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1. Having established the elements of Spherical Trigonometry on the
principle of the maxima and minima, my principal goal was to fix a general
principle from which one could draw the resolution of triangles, not only
on a spherical surface, but more generally upon any surface whatever. The
sides of a spherical triangle are arcs of great circles, which are the shortest
path from which can be drawn on the surface of a sphere from one point
to another; in the same way, I envisage the sides of a triangle described on
any surface whatever, so that these sides are the shortest routes which lead
from one angle to another on this surface. So, conceiving three points upon
any surface whatever, the shortest lines are drawn from each to the others,
forming a triangle, for which the question is to show the resolution.

2. I limit myself here to spheroidal surfaces, which are formed by the
revolution of an ellipse about one of its axes; in particular, I shall consider
the triangles formed on the surface of the earth by their sides, which are
the shortest possible between their endpoints. For, whether the sides are
formed by ropes tightly stretched from one point to the other, or are drawn
in following the direction of rays of light, so that the plane which contains
any two contiguous elements is everywhere perpendicular to the surface of the
earth, they will represent the shortest path from one end to the other. Indeed,
this is also the method followed in practice, if it is required to draw the
shortest line from one point to another on the surface of the earth; and when
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one speaks in Geography of the distance between two places, this is always
understood to mean the shortest route which goes from one to the other. It
is thus necessary to distinguish this shortest route from the loxodromethat
one follows in navigation, which requires specialized investigations.

3. Let, therefore, AEB be the half ellipse, which produces the spheroid
of the Earth by revolution about the axis ACB, and we set

the semiaxis CA = CB = a, and the semidiameter of the equator CE = e.

Now, the half ellipse AEB will represent an arbitrary meridian, and whatever

M
m

P

A

CE

O

φ

N

Figure 1

point that can be conceived on the surface of the earth,
in order to know its situation, one must consider the
meridian which passes through that point, let it be M ,
and then one will have three things to determine.

1◦ The latitude, or the elevation of the pole observed
in that place.

2◦ Its distance to the plane of the equator, measured
by the perpendicular MP , equal to CQ, and

3◦ The latitude, or the elevation of the pole observed
in that place.

One sees clearly that, knowing one of these three
things, it is easy to determine the other two by the
properties of the ellipse. Next it will be convenient
to seek the radius of curvature of the meridian at the
point M , together with the measure of the arc of the
meridian MA, by which the point is separated from the pole A.

4. Let CP = MQ = x, and PM = CQ = y. Then one will have

y =
a

e

√
(ee− xx), and thus dy = − ax dx

e
√

(ee− xx)
.

Now let the line MN be drawn perpendicular to the meridian, marking the
direction of gravity, and the angle ENM will measure the latitude, or the
elevation of the pole at the place M . Thus, we set this angle ENM = ϕ;
ordinarily it is the first element that is known, and having

the sub-normal PN = −y dy
dx

=
aa

ee
x ,
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we infer that

tangϕ =
PM

PN
=
e
√

(ee− xx)

ax
,

and furthermore, that

CP = x =
ee cosϕ√

(aa sin2 ϕ+ ee cos2 ϕ)
, and PM = y =

aa sinϕ√
(aa sin2 ϕ+ ee cos2 ϕ)

.

From these formulae, knowing the latitude of a place M , the distance to
the axis of the Earth, as well as to the plane of the equator, will easily be
determined. From this one can also find the distance from the point M to
the center of the Earth C, in other words, the length of the line

CM =

√
a4 sin2 ϕ+ e4 cos2 ϕ

aa sin2 ϕ+ ee cos2 ϕ
,

and the angle CMN , which this line makes with the direction of gravity
MN , for one finds that

tangCMN =
(ee− aa) sinϕ cosϕ

aa sin2 ϕ+ ee cos2 ϕ
, and sinCMN =

(ee− aa) sinϕ cosϕ√
(a4 sin2 ϕ+ e4 cos2 ϕ)

.

5. We search also the radius of curvature MO, for which, setting dy
dx

= p,
the expression is

MO = −dx(1 + pp)
3
2

dp
.

Now, having dy
dx

= aax
eey

, one will have also p = − cosϕ
sinϕ

, dp = dϕ
sin2ϕ

, therefore√
1 + pp = 1

sin2 ϕ
, so

(1 + pp)
3
2 =

1

sin3 ϕ
, and therefore

(1 + pp)
3
2

dp
=

1

dϕ sinϕ
.

But since

x =
ee cosϕ√

aa sin2 ϕ+ ee cos2 ϕ
,

we shall have

dx = − aa ee dϕ sinϕ

(aa sin2 ϕ+ ee cos2 ϕ)
3
2

.
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Consequently, the radius of curvature will be

MO = − aa ee

(aa sin2 ϕ+ ee cos2 ϕ)
3
2

.

Thus, if we take on the same meridian as M an infinitely close point m, with
latitude = ϕ + dϕ, the element Mm will be the arc of a described circle of
radius MO, with length

Mm =
aa ee dϕ

(aa sin2 ϕ+ ee cos2 ϕ)
3
2

.

6. The integral of this formula will give the length of the elliptic arc
EM , and in order to find the approximate value, one only need set

sin2 ϕ = 1
2
− 1

2
cos 2ϕ and cos2 ϕ = 1

2
+ 1

2
cos 2ϕ,

to obtain

Mm =
aa ee dϕ(

1
2
(aa+ ee) + 1

2
(ee− aa) cos 2ϕ

) 3
2

.

For, since ee − aa is extremely small in comparison to aa + ee, in setting
ee−aa
ee+aa

= δ, our formula is changed to

Mm =
2 aa ee dϕ

√
2

(aa+ ee)
3
2

(1 + δ cos 2ϕ)−
3
2 ,

whose integral, since

(1 + δ cos 2ϕ)−
3
2 = 1 + 15

16
δδ − 3

2
δ cos 2ϕ+ 15

16
δδ cos 4ϕ,

will be

EM =
2 aa ee

√
2

(aa+ ee)
3
2

(
(1 + 15

16
δδ)ϕ− 3

4
δ sin 2ϕ+ 15

64
δδ sin 4ϕ

)
,

which is a very close approximation; one could even discard the terms in the
square of δ.
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7. One can also use the differential formula to determine the size of each
degree of the meridian; it suffices to give to dϕ the value of one degree, or
the 180th part of 3,14159265, which is the length of an arc of 180◦ on a circle
of radius 1. Therefore one sets dϕ = 0, 017453292, and ϕ will designate the
latitude at the middle of the degree. Then the size of this degree will be

=
2aa ee dϕ

√
2

(aa+ ee)
3
2

(
1− 3

2
δ cos 2ϕ

)
,

neglecting terms in the square of δ; and this formula is adequate to determine
at latitude ϕ the size of one degree dϕ of the meridian. Inversely, from this
formula it will also be possible to determine the size of the two semi-diameters
of the earth by taking the actual measurement of several degrees, supposing
the figure of the earth to be an elliptic spheroid. Two measured degrees
would suffice for this result, if the measure was exact to the last point, but,
since an error of one second produces one of about 16 toises1 in the size of a
degree, it would be better to make use of several degrees, allowing to each a
small error of at least 32 toises, in order to then reconcile the conclusions.

