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Since one knows that the arcs of great circles, drawn on the surface of a
sphere, represent the shortest path from one point to another, a spherical
triangle could be defined as follows: given three points on the surface of a
sphere, let a spherical triangle be the space enclosed between these three
points. Thus, since the sides of a spherical triangle are the shortest lines
which can be drawn from one angle to another, the method of maxima and
minima could be used to determine the sides of a spherical triangle and from
this could be found the relations which exist between the angles and sides,
which is exactly the content of spherical Trigonometry. For the three points,
where are found the angles, will determine the three sides as well as the three
angles, and these six things will always have such a relationship among them,
that any three being known, one can from this determine the three others.

This, therefore, is a property which the spherical triangles have in common
with plane triangles, which are the subject of elementary Trigonometry. For,
just as a plane triangle is the space enclosed between three points marked on
a plane, when the shortest path is drawn from one to another, which is, on
the plane, a straight line, so a spherical triangle is the space enclosed between
three points marked on the surface of a sphere, when these three points are
joined by the shortest lines that can be drawn on the same surface. Now,
it is clear that a spherical triangle changes into a planar triangle, when the
radius of a sphere becomes infinitely large, so that a planar surface can be
regarded as the surface of an infinitely large sphere.
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No doubt, one will object that it goes against the rules of the method,
to want to use the calculus of the maxima and minima to establish the
foundations of spherical Trigonometry; it seems useless, moreover, to derive
these again from other priniciples, since those which have been used until
now, are founded on elementary Geometry, whose rigor serves as a rule for
all the other parts of Mathematics. But I remark, first, that the method
of maxima and minima thereby acquires somewhat of a new luster, when I
show that by itself it leads to the resolution of spherical triangles; moreover,
it is always useful to arrive by different routes at the same truth, since our
spirits will not fail thereby to arrive at new understandings.

But I also may argue that the method of maxima and minima is much
more general than the ordinary method. For the latter is limited to triangles
formed on plane or spherical surfaces, while the former extends to any surface
whatever. Thus, if one asks the nature of triangles formed on spheroidal or
conic surfaces, whose sides are the shortest lines that can be drawn from
one angle to the other, the ordinary method would not be suitable to such
research; it would be absolutely necessary to resort to the method of maxima
and minima, without which one would not even be in a state to know the
shortest lines, which form the sides of these triangles.

From this, it is understood that this research could well become of great
importance; for the surface of the Earth is not spherical, but spheroidal;
a triangle formed on the surface of the Earth belongs to the sort of which
I just mentioned. To see this, one only needs to imagine three points on
the surface of the Earth which are joined by the shortest path which leads
from one to the other, or formed by a cord stretched from one to the other;
for it is thus that those triangles must be represented, which are used in
the operations for the measure of the Earth. Certainly, it is true that such
triangles are ordinarily regarded as plane and rectilinear, and it is quite
accurate, when one calculates on the basis of spherical triangles. But if one
succeeds in making these triangles much larger, and one wants to calculate
with the greatest possible precision, it would without doubt be necessary to
investigate the true nature of such triangles, which cannot be fully known
without using the method of the maxima and minima.

Having, therefore, seen the importance of this method in the subject which
it concerns, it will do no harm to apply this method to the resolution of
spherical triangles, since on one hand, this inquiry will serve as a basis and a
model for the resolution of triangles formed on a arbitrary spheroidal surface;
on the other hand it will furnish us with considerable explanations as much for
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Figure 1: Euler’s original figure, labels for ζ and θ added

spherical Trigonometry itself as for the method of the maxima and minima,
from which one will know more and better its extent and great usage. For,
once one has shown that most mechanical and physical problems are resolved
very quickly by means of this method, it will only be very pleasant to see
that the same method brings such a great help to the resolution of problems
in pure Geometry.

To begin this inquiry in such a manner that it applies equally to the sphere
and to any spheroid whatever, I first consider two opposite points on the
sphere as its poles, and the great circle equally distant from them will rep-
resent the equator, and the shortest lines drawn from a pole to each point
on the equator will represent the meridians which are perpendicular to the
equator. Now on the sphere, any side of a spherical triangle can be regarded
as part of the equator, and when it is a right triangle, one of the sides which
forms the right angle can always be supposed to be a portion of the meridian,
since the two poles can be chosen freely. But it will not be the same when
the surface is not spherical, but spheroidal. However, I will only speak here
of spherical surfaces, reserving spheroidal surfaces for another Memoire.

Problem 1

1. Given (Fig. 1) the arc AP on the equator AB, and the arc PM on a
meridian OP , find, on the spherical surface, the shortest line AM , which
can be drawn from point A to point M .
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Solution

Setting the half-diameter of the sphere = 1, let

the arc of the equator AP = x, and the arc of the meridian PM = y.

