981
24100 6000 23400 5900
∗ 54325 13956 ∗ 57300 16881

5800 5700
p 100981 19756 p 100981 22581

284 80656 5600 291 84681 5500
20325 25356 16300 28081
25900 5400 26600 5300

2152 = 46225 30756 42900 33381
5200 21600 5100

35956 ∗ 64500 38481
5000 4900

40956 43381
4800 4700

45756 48081
4800

50356

Therefore, because only one square occurs (namely, 46225 = 2152), 100981 =
2152 + 2342 will be a prime number.

Example 3

48. To test whether or not the number 1000009 is prime. 13

13Translator: In the last two columns, the original version erroneously lists 69784 instead
of 68784, 88984 instead of 87984, 107984 instead of 106984, etc.
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p 1000009 p 1000009 p 1000009 p 1000009
1000 1000000 978 956484 997 994009 995 990025
32 = 9 277509 43525 6000 9984 285984

19900 16900 95300 97200 19800 16800
19909 294409 138825 103200 29784 302784
19700 16700 90300 92200 19600 16600
39609 311109 229125 195400 49384 319384
19500 16500 85300 87200 19400 16400
59109 327609 314425 282600 68784 335784
19300 16300 80300 82200 19200 16200
78409 343909 394725 364800 87984 351984
19100 16100 75300 77200 19000 16000
97509 360009 470025 442000 106984 367984
18900 15900 18800 15800

116409 375909 p 1000009 p 1000009 125784 383784
18700 15700 972 944784 953 908209 18600 15600

135109 391609 2352 = 55225 91800 144384 399384
18500 15500 94700 92800 18400 15400

153609 407109 149925 184600 162784 414784
18300 15300 89700 87800 18200 15200

171909 422409 239625 272400 180984 429984
18100 15100 84700 82800 18000 15000

190009 437509 324325 355200 198984 444984
17900 14900 79700 77800 17800 14800

207909 452409 404025 433000 216784 459784
17700 14700 74700 17600 14600

225609 467109 478725 234384 474384
17500 14500 17400 14400

243109 481609 251784 488784
17300 14300 17200

260409 495909 269984
17100 17000

277509 285984

Therefore, this number 1000009 can be written in two ways as the sum of
two squares, obviously 10002 + 32 and 2352 + 9722, so it will not be prime;
indeed, its factors will be found from the formula 1000±972

235±3 reduced to lowest
terms, from which arises

1000 + 972

235 + 3
=

1972

238
=

986

119
=

58

7
, so a factor is 3413,14

1000 + 972

235− 3
=

1972

232
=

493

58
=

17

2
, so a factor is 293; 15

14Translator: Based on Corollary 1, a factor is 582 + 72.
15Translator: Based on Corollary 1, a factor is 172 + 22.
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The factors will be easily found from the formula

1000− 972

235± 3
=

28

238
=

14

119
=

2

17
, and

28

232
=

7

58
.

Therefore, we have learned that 1000009 = 293 · 3413, factors which had not
been so easily discovered by any other method.

Example 4

49. To test whether or not the number 233033 is prime.

233033 233033 233033 233033
4822 = 232324 4772 = 227529 4732 = 223729 4782 = 228484

709 5504 9304 4549
9540 9440 9360 9460

10249 14944 18664 14009
9340 9240 9160 9260

19589 24184 27824 23269
9140 9040 8960 9060

28729 33224 36784 32329
8940 8840 8760 8860

37669 42064 45544 41189
8740 8640 8560 8660

46409 50704 54104 49849
8540 8440 8360 8460

54949 59144 62464 58309
8340 8240 8160 8260

63289 67384 70624 66569
8140 8040 7960 8060

71429 75424 78584 74629
7940 7840 7760 7860

79369 83264 86344 82489
7740 7640 7560 7660

87109 90904 93904 90149
7540 7440 7360 7460

94649 98344 101264 97609
7340 7240 7160 7260

101989 105584 108424 104869
7140 7040 6960 7060

109129 112624 115384 111929
6940 6840 6760 6860

116069 119464 122144 118789

Therefore, because this number, although it is of the form 4n + 1, is not a
sum of two squares, by the use of Proposition 5 we conclude that it is not a
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prime number. Indeed, we cannot determine its factors from this. Nevertheless,
we still conclude that it has at least two factors of the form 4m − 1, which by
investigation are found to be 467 · 499.

Example 5

50. To test whether or not the number 262657 is prime.

262657 262657 262657 262657
5112 = 261121 5092 = 259081 5062 = 256036 5042 = 254016

1536 3576 6621 8641
10120 10080 10020 9980
11656 13656 1292 = 16641 18621
9920 9880 9820 9780

21576 23536 26461 28401
9720 9680 9620 9580

31296 33216 36081 37981
9520 9480 9420 9380

40816 42696 45501 47361
9320 9280 9220 9180

50136 51976 54721 56541
9120 9080 9020 8980

59256 61056 63741 65521
8920 8880 8820 8780

68176 69936 72561 74301
8720 8680 8620 8580

76896 78616 81181 82881
8520 8480 8420 8380

85416 87096 89601 91261
8320 8280 8220 8180

93736 95376 97821 99441
8120 8080 8020 7980

101856 103456 105841 107421
7920 7880 7820 7780

109776 111336 113661 115201
7720 7680 7620 7580

117496 119016 121281 122781
7520 7480 7420 7380

125016 126496 128701 130161
7320 7280 7220 7180

132336 133776 135921 137341

Therefore, because only one square occurs here, 16641 = 1292, so that there
is only one way, 262657 = 1292 + 4962, and these numbers 129 and 496 are
prime between themselves, it is certain that the number 262657 is prime.
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Example 6

51. To test whether or not the number 32129 is prime.

32129 32129 32129 32129
1522 = 23104 1772 = 31329 1752 = 30625 1702 = 28900
952 = 9025 800 1504 3229

12700 15200 3400 3300
21725 16000 4904 6529

3200 3100
32129 32129 8104 9629

1482 = 21904 1732 = 299294 3000 2900
10225 2200 11104 12529
12300 14800 2800 2700
22525 17000 13904 15229

2600 2500
16504 17729

Therefore, this number can also be written in just one way as a sum of
two squares, 952 + 1522, but because these numbers 95 and 152 are not prime
between themselves but have common divisor 19, the given number is not prime
but has factor 192 = 361, and 32129 = 192 · 89.

Scholium

52. Although this method of testing whether or not numbers are prime has
been extended only to numbers contained in the form 4n+ 1, very often it can
provide great assistance in judging numbers. But as for how much this same
rule surpasses other rules, anyone who wishes to make an attempt in this matter
will easily try. The one who will wish to examine a number not less than one
million in the ordinary way should attempt its division by all prime numbers up
to one thousand, a work which will not be finished for many hours, while with
the help of this rule by itself, the work will scarcely be a half hour.
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