8. As an abbreviation, let us set

2aa ee dϕ
√

2

(aa ee)
3
2

= A,

since this quantity is the same for every latitude. The measures of a degree
conducted in Peru, at the Cape of Good Hope, in France, and in Lapland2

furnish us with these four equations:
A(1− 3

2
δ cos 1◦ ) = 56753 + p Toises

A(1− 3
2
δ cos 66◦ 36′ ) = 57037 + q Toises

A(1− 3
2
δ cos 98◦ 46′ ) = 57074 + r Toises

A(1− 3
2
δ cos 132◦ 40′ ) = 57438 + s Toises

1One “Paris toise” was equal to approximately 1.949 meters.[tr]
2The survey in “Peru”(now Ecuador) was conducted by Bouguer, Godin, and LaCon-

damine about 1740; at the Cape of Good Hope in 1752 or 1753 by Nicholas Louis de
LaCaille; in Lapland (near the present boundary between Sweden and Finland) in 1735–
6 by Maupertuis, Clairaut, Celsius, and others. There were numerous surveys in France
throughout the 18th century. Todhunter(1873), in A History of the Mathematical Theories
of Abstraction and the Figure of the Earth cites a survey directed by Cassini de Thury in
1739–40, with exactly the result Euler uses here. [tr]
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marking by p, q, r, s th errors which might have slipped into the measure-
ments, and could be positive or negative. These are assumed to be as small
as possible, because so much care was taken in the measurements, that the
errors would not exceed a few seconds of arc, except in the third case, where
the error r might be larger than 32 toises.

9. If we now substitue the values of these cosines, we shall have the
following four equations:

I. A(1− 1, 4997715 δ) = 56753 + p;

II. A(1− 0, 5957219 δ) = 57037 + q;

III. A(1 + 0, 2286163 δ) = 57074 + r;

IV. A(1 + 1, 0165980 δ) = 57438 + s;

We subtract the first from each of the others to obtain the three equations:

0, 9040496 δ A = 284 + q − p
1, 7283878 δ A = 321 + r − p
2, 5163696 δ A = 685 + s− p

and, dividing the two others by the first of these, we obtain

321 + r − p
284 + q − p

=
65

34
and

685 + s− p
284 + q − p

=
437

157
,

from which it follows that

31 p− 65 q + 34 r = 7546 and 280 p− 437 q + 157 s = 16563.

10. If we eliminate p from these two equations, the result is

−150 q + 307 r − 157 s = 51594,

from which we see that the measurement errors at the Cape and Lapland
should be assumed negative, while that from France is positive. If one were
willing to assume these three errors equal, each would become 84 toises, which
would be too exorbitant to reconcile with the extreme exactness by which
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the second and fourth of these operations were carried out. But it is not
to be doubted that a rather considerable error might have slipped into the
determination of the degree in France, and that it could well have amounted
to 100 toises or more; and if we wanted to assume the measures at the Cape
and at Lapland to be entirely correct, or that q = 0 and s = 0, we would find
the error of a degree in France to be r = 168 toises; so that an error of 10′′

would have been made in the astronomical observations. Now, if we assumed
r = 100 toises and s = q, it would be found that q = s = −68 toises; and one
would not know how to admit so large an error. Let us therefore set r = 120
and one will have q = s = −48 toises, which would be just barely acceptable;
but setting r = 125 one will obtain q = s = −43 toises.

11. Since it is absolutely necessary to identify the errors in these several
measurements of degrees and the largest in that of the degree of France,
which is assumed to be not smaller than 125 toises, let us set r = 125. We
will then have

−150 q − 157 s = 13219, thus, approximately q + s = −86 toises.

Before deciding separately between one and the other of the errors q and s,
let us consider the result for p, from the following equalities:

31 p− 65 q = 3296 or p = 1061
2

+ 2 1
10
q;

If one assumes p = 0, then one finds q = −51 and therefore s = −35, but if
one assumes p = 15, it is found that q = −431

2
and therefore s = 421

2
. From

this it is seen that if we wish to assume the error of a degree at Peru to be
larger, we will be obliged to attribute a larger error to that of Lapland. So,
unless the figure of the earth differs considerably from an elliptic spheroid,
it appears that one should assume the following errors:

p = 15 toises, q = −43 toises, r = +125 toises and s = −43 toises.

12. This being fixed, the true sizes of the four degrees will be:

Central Latitude
Peru = 56768 Toises ϕ = 0◦ 30′

Cape = 56994 Toises ϕ = 33◦ 18′

France = 57199 Toises ϕ = 49◦ 23′

Lapland = 57395 Toises ϕ = 66◦ 20′
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and having made these corrections, the figure of the earth will be reducible to
an elliptic spheroid that can be determined by any two of these four measured
degrees. We choose the first and the last, which give

A(1− 1, 4997715 δ) = 56768 Toises

A(1 + 1, 0165980 δ) = 57395 Toises,

from which is obtained

1 + 1, 0165980 δ

1− 1, 4997715 δ
=

57395

56768
;

consequently 143789 δ = 627, so that

δ = 0, 004360055 =
ee− aa
ee+ aa

.

Therefore

ee

aa
=

1 + δ

1− δ
= 1 + 2δ + 2δδ = 1, 0087593 and

e

a
= 1, 00437.

Thus, the diameter of the equator will be to the axis of the earth as 230 to
229, which is precisely the ratio that Newton asserted, from which it can be
concluded that the hypotheses which the great Geometer made concerning
the structure and the attraction of the earth, are in agreement with reality.

13. Having found the value of δ, we immediately deduce that

A = 57142 =
2 aa ee

√
2

(aa+ ee)
3
2

= 0, 01745329,

thus
aa ee

(aa+ ee)
3
2

= 1157526 Toises.

Now we set e
a

= tangω, so that ω = 45◦ 7′ 30′′ , and we shall have

a sinω2 cosω = 1157526,

from which we conclude:
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the semiaxis of the earth a = 3266892 Toises
the semidiameter of the equator e = 3281168 Toises

Now Newton, although he had established the same ratio between the
axis and diameter of the equator, gives 3262168 toises to the semiaxis and
3276433 to the semidiameter of the equator. The reason for this difference
is that I have assumed here a degree measured in France larger than did
Newton. Now, having discovered the true size of the earth’s axis and di-
ameter, it is possible to determine at each latitude the size of a degree on
the meridian. For, setting ϕ for the latitude at the middle of the degree, the
size of this degree will be

57142(1− 0, 00654082 cos 2ϕ).

14. Here I observe again, that if the degree of France had been entirely
omitted, the three others would agree very well among themselves; one would
only need to assume for each an error of 19 toises, so the degrees of Peru
and Lapland would need to be augmented, and that of the Cape diminished.
From this would result a greater difference between the axis and the diameter
of the equator, just as was already noted before the measures at the Cape
were known. But then, supposing p = 19, q = −19, and s = 19, one would
find r = 169 toises, by which the degree of France would need to be increased;
in this case the needed correction to the degree of Lapland would be positive,
instead of negative as I have supposed it above; this is a very sure sign of the
correctness of this measure. Now, whether one rejects the degree of France
or not, it is always necessary to assume q negative, from which one must
conclude that the degree measured at the Cape is too large as stated. One
sees also that the measure made at Quito is very exact; one would not know
how to suppose an error greater than 20 toises, in such a way that the four
measures would be in agreement. For the degree measured in Lapland, it
must also be noted that there the refraction of stars near the zenith, taken
into accont in the other measures, was neglected. Now if one furnishes this
minor correction, one finds that the degree of Lapland is reduced from 57438
to 57422 toises, which approaches even more closely the preceding correction,
where I assumed this degree to be 57395 toises, and the error would only be
27 toises, instead of 43.
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15. However, I have not determined anything specific about the figure
of the earth, since there is still room to doubt whether it can be regarded
as a perfect elliptic spheroid in which the two halves on each side of the
equator be equal and similar: although, whatever other hypothesis that one
makes, one is obliged to take note of some small errors in the observations,
and especially in that of France. My inquiries will turn upon the surface
of a general and perfect elliptic spheroid, whose semi-axis is = a and the
semi-diameter of the equator = e; I will suppose the difference between these
to be very small. Now, to abbreviate the formulae found below, I shall set

ee− aa
ee+ aa

= δ and
2 aa ee

√
2

(aa+ ee)
3
2

= c,

where it is sufficient to remark that if one wishes to apply these results to
the earth, the following values of these two letters will be reasonably exact:

δ = 0, 00436055 and c = 3 273 980 toises.