In addition, let
the sought-after arc AM = s;

and let it be prolonged an infinitely small distance to m, so that Mm = ds,
and let the meridian Omp be drawn through m, so that the element Mn is
perpendicular to Omp. From this, one will have Pp = dx and mn = dy, and
since Pp is to Mn as the sine of the total meridian OP=1 to the sine of the
arc OM , or to the cosine of PM = y, one will have Mn = dx cos y, and the
triangle Mnm to n, being right, gives

Mm = ds =
√
dy2 + dx2 cos2 y

and therefore

AM = s =

∫ √
dy2 + dx2 cos2 y .

Thus, the problem is to find such a relation between x and y, that if known
values such as AP and PM are given, the value of the integral∫ √

dy2 + dx2 cos2 y

becomes as small as possible. To this effect, set dy = p dx, in order to reduce
this integral to the form ∫

dx
√
pp+ cos2 y ;

and since I have demonstrated1 that when the integral formula
∫
Z dx, where

Z is a function of x, y, and p, with dZ = M dx+N dy + P dp, must become
as small or large as possible, this happens by the equation

N dx− dP = 0.

1See, for example, Proposition III, Chapter II, from E65(1743) – Methodus inveniendi
lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperi-
metrici lattissimo sensu accepti. [tr]
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Thus, making application to our case, we shall have

Z =
√
pp+ cos2 y;

thus

dZ = − dy sin y cos y√
pp+ cos2 y

+
p dp√

pp+ cos2 y
;

and consequently

M = 0, N = − sin y cos y√
pp+ cos2 y

, and P =
p√

pp+ cos2 y
.

Now, since M = 0 and therefore dZ = N dy+P dp, we multiply the equation
N dx − dP = 0 by p, which, since dy = p dx, will become N dy − p dP = 0,
or N dy = p dP , and, this value being substituted for N dy will give

dZ = p dP + P dp ,

whose integral is Z = Pp+ C, or√
pp+ cos2 y =

pp√
pp+ cos2 y

+ C;

which reduces to

cos2 y = C
√
pp+ cos2 y;

from which is elicited

CC pp = cos2 y(cos2 y − CC),

or

p =
dy

dx
=

cos y
√

cos2 y − CC
C

.

Thus the relation between x and y is expressed in the separated differential
equation2

dx =
C dy

cos y
√

cos2 y − CC
2“équation différentielle séparée” [tr]
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and from this is obtained

ds = dx
√
pp+ cos2 y =

dx cos2 y

C
;

thus

ds =
dy cos y√

cos2 y − CC
,

and the arc itself

s =

∫
dy cos y√

cos2 y − CC
.

Corollary 1

2. Thus, the equation

dx =
C dy

cos y
√

cos2 y − CC

expresses the nature of the line AM , which has the property, that taking any
portion whatever, this will be the shortest line that can be drawn between
its endpoints on the surface of the sphere. Now, I have shown elsewhere that
this line is also a great circle of the sphere; here it does not matter to our
purpose, what relation this line has with the sphere, provided that we know
it is the shortest between its endpoints.
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Corollary 2

3. Having found

dx =
C dy

cos y
√

cos2 y − CC

we shall have

Mn = dx cos y =
C dy√

cos2 y − CC
.

Now
Mn

mn
expresses the tangent of the angle AMP and consequently we

have:

tangAMP =
C√

cos2 y − CC
.

Furthermore, having

Mm = ds =
dy cos y√

cos2 y − CC
,

the fraction
Mn

Mm
expresses the sine of the angle AMP , so that

sinAMP =
C

cos y
and cosAMP =

√
cos2 y − CC

cos y
.

Corollary 3

4. Moreover, setting y = 0, the point M will arrive at A and then the fraction
dy

dx
will express the tangent of the angle PAM , and

dy

ds
its sine and

dx

ds
its

cosine. Now having cos y = 1,

dx =
C dy√
1− CC

and ds =
dy√

1− CC
,
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from which we conclude

tangPAM =

√
1− CC
C

, sinPAM =
√

1− CC, and cosPAM = C.

Corollary 4

5. Thus, if we introduce this angle PAM in place of the constant C, and set
PAM = ζ, we shall have, since C = cos ζ, the two following equations:

dx =
dy cos ζ

cos y
√

cos2 y − cos2 ζ
and ds =

dy cos y√
cos2 y − cos2 ζ

.

Moreover, if we name the angle AMP = θ, we shall have

tang θ =
cos ζ√

cos2 y − cos2 ζ
, sin θ =

cos ζ

cos y
, and cos θ =

√
cos2 y − cos2 ζ

cos y
.