Thus, that which I have found is reduced to:

Mm =
c dϕ

(1 + δ cos 2ϕ)
3
2

and in integrating, by approximation

EM = c
(
(1 + 15

16
δδ)ϕ− 3

4
δ sin 2ϕ+ 15

64
δδ sin 4ϕ

)
.

16. Here I take as known the latitude of the point M , or the angle
ENM , which I name = ϕ, and from this the length of the arc EM is easily
found; from this, it is seen that setting ϕ = 90◦ or ϕ = 1

2
π, setting for π the

number 3,14159265 etc., the quarter of the ellipse will be

EMA = 1
2
π
(
1 + 15

16
δδ
)
c.

Then, using these abbreviations, one will have the radius of curvature of the
meridian at the point M , or

MO =
c

(1 + δ cos 2ϕ)
3
2

.
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For the same latitude at the point M = ϕ, its distance MQ = CP to the
axis will also be known immediately, with

CP 3

MO
=
e4

aa
cos3 ϕ ;

and therefore,

CP =
cosϕ√

(1 + δ cos 2ϕ)

3

√
c e4

aa
=

ee
√

2√
(aa+ ee)

· cosϕ√
(1 + δ cos 2ϕ)

,

and in the same way,

PM = CQ =
aa
√

2√
(aa+ ee)

· sinϕ√
(1 + δ cos 2ϕ)

.

Now for the Earth, we have just found

e
a

= 230
229

and a = 3 266 892 toises and e = 3 281168 toises.

Or, using only the letters δ and c,

a =
c

(1 + δ)
√

(1− δ)
, e =

c

(1− δ)
√

(1 + δ)
;

so that

CP = MQ =
c

1− δ
· cosϕ√

(1 + δ cos 2ϕ)
and PM = CQ =

c

1 + δ
· sinϕ√

(1 + δ cos 2ϕ)
.
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problem 1

17. Having observed the elevation of the pole at two places M and M ′

on the same meridian, to determine the length of the meridian arc MM ′

between these two places.

solution

Let ϕ be the latitude at M , and ψ at M ′ , and since these two places are on
the same meridian, it is evident that the meridian arc MM ′ between them is
the shortest path which leads from one place to the other. So, introducing the
terms c and δ, which determine the type and size of the the elliptic spheroid,
the size of arc MM ′ will be expressed in the manner

MM ′ = c
((

1 + 15
16
δδ
)

(ψ − ϕ)− 3
4
δ(sin 2ψ − sin 2ϕ) + 15

64
δδ(sin 4ψ − sin 4ϕ)

)
,

neglecting terms in the cube and higher powers of δ. But in any case it would
be easy to extend the approximation further, even to infinity. One can also
determine the situation of each place relative to the axis and the equator,
and do so exactly, without approximation, for one will have

CQ =
c sinϕ

(1 + δ)
√

(1 + δ cos 2ϕ)
, QM =

c cosϕ

(1− δ)
√

(1 + δ cos 2ϕ)
,

CQ ′ =
c sinψ

(1 + δ)
√

(1 + δ cos 2ψ)
, Q ′M ′ =

c cosψ

(1− δ)
√

(1 + δ cos 2ψ)
;

furthermore, the radii of curvature will be

at M =
c

(1 + δ cos 2ϕ)
3
2

, and at M ′ =
c

(1 + δ cos 2ψ)
3
2

,

and these determinations encompass all that can be asked with respect to
these two places.

scholie

18. My intention is to consider any two points on the surface of the earth,
finding the distance between them, as well as their location with respect to
the meridian. Now I have begun my investigation with the simplest case,
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when the two points are on the same meridian, since it is obvious that the
meridian arc between these two points is also the shortest path leading from
one to the other. But, when the two points are not on the same meridian,
one must use the method of maxima and minima to find the shortest path
between them, and I take up this investigation in the following problem.

problem 2

E

A

R

L

M

m

r

µ

ω

ζ

θ

λ
ϕ

Figure 2: Original figure, with angles ζ, θ, λ, ϕ,
and ω added.

19. Knowing (Fig. 2) the
latitude of two locations L and
M , together with their difference
in Longitude, to find the short-
est path LM on the surface of the
earth, which leads from one to the
other.

solution

Through the points L and M let
the meridians ALE and AMR be
drawn; then the angle formed at
the pole by these two meridians will
measure the difference in longitude;
given this, set

the difference in Longitude, or the angle LAM = ω,

the Latitude of the Place L = λ,

and the Latitude of the Place M = ϕ,

which are the three quantities given, besides the size and shape of the earth.
Now let LM be the shortest path between the points L and M , and let
it be lengthed by an infinitely small amount beyond M to the point m;
let the infinitely close meridian through m be Amr, upon which one takes
Aµ = AM , so that the latitude in µ is the same as in M , namely = ϕ, and
the latitude in m will be ϕ+ dϕ; thus, the meridian element between m and
µ will be

mµ =
c dϕ

(1 + δ cos 2ϕ)
3
2

.

13



Furthermore, one will have the angle MAµ = dω, which is equal to the angle
formed at the axis of the earth by perpendicular lines drawn from M and µ.
Now these perpendicular lines, represented in Figure 1 by MQ, are

=
c cosϕ

(1− δ)
√

(1 + δ cos 2ϕ)
,

from which is extracted the element

Mµ =
c dω cosϕ

(1− δ)
√

(1 + δ cos 2ϕ)
;

and therefore the element of the path LM will be

Mm = c

√(
dϕ2

(1 + δ cos 2ϕ)3
+

dω2 cosϕ2

(1− δ)2(1 + δ cos 2ϕ)

)
,

for which the integral must be minimized. Let us set dϕ = p dω in order to
find a minimum for the integral formula∫

dω

√(
pp

(1 + δ cos 2ϕ)3
+

cos2 ϕ

(1− δ)2(1 + δ cos 2ϕ)

)
.

We set √(
pp

(1 + δ cos 2ϕ)3
+

cos2 ϕ

(1− δ)2(1 + δ cos 2ϕ)

)
= V ,

and I have shown3 that, if the differential of V is expressed by

dV = M dω +N dϕ+ P dp ,

then the equation which contains the minimum is expressed in the form

0 = N − dP

dω
,

or, since in this case M = 0, this equation is reduced to this form

V − Pp = Const.

3See, for example, Proposition III, Chapter II, from E65(1743), Methodus inveniendi
lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperi-
metrici lattissimo sensu accepti. [tr]
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Now, differentiating V gives us

P =
p

(1 + δ cos 2ϕ)3 V
,

from which we conclude

V V − pp

(1 + δ cos 2ϕ)3
=

cos2 ϕ

(1− δ)2(1 + δ cos 2ϕ)
=
V

α

and then taking the squares, our equation becomes

αα cos4 ϕ

(1− δ)4(1 + δ cos 2ϕ)2
=

pp

(1 + δ cos 2ϕ)3
+

cos2ϕ

(1− δ)2(1 + δ cos 2ϕ)
.

Thus, the element of the shortest path

Mm =
α c dω cos2 ϕ

(1− δ)2(1 + δ cos 2ϕ)
.

Now, taking for p its value
dϕ

dω
, we shall have

dω2 cos2 ϕ (αα cos2 ϕ− (1− δ)2(1 + δ cos 2ϕ))

(1− δ)4(1 + δ cos 2ϕ)2
=

dϕ2

(1 + δ cos 2ϕ)3
,

from which we obtain

dω =
(1− δ)2 dϕ

(1 + δ cos 2ϕ)
1
2 cosϕ

√
(αα cos2 ϕ− (1− δ)2(1 + δ cos 2ϕ))

and

Mm =
αc dϕ cosϕ

(1 + δ cos 2ϕ)
3
2

√
(αα cos2 ϕ− (1− δ)2(1 + δ cos 2ϕ))

.

But, before integrating these formulae, it is already possible to determine the
angle AMm, which the arc LM makes with the meridian AM , for one will
have

sinAMm =
Mµ

Mm
=

(1− δ)
√

(1 + δ cos 2ϕ)

α cosϕ
;
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whence, putting ϕ = λ, one will have the angle ALM , so that

sinALM =
(1− δ)

√
(1 + δ cos 2λ)

α cosλ
.

Putting this angle ALM = ζ, in order to introduce it into the calculation in
place of the constant α, we shall have

α =
(1− δ)

√
(1 + δ cos 2λ)

sin ζ cosλ
.

This value, being substituted, yields

sinAMm =
sin ζ cosλ

√
(1 + δ cos 2ϕ)

cosϕ
√

(1 + δ cos 2λ)

and

dω =
(1− δ) dϕ sin ζ cosλ

(1 + δ cos 2ϕ)
1
2 cosϕ

√
(cos2 ϕ(1 + δ cos 2λ)− sin2 ζ cos2 λ(1 + δ cos 2ϕ))

Mm =
c dϕ cosϕ

√
(1 + δ cos 2λ)

(1 + δ cos 2ϕ)
3
2

√
(cos2 ϕ(1 + δ cos 2λ)− sin2 ζ cos2 λ(1 + δ cos 2ϕ))

.

In order to integrate these formulae, it is necessary to separate the parts
which depend on the small fraction δ, and neglecting terms with a square or
higher power, one will have

dω =
dϕ sin ζ cosλ

cosϕ
√

(cos2 ϕ− sin2 ζ cos2 λ)
− δ dϕ sin ζ cosλ cosϕ√

(cos2 ϕ− sin2 ζ cos2 λ)
− δ dϕ sin ζ cos2 ζ cos3 λ cosϕ

(cos2 ϕ− sin2 ζ cos2 λ)
3
2

,

of which the integral is found to be as follows:

ω = arcsin

(
sin ζ cosλ sinϕ

cosϕ
√

(1− sin2 ζ cos2 λ)

)
− δ sin ζ cosλ arcsin

(
sinϕ√

(1− sin2 ζ cos2 λ)

)

− δ sin ζ cos2 ζ cos3 λ sinϕ

(1− sin2 ζ cos2 λ)
√

(cos2 ϕ− sin2 ζ cos2 λ)
+ Const. ,

where the constant is to be determined so that in setting ϕ = λ, the angle
ω, or the difference in longitude, vanishes.
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Consequently one will have:

ω = arcsin

(
sin ζ cosλ sinϕ

cosϕ
√

(1− sin2 ζ cos2 λ)

)
− arcsin

(
sin ζ sinλ√

(1− sin2 ζ cos2 λ)

)

− δ sin ζ cosλ arcsin

(
sinϕ√

(1− sin2 ζ cos2 λ)

)
+ δ sin ζ cosλ arcsin

(
sinλ√

(1− sin2 ζ cos2 λ)

)

− δ sin ζ cos2 ζ cos3 λ sinϕ

(1− sin2 ζ cos2 λ)
√

(cos2 ϕ− sin2 ζ cos2 λ)
+
δ sin ζ cos ζ sinλ cos2 λ

1− sin2 ζ cos2 λ
.

We proceed in the same manner to find the length of the path LM , and
since we shall have

Mm =
c dϕ cosϕ√

cos2 ϕ− sin2 ζ cos2 λ

(
1 + 3

2
δ + δ sin2 ζ cos2 λ− 3δ cos2 ϕ− δ sin2 ζ cos2 ζ cos4 λ

1− sin2 ζ cos2 λ

)
,

the integral with the proper constant shall be found:

LM = c
(
1− 1

2
δ sin2 ζ cos2 λ

)
arcsin

(
sinϕ√

(1− sin2 ζ cos2 λ)

)

− c
(
1− 1

2
δ sin2 ζ cos2 λ

)
arcsin

(
sinλ√

(1− sin2 ζ cos2 λ)

)
− 3

2
δ c sinϕ

√
(cos2 ϕ− sin2 ζ cos2 λ) + 3

2
δ c cos ζ sinλ cosλ

− δc sin2 ζ cos2 ζ cos3 λ sinϕ

(1− sin2 ζ cos2 λ)
√

(cosϕ− sin2 ζ cos2 λ)
+
δc sin2 ζ cos ζ sinλ cos3 λ

1− sin2 ζ cos2 λ
.

Thus, knowing the two elevations of the pole λ and ϕ, at L and M , together
with the angle ALM = ζ which the path LM makes with the meridian at L,
one can determine the angle AMm which the path makes with the meridian
at M , as well as the difference in longitude, i.e., the angle LAM , and the
length of the path LM itself.
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corollary 1

20. If we introduce also the angle AMm = θ, we shall have

sin θ =
sin ζ cosλ

√
1 + δ cos 2ϕ

cosϕ
√

1 + δ cos 2λ

and this value holds in general, because no approximation is yet employed.
But, if one wants to make use of it, one will have either

sin θ =
sin ζ cosλ

cosϕ

(
1− 1

2
δ cos 2λ+ 1

2
δ cos 2ϕ

)
or else

sin θ =
sin ζ cosλ

cosϕ

(
1− δ cos2 λ+ δ cos2 ϕ

)
.

corollary 2

21. To shorten the calculation of approximate values of ω and LM , one
can seek an angle α which is

α = arcsin

(
sin ζ cosλ sinϕ

cosϕ
√

1− sin2 ζ cos2 λ

)
− arcsin

(
sin ζ sinλ√

1− sin2 ζ cos2 λ

)

and then one will obtain

ω = α− δ sin ζ cosλ arcsin

(
sinα cosϕ

sin ζ

)
− δ sinα cos ζ cos2 λ cosϕ√

cos2 ϕ− sin2 ζ cos2 λ
,

and

LM = c
(
1− 1

2
δ sin2 ζ cos2 λ

)
arcsin

(
sinα cosϕ

sin ζ

)
− δ c sinα sin ζ cos ζ cos2 λ cosϕ√

cos2 ϕ− sin2 ζ cos2 λ

− 3
2
δ c sinϕ

√
(cos2 ϕ− sin2 ζ cos2 λ) + 3

2
δ c cos ζ sinλ cosλ.
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22. If δ = 0, one would derive from these formulae all the known rules
of Spherical Trigonometry; but having already treated this subject amply,4

I go no further here. However it is to be remarked that given the three el-
ements ζ, λ, and ϕ, one can determine the fourth, θ, without integration or
approximation; while the two final elements ω ad LM are not known without
additional information.

scholie

23. So there they are, the formulae which contain in general the princi-
ples of Spheroidal Trigonometry, having found the solution of triangle LAM .
For, although I assume one of its angles is at the pole A, this is a limitation
which the nature of the problem seems absolutely to require, and if none of
the three angles falls at one of the poles, it will be necessary to draw through
each its meridian, and to reduce by the case of two or three such triangles as
I have just considered. Since a spheroidal surface is not similar everywhere,
in order to fix the situation of an arbitrary point, it is necessary to know its
place with respect to the poles of the spheroid, which is determined most
conveniently by the latitude or the elevation of the pole: and it is in view
of this, that for the points L and M I have introduced the angles λ and ϕ,
which mark the latitudes, into the calculation. Now from this one is in a
position to fix the meridian arcs AL and AM themselves, which give the
absolute distances of these points from the pole A. However, these distances
have no immediate influence on the solution of the problem, and it suffices
to know the latitude of these points. And then for the sides, or the shortest
lines that can be drawn from one point to any other, the principal deter-
mination upon which it is necessary to reflect is the angle that such a line
makes with the meridians. For these reasons, having two arbitrary points
L and M on a spheroidal surface, in order to seek the shortest path which
leads from one to the other, it is first necessary to pay regard to the latitude
of each of these two points, as in the preceding computation the angle λ
marks that of point L and ϕ that of point M . Next, after having drawn for
the points L and M their meridians AL and AM , it is a matter of knowing
first the angle LAM = ω, which marks the difference in longitude of the two

4E214(1755), Principes de la Trigonométrie Sphérique, Tirés de la Mèthode des Plus
Grands et Plus Petits[tr]
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proposed locations L and M , and then the angles ALM = ζ and AMm = θ,
that the shortest route makes with the meridians at L and M . And finally
one will have to determine the length itself of the shortest path LM , so that
we must in all consider six elements λ, ϕ, ζ, θ, ω and LM , which have, as in
ordinary Trigonometry, such a relation among them that knowing three, one
can determine the three others. In the solution which I have just presented,
I considered the three elements λ, ϕ, and ζ as given, from which the fourth,
θ, is easily determined by the equation

sin θ =
sin ζ cosλ

√
1 + δ cos 2ϕ

cosϕ
√

1 + δ cos 2λ
,

so that the solution will always be the same, some other three of these four
elements λ, ϕ, ζ, and θ being given, since the fourth of them will already be
known. But the situation is not the same, if one of the two others ω and LM
are found among the known, since because the formulae which express the
values of ω and LM are so complicated and only valid when the fraction δ is
extremely small, one will not know how to eliminate the unknown elements.
However, in the case where δ is extremely small, one will only have to regard
the problem as in ordinary trigonometry, and then look for the corrections
which result from the aberrations of the spherical figure, by the ordinary
method of approximations. But it seems that the evolution of such a case
will almost never be necessary, seeing as it can be assumed that the latitudes
of points L and M , as well as the angles ζ and θ, formed by the line LM
and the meridians through L and M , are all known, being determinable by
the most simple operations. Now the greatest advantage which one could
draw from this solution, is without doubt a new method that it furnishes for
discovery of the true ellipticity of the figure of the earth, or the ratio between
its axis and the diameter of its equator; and this can be carried out, without
need of an actual measurement of any line drawn on the surface of the earth,
as I shall explain more fully in the following problem.
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problem 3

24. To determine the ratio between the diameter of the equator and the
axis of the earth without the aid of actual measures of several degrees of the
meridian, by a method which can be carried out in a single country on the
earth.

solution

It has been believed until now, that the only means to know the figure of
the earth was to measure the size of a degree along the meridian in widely
different latitudes; so that from their difference one could conclude that which
is found between the axis of the earth and the diameter of its equator. But
the method which I shall propose here requires no more than operations
which can be completed within a rather bounded country, or a nation of
moderate extent, and this without needing to measure geometrically any line
drawn on the surface of the earth. Thus, we suppose that the point L is
found at one end of a large plane; first it is necessary that the height of
the pole be observed, and that the line of the meridian be drawn with the
utmost precision. It is sufficient that the absolute elevation of the pole be
known to within one minute, but it is necessary that the distance of several
fixed stars from the zenith at the time of their culmination be observed very
exactly. So let λ be the height of the pole at the point L. Then, from the
point L, let one depart along a route which makes an oblique angle with the
meridian, but let this angle, which the beginning of the route makes with
the meridian through L, be measured as precisely as possible. Next let the
same route be followed, periodically setting down vertical pikes, in such a
way that they all appear to be arranged in a straight line; let this apparently
straight line be continued so long as the terrain will permit, keeping always
in view that that path so described agrees with that which would be formed
by a rope stretched on the ground. It would be well that this operation could
be extended for a length of several German miles. In this way one will be
sure of having traced the shortest line on the earth’s surface, and it will not
be necessary to measure its length. So let ζ be the angle which this route
makes with the meridian at L, and having followed this route very far to
the point M , let the distances to the zenith of the same fixed stars from M
at their passage through the meridian be observed with the greatest care, so
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that the difference of latitudes between L and M may be exactly determined,
which can be done to within several seconds; so let ϕ be the elevation of the
pole at M , and although this measure may perhaps be not exact to the last
degree, at least the difference between λ and ϕ should be as exact as possible.
Finally, the meridian at M should also be traced, and the angle AMm which
it makes with the continuation of the same route LM be measured; one will
name this angle= θ; these are all the operations which must be done in order
to determine the ratio between the semi-axis= a and the semi-diameter= e.

For, setting
ee− aa
ee+ aa

= δ, so that

aa

ee
=

1− δ
1 + δ

and
a

e
=

2− δ
2 + δ

approximately, or a
e

= 1 + δ, we need only solve this equation:

sin θ cosϕ
√

1 + δ cos 2λ = sin ζ cosλ
√

1 + δ cos 2ϕ ,

from which, being given the four angles λ, ϕ, ζ, and θ, is extracted

δ =
sin2 ζ cos2 λ− sin2 θ cos2 ϕ

sin2 θ cos2 ϕ cos 2λ− sin2 ζ cos2 λ cos 2ϕ
,

and therefore

ee

aa
=

sin2 ζ cos2 λ sin2 ϕ− sin2 θ cos2 ϕ sin2 λ

sin2 θ cos2 ϕ cos2 λ− sin2 ζ cos2 λ cos2 ϕ
,

or

ee

aa
= 1 +

sin2 ζ cos2 λ− sin2 θ cos2 ϕ

cos2 λ cos2 ϕ(sin2 θ − sin2 ζ)
.

Thus, having exactly observed and measured the angles λ, ϕ, ζ, and θ, it
will be possible to determine the ratio betwen the axis of the earth and
the diameter of its equator, by means of this formula which I have just
discovered; concerning which, it must be remarked, that it is exact, and
requires absolutely no approximation, as must be resorted to in using the
ordinary method. But, to make this conclusion all the more certain, it is
required to choose such a country on the earth and such a direction for the
path which is traced, that small errors committed in the measurement of the
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angles influence the conclusion as little as possible. Now it is evident that,
the larger is the denominator

cos2 λ · cos2 ϕ · (sin2 θ − sin2 ζ),

the larger must be the numerator, or the difference between

sin2 ζ cos2 λ and sin2 θ cos2 ϕ,

and this is without doubt the most favorable case, since then a small error
commtted in the measure of the angles influences less the value of the nu-
merator, upon which depends the justice of the conclusion.

remark

25. After having observed the two heights of the pole at L and M ,
together with the angle ALM = ζ, if the earth were spherical, the angle
AMm would be such that

sin θ =
sin ζ cosλ

cosϕ
;

so the ellipticity of the earth could not be inferred unless this angle was found
to be smaller or larger. Now, on account of the ellipticity, we have

sin θ =
sin ζ cosλ

cosϕ

√
1 + δ cos 2ϕ

1 + δ cos 2λ
,

or indeed, since δ is very small,

sin θ =
sin ζ cosλ

cosϕ
(1 + δ cos2 ϕ− δ cos2 λ).

Here it is evident that the difference between the two latitudes must be
perceptible; for if it were too small, the slightest error committed in their
observation would produce a very considerable error in the conclusion. So
the route LM must not be perpendicular to the meridians, since in following
such a route, the latitude does not change perceptibly. Here one should
principally take into consideration the length of the route LM , although it is
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not necessary to measure it; for it is advantageous that can reach a reasonably
certain conclusion, without being obliged to follow this route too far. So let
s be the length of the route LM , or rather let s be the angle to which
corresponds an arc equal to this path on a spherical surface equal to that of
the earth, and since this angle is quite small, one will have approximately
ϕ = λ+s cos ζ, from which it is seen that cos ζ should not be too small, since
then the difference between the angles ζ and θ would become too small, which
would render the conclusion equally uncertain. For, having

cosϕ = cosλ− s cos ζ sinλ,

since s is very small, one would have

sin θ =
sin ζ

1− s cos ζ tang λ
(1− 2δs cos ζ sinλ cosλ) ,

from which it is seen, that for the difference 2δs cos ζ sinλ cosλ to become
perceptible, the country LM should not be too close, either to the pole, or
to the equator.

example 1

26. Suppose that the place L is found at the latitude of 48◦ , so that
λ = 48◦ , and that the route LM makes an angle of ζ = 30◦ with the
meridian. Let this route be continued until it arrives at M with a latitude
of 48◦ 52′ , which will occur after the route is extended by a distance of
approximately 15 German miles. Having then ϕ = 48◦ 52′ , if the earth were
spherical, one would find the angle AMm = θ = 30◦ 34′ 15′′ . But because of
the ellipticity of the earth, if we assume δ = 1

229
, the angle θ is found to be

smaller by 8′′ and we shall have θ = 30◦ 34′ 7′′ .
But if from the same place L, or λ = 48◦ , one has set out at the angle

ALM = ζ = 60◦ ,

until one has arrived at the latitude ϕ = 48◦ 30′ , which would also happen
after having gone a distance of about 15 German, miles, under the hypothesis
of a spherical earth one would find AMm = θ = 60◦ 59′ 23′′ . But under the
hypothesis δ = 1

229
, this angle would be θ = 60◦ 59′ 9′′ and therefore 14′′ less.
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Thus, this case will be preferable to the preceding for knowing from it the
ellipticity of the earth.

Suppose that in setting out from the same place L or λ = 48◦ , the
route LM is such that the angle ALM = ζ = 80◦ , and that after having
made a course of about 15 German miles, one arrives at M with latitude
ϕ = 48◦ 10′ . Then under the hypothesis of a spherical earth the angle AMm
would be θ = 81◦ 6′ 59′′ ; but under the hypothesis of ellipticity δ = 1

229
this

angle would be θ = 81◦ 6′ 42′′ and therefore 17′′ less.

example 2

27. Let us assume the country large enough that the route LM can be
continued to a distance of about 30 miles and the latitude of place L be the
same as previously, that is, λ = 48◦ . First we suppose that the angle of
the route ALM = ζ = 30◦ and the latitude at M will be ϕ = 49◦ 44′ . So,
if the earth were spherical, the angle AMm would be θ = 31◦ 10′ 20′′ ; but
under the hypothesis of ellipticity δ = 1

229
this angle will be θ = 31◦ 10′ 4′′

and therefore about 16′′ smaller.
But in departing from the same place L or λ = 48◦ , at the angle ALM =

ζ = 60◦ , for a distance of about 30 miles, until one arrives at the latitude
ϕ = 49◦ , the hypothesis of a spherical earth would give the angle AMm =
θ = 62◦ 2′ 27′′ ; but the hypothesis of ellipticity δ = 1

229
would produce θ =

62◦ 1′ 58′′ , the difference being 29′′ .
Now suppose that the route traced, LM , makes with the meridian at L

the angle ζ = 80◦ and that after having continued for about 30 miles, one
has arrived at M with latitude ϕ = 48◦ 21′ . Then under the spherical hy-
pothesis the angle AMm would be θ = 82◦ 32′ 53′′ ; but under the hypothesis
of ellipticity δ = 1

229
this angle will be θ = 82◦ 32′ 11′′ , about 42′′ less.

Since in this case the difference in latitude is still quite perceptible, one
could bring the angle ζ closer to 90◦ ; so, let the angle ALM = ζ = 85◦ , and
say that after a path of about 30 miles one arrives at M , where the latitude
is ϕ = 48◦ 10′ . Then under the spherical hypothesis the angle AMm would
be θ = 88◦ 3′ 43′′ , but under the hypothesis of ellipticiy δ = 1

229
this angle

will be θ = 88◦ 2′ 27′′ , and therefore about 76′′ less.
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corollary

28. It is seen by this, unless the country LM be very close to the equator,
it is always advantageous to take the angle ALM to be approximately right.
It could even be made entirely right, but then the calculation will become a
little different than that which I have used until now, since in following the
route LM , one will get closer and closer to the equator. But it must well be
noted that one sets aside here all error that could be found in the height of
the pole. So it will be worth the trouble to develop particularly this case.

problem 4

E

A

R

L

M
F

Figure 3

29. If, in departing (Fig. 3) from the
place L, the route LM is traced so that it
is perpendicular to the meridian ALE, and the
route be continued to M , where the height of
the pole is observed: to find the angle AML,
which this route will make with the merid-
ian drawn through M , under the hypothesis of
a spherical earth, as well as under the hy-
pothesis of ellipticity expressed by the fraction
δ.

solution

Let λ be the height of the pole observed at L, and tracing the route LM
perpendicularly to the meridian drawn at L, the height of the pole will be
found there to be smaller and smaller. For, if under the hypothesis of a
spherical earth the arc LM be continued until it attains the angle s, and
if the height of the pole at M be named = ϕ, one will have by spherical
trigonometry that sinϕ = sinλ cos s and therefore ϕ < λ. So in general, let
ϕ be the height of the pole observed at M , and since ϕ < λ, we set ϕ = λ−ω,
so that ω is an angle very small with respect to λ, because we suppose that
the place L is quite distant from the equator and the line LM very short.
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This being set, if the earth is spherical and we call the angle AML = θ,5

we shall have, since ζ = 90◦ ,

sin θ =
cosλ

cosϕ
=

cosλ

cosλ cosω + sinλ sinω
,

and since ω is very small,

cos θ =

√
2ω sinλ cosλ+ ω2 sin2 λ− ω2 cos2 λ

cosλ+ ω sinλ

or

cos θ =

(
1

cosλ
− ω sinλ

cos2 λ

)(√
2ω sinλ cosλ− ω2(cos2 λ− sin2 λ)

2
√

2ω sinλ cosλ

)
,

from which we conclude:

cos θ =

√
ω sin 2λ

cosλ
− ω2(2− cos 2λ)

2 cosλ
√
ω sin 2λ

.

Thus, since the angle θ is nearly right, if we set θ = 90◦ − µ, we shall have,
because cos θ = sinµ = µ− 1

6
µ3,

µ =

√
ω sin 2λ

cosλ
− ω2(4− cos 2λ)

6 cosλ
√
ω sin 2λ

.

But we now consider the earth as an ellipsoid, and having

sin θ =
cosλ

cosϕ
(1 + δ cos2 ϕ− δ cos2 λ)

or

sin θ = (1− ω tang λ)(1 + 2δω sinλ cosλ) ,

since the angle θ is again nearly right, we set for this case θ = 90◦ − µ and
we shall find

µ =

√
ω sin 2λ

cosλ
− ω2(4− cos 2λ)

6 cosλ
√
ω sin 2λ

− 2δω sinλ cos2 λ√
ω sin 2λ

.

5ALM = θ in both Memoires de l’academie des sciences de Berlin and Opera Omnia[tr]
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From this it is seen that the difference between the spherical and elliptical
figure of the earth produces in the angle AML = θ a difference which amounts
to

δ cosλ
√
ω sin 2λ ,

by which the angle AML is larger under the hypothesis of the ellipsoid than
under the spherical hypothesis.

But, if the route ML is measured on the spherical surface by the angle
s, having

sinϕ = sinλ cos s = sinλ cosω − cosλ sinω ;

one will have ω = 1
2
ss tang λ and therefore the said distance will be

= δs sinλ cosλ .

corollary 1

30. From this one sees that this difference becomes the largest under
the latitude of 45◦ , the length of the route s remaining the same. Now,
if we set s = 2◦ , λ = 45◦ , and δ = 1

229
, this difference amounts to only

1
229
· 1
2
s = 15 2

3

′′
, which is much less than the last case of the second Example

(paragraph 27), where for an equal route having taken the angle ζ = 85◦ ,
the difference amounts to 76′′ .

corollary 2

31. So it is not advantageous to make the angle ALM = ζ right, even
though the difference becomes quite perceptible, if this angle is brought so
near to 90◦ that it no longer differs perceptibly; since in the case of ζ = 85◦ ,
the difference is found to be 76′′ , while in making the angle ζ right, it only
amounts to about 15′′ .
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corollary 3

32. It is thus very important to determine the angle ζ, so that when the
route LM follows it and is produced up to a certain distance, the difference
between the values of the angle θ which correspond to the spherical and el-
liptical figures of the earth, becomes the largest.

problem 5

33. Find (Fig. 2) the direction of the route LM which must be chosen
so that, after having arrived at M and there having observed the height of
the pole, the angle of the route with the meridian at M differs by the greatest
possible amount under the hypotheses of sphericity and ellipticity of the earth.

solution

Let the height of the pole at L be = λ, the angle of the route LM , which
is sought, be ALM = ζ, and the height of the pole at M be = ϕ. Now the
principal quantity which must be considered here is the length of the path
LM , so that in taking it about the same, the difference between sphericity
and ellipticity of the earth becomes the most marked in the angle AMm. Let
the angle s denote the length of the route LM , if the earth be spherical, and
then one will have by spherical trigonometry

sinϕ = cos ζ cosλ sin s+ sinλ cos s .

So this angle ϕ is the height of the pole at M , and it must certainly be noted,
that when the earth is not spherical, the angle s no longer corresponds to
the length of the route LM , where it only approximates the size.

Now consider the earth as spherical and set the angle AMm = θ, and we
have seen

sin θ =
sin ζ cosλ

cosϕ
.

But giving to the earth an ellipticity expressed by δ, this angle AMm will
be a little smaller; we set therefore this angle AMm = θ − ω, and we shall
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have

sin(θ − ω) =
sin ζ cosλ

cosϕ

(
1− δ(cos2 λ− cos2 ϕ)

)
;

now this equation reduces to

cosω − cotg θ sinω = 1− δ(cos2 λ− cos2 ϕ),

from which it is seen that, the angle ω being very small, the case will not be
known to be more favorable than when θ = 90◦ , because then, since

cosω = 1− 1
2
ωω and ω2 = 2δ(cos2 λ− cos2 ϕ) ,

the difference ω is determined by
√
δ, and is therefore much more considerable

than if it were proportional to δ.
So, set θ = 90◦ and it is required that

sin ζ =
cosϕ

cosλ
, or cosϕ = sin ζ cosλ ,

thus sinϕ =
√

(1− sin2 ζ cos2 λ). This value being substituted gives

1− sin2 ζ cos2 λ = cos2 ζ cos2 λ sin2 s+ 2 cos ζ sinλ cosλ sin s cos s+ sin2 λ cos2 s ,

or

0 = (cos ζ cosλ cos s− sinλ sin s)2 ;

thus

cos ζ = tang λ tang s

and from this we conclude

sinϕ =
sinλ sin2 s

cos s
+ sinλ cos s =

sinλ

cos s
.

Having thus established the length of the route more or less according to
the nature of the country, so that fifteen German miles are counted as one
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degree: first one will have the angle ALM = ζ, which the route must make
with the meridian at L, by the formula

cos ζ = tang λ tang s

and on this route one will get to a place M , where the elevation of the pole
will be ϕ, so that

sinφ =
sinλ

cos s
.

Now having arrived at this height of the pole on the route marked LM ,
it is certain, that if the earth were spherical, the route would be found to
be perpendicular to the meridian at M ; that is, the angle θ would be right.
But, under the hypothesis of the ellipticity of the earth, the angle AMm will
be found to be less than right; thus, suppose that this angle is 90◦ − ω and
we shall have, because θ = 90◦ ,

cosω = 1− δ(cos2 λ− cos2 ϕ) = 1− 1
2
ωω ,

thus

ω =
√

2δ(cos2 λ− cos2 ϕ) ;

now

cos2 ϕ = 1− sin2 λ

cos2 s

and therefore

cos2 λ− cos2 ϕ = − sin2 λ+
sin2 λ

cos2 s
= sin2 λ tang2 s .

Consequently we shall have

ω = sinλ tang s
√

2δ ,

or, since the arc s is always so small that it can be identified with the tangent,
the difference of the angles AMm corresponding to the sphericity or to the
ellipticity of the earth, will be

ω = s sinλ ·
√

2δ .
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And reciprocally, having carefully observed the angle AMm = 90◦ −ω, from
this is deduced the elliptic figure of the earth

δ =
ω2

2ss sin2 λ
,

or, because s =
cos ζ

tang λ
, one will have

δ =
ωω

2 cos2 ζ cos2 λ
.

corollary 1

34. So this method seems quite advantageous in all regions of the earth
which are not too close to the equator, since, when sinλ is very small, the
difference ω will become imperceptible. But the further the country is from
the equator, so much more will this operation be practiced with success.
However, it is evident that when too close to the poles, this method loses
its usefulness in other ways, since under the poles themselves there are no
meridian lines at all.

corollary 2

35. The further one continues along the route LM the more the dif-
ference ω becomes large in the same ratio. But it is not the same for the
ellipticity δ, which follows an under-doubled ratio, so that if the value of δ
becomes four times as large, the angle ω will only be doubled. Now the size
of this angle ω will amply compensate for this shortcoming.
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corollary 3

36. Suppose that the ellipticity δ = 1
229

and that the length of the route
LM is about 15 German miles. Furthermore let the height of the pole at L

be 45◦ and, because sinλ =
1√
2

and s = 1◦ , approximately we shall have

ω = 1
15

degree = 4′ ; and this difference is sizeable enough to discover the
true ellipticity of the earth.

example

37. Suppose that the place L is found at a latitude of 52◦ 31′ and that
it is convenient to trace a line towards the west, or approximately, for a dis-
tance of about 15 miles and it is a matter of finding the most advantageous
direction to trace the line LM . Since λ = 52◦ 31′ and s = 1◦ , one will have

log tangλ = 10,1152811 log sinλ = 9,8995636
+ log tang s = 8,2419215 − log cos s = 9,9999338

log cos ζ = 8,3572026 log sinϕ = - 9,8996298

thus ζ = 88◦ 41′ 45′′ and ϕ = 52◦ 31′ 41′′ .

Now, since it would be impossible to observe these measures exactly and it
suffices to get them about right, let us suppose that a line LM was traced
so that it makes with the meridian drawn through L towards the north an
angle of 88◦ 41′ 30′′ and that this line was extended to M , where the height
of the pole was observed to be 40′′ higher than at L, so that

λ = 52◦ 31′ , ζ = 88◦ 41′ 30′′ , and ϕ = 52◦ 31′ 40′′ .

This being set, let us see at what angle this line LM will be inclined to the
meridian drawn through M , if the earth be spherical or an elliptic spheroid
under the hypothesis δ = 1

229
. First, if the earth were spherical and the angle6

AMm = θ , then having

sin θ =
sin ζ cosλ

cosϕ
,

6AMm = θ in Memoires de l’academie des sciences de Berlin, but AMm = 0 in Opera
Omnia[tr]
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we would have this calculation to make:

log sin ζ = 9, 9998868
log cosλ = 9, 7842824

9, 7841692
log cosϕ = 9, 7841726

thus log sin θ = 9, 9999966

and therefore θ = 89◦ 46′ 24′′ .

But, if the earth were spheroidal according to the value δ = 1
229

, and θ once
again denoted the angle AMm, having

sin θ =
sin ζ cosλ

cosϕ

(
1− δ(cos2 λ− cos2 ϕ)

)
,

the following calculation would be required:

log cos2 λ = 9, 5685648 . . . . . . cos2 λ = 0, 3703094
log cos2 ϕ = 9, 5683452 . . . . . . cos2 ϕ = 0, 3701223

cos2 λ− cos2 ϕ = 0, 0001871
δ(cos2 λ− cos2 ϕ) = 0, 0000008

and therefore

sin θ = 0, 9999992 · sin ζ cosλ

cosϕ

now

log sin ζ cosλ
cosϕ

= 9, 9999966

log 0, 9999992 = 9, 9999996

log sin θ = 9, 9999962

and therefore

θ = 89◦ 45′ 36′′ .

So the difference is 48′′ , but it could well amount to 4′ 30′′ , if the determi-
nations found by the calculation had been followed exactly.
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remark 1

38. But in this example and other similar ones, it must be remarked
that the difference of the latitudes λ and ϕ is so small, that the least error
committed in the observations would have too much influence on the conclu-
sion. For, since after having observed the four angles λ, ϕ and ζ, θ, one has
for the ellipticity of the earth

δ =

(
1− sin θ cosϕ

sin ζ cosλ

)
:
(
cos2 λ− cos2 ϕ

)
;

in order that the conclusion be sure, the denominator must not come out too
small. Now, to show how much an error committed in the measure of these
angles may influence the conclusion, let us consider the last case of the 2e

example (paragraph 27), where, supposing δ = 1
229

, the four angles would be

λ = 48◦ , ϕ = 48◦ 10′ , ζ = 85◦ , and θ = 88◦ 2′ 27′′

and let us suppose that in the difference of the latitudes λ and ϕ and in that
of the angles ζ and θ there be error of 5′′ , so that from the actual observations
is drawn the result

λ = 48◦ , ϕ = 48◦ 10′ 5′′ , ζ = 85◦ , and θ = 88◦ 2′ 22′′

and let us see what will be the ellipticity found from this:

log sin θ = 9, 9997457 log cos2 λ = 9, 6510218
log cosϕ = 9, 8240919 log cos2 ϕ = 9, 6481838

9, 8238376 cos2 λ = 0.4477358
log sin ζ = 9, 9983442 cos2 ϕ = 0.4448195
log cosλ 9, 8255109 Denominator = 0, 0029163

9, 8238551

log sin θ cosϕ
sin ζ cosλ

= 9, 9999825 thus δ = 403
29163

= 1
72

number = 0, 9999597
Numerator = 0.0000403

Thus, one would find the ellipticity much larger than it is in reality and
this large difference results principally from the error of the angle ϕ in the
numerator; for the denominator does not suffer greatly. For, if there is an
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error in the angle ϕ of dϕ, the value of δ thereby becomes false by

dϕ sin θ sinϕ

sin ζ cosλ(cos2 λ− cos2 ϕ)
,

that is, this error will be to the quantity δ itself, as dϕ sin θ sinϕ to
sin ζ cosλ − sin θ cosϕ. Thus, in order that the error not be too large,
sin ζ cosλ− sin θ cosϕ and therefore also the denominator

cos2 λ− cos2 ϕ

must not become too small.

remark 2

39. So it will be better to make the angle ALM = ζ smaller, even
though the difference in the angle θ for the spherical and elliptical hypotheses
becomes smaller; for the advantages noted above, when the angle ζ is taken
almost right, suppose absolutely that the slightest error is not committed in
the observation of latitudes and as soon as some error should be suspected,
this route must be abandoned and others, where the angle ζ is taken much
smaller, be preferred to it. So for example having found

δ = 1
229
, λ = 48◦ , ϕ = 49◦ , ζ = 60◦ , the angle θ = 62◦ 1′ 58′′ ,

we suppose that one had found by actual operations that

λ = 48◦ , ϕ = 49◦ 0′ 5′′ , ζ = 60◦ , and θ = 62◦ 1′ 53′′

and we look for the ellipticity δ :

log sin θ = 9, 9460614 log cos2 λ = 9, 6510218
log cosϕ = 9, 8169308 log cos2 ϕ = 9, 6338616

9, 7629922
log sin ζ = 9, 9375306 cos2 λ = 0, 4477358
log cosλ 9, 8255109 cos2 ϕ = 0, 4303894

9, 7630415 Denominator = 0, 0173464

log sin θ cosϕ
sin ζ cosλ

= 9, 9999507 thus δ = 1135
173464

= 1
153

number = 0, 9998865
Numerator = 0, 0001135
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So in this case the error of the observations has much less influence on the
conclusion. However, it will be found all the same, that it is not advantageous
to take the angle ζ too small, for if we took it to be 30◦ , and we set ϕ to
be 5′′ too large and θ to be 5′′ too small, we would find δ = 1

229
; whence it

can be concluded that the best course is always to trace the line LM so that
it makes an angle with the meridian of less than 60◦ and greater than 30◦ .
There are other reasons which suggest taking this angle ζ at 54◦ 44′ , so that
sin2 ζ cos ζ becomes a maximum; but, since it is not certain if the errors
affect the angles λ and ϕ, and what relationship these double errors have
between themselves, one would not at all know how to determine the above
precisely, and it suffices to have fixed the limits 30◦ and 60◦ , between which
the angle ζ should be chosen. Now the most advantageous is to continue the
line LM as far as possible; for the further it can be extended, the more sure
will one be of the conclusion that will be drawn. However, I must confess
that this method would never be known to executed in practice, for not only
would one encounter insurmountable difficulties in tracing the shortest line,
but also the meridian line would never be known to be traced so exactly, as
the success of this method requires, an error of 20′′ being almost inevitable.
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