Corollary 5

6. It yet remains to integrate the two differential equations which express
the values of dx and ds. By integration, it is found that

x = arcsin
C sin y

cos y
√

1− CC
, or sinx =

C sin y

cos y
√

1− CC
=

cos ζ sin y

sin ζ cos y

and

s = arccos

√
cos2 y − CC√

1− CC
, or cos s =

√
cos2 y − CC√

1− CC
=

√
cos2 y − cos2 ζ

sin ζ

Corollary 6

7. Here, then, are the quantities ζ and y, and the other quantities x, s, θ so
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determined:

sinx =
cos ζ sin y

sin ζ cos y
, cosx =

√
cos2 y − cos2 ζ

sin ζ cos y
, and tang x =

cos ζ sin y√
cos2 y − cos2 ζ

sin s =
sin y

sin ζ
, cos s =

√
cos2 y − cos2 ζ

sin ζ
, and tang s =

cos ζ√
cos2 y − cos2 ζ

sin θ =
cos ζ

cos y
, cos θ =

√
cos2 y − cos2 ζ

cos y
, and tang θ =

cos ζ√
cos2 y − cos2 ζ

Corollary 7

8. There is only one irrational formula,√
cos2 y − cos2 ζ ,

in the equations we have found; by eliminating it, we shall obtain:

cos s

cosx
= cos y,

cos θ

cosx
= sin ζ,

cos θ

cos s
=

sin ζ

cos y
,

tang x

tang s
= cos ζ,

tang x

tang θ
= sin y,

tang s

tang θ
=

sin y

cos ζ
,

sinx =
cos ζ sin y

sin ζ cos y
, cosx tang s =

sin y

sin ζ cos y
, cosx tang θ =

cos ζ

sin ζ cos y
,

cos s tang x =
cos ζ sin y

sin ζ
, sin s =

sin y

sin ζ
, cos s tang θ =

cos ζ

sin ζ
,

cos θ tang x =
cos ζ sin y

cos y
, cos θ tang s =

sin y

cos y
, sin θ =

cos ζ

cos y
.

Corollary 8

9. Having here five quantities, x, y, s, ζ, and θ, which form part of the right
spherical triangle APM , we take from the equalities just found those which
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Figure 2

contain three of the quantities, and reduce them to a simpler form:

I. cos s = cosx cos y, VI. sin y = sin ζ sin s,
II. cos θ = sin ζ cosx, VII. cos s tang ζ tang θ = 1,

III. tang x = cos ζ tang s, VIII. tang y = cos θ tang s,
IV. tang x = sin y tang θ, IX. cos ζ = sin θ cos y,
V. tang y = sinx tang ζ;

whence, given any two quantities, one can find from them the three others,
without the need to extract any roots, provided that one adds here this tenth
one:

X. sinx = sin θ sin s ,

which follows immediately from the three first formulae on the left in para-
graph 7.

Problem 2

10. Exhibit the rules for the resolution of all cases of right spherical triangles.

Solution

Let the angles (Fig. 2) be marked by A,B,C, with C being the right angle,
and the sides by the lower-case letters a,b,c, corresponding to their opposite
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angles, so that c is the hypotenuse and a and b the supports. Then comparing
this triangle with the previous figure, we shall have

s = c, x = b, y = a, ζ = A, and θ = B.

Now everything turns on the fact that, given two of these five quantities, the
three others are determined from them; then the formulae reported will yield
the following resolutions for all possible cases:

The two
given quantities Determination of the three others

I. a, b cos c = cos a · cos b, tangA =
tang a

sin b
, tangB =

tang b

sin a

II. a, c cos b =
cos c

cos a
, sinA =

sin a

sin c
, cosB =

tang a

tang c

III. b, c cos a =
cos c

cos b
, cosA =

tang b

tang c
, sinB =

sin b

sin c

IV. a,A sin b =
tang a

tangA
, sin c =

sin a

sinA
, sinB =

cosA

cos a
,

V. a,B tang b = sin a tangB, tang c =
tang a

cosB
, cosA = cos a sinB

VI. b, A tang a = sin b tangA, tang c =
tang b

cosA
, cosB = cos b sinA

VII. b, B sin a =
tang b

tangB
, sin c =

sin b

sinB
, sinA =

cosB

cos b

VIII. c, A sin a = sin c sinA, tang b = tang c cosA, tangB =
1

cos c tangA

IX. c, B sin b = sin c sinB, tang a = tang c cosB, tangA =
1

cos c tangB

X. A,B cos a =
cosA

sinB
, cos b =

cosB

sinA
, cos c =

1

tangA tangB
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Corollary 1

11. From the above it is evident that side a with its opposite angle A enters
into these formulae, exactly as does side b with its opposite angle B, so that
it makes no difference which of the two sides a and b one wishes to take for
the base, exactly as the nature of the subject requires.

Corollary 2

12. The large number of formulae which express the relationship between
the various parts of the right triangle, are reduced to the following formulae,
whose number is smaller; it suffices to learn these by heart.

I. sin c =
sin a

sinA
or sin c =

sin b

sinB

II. cos c = cos a cos b

III. cos c = cotA cotB

IV. cosA =
tang b

tang c
or cosB =

tang a

tang c

V. sinA =
cosB

cos b
or sinB =

cosA

cos a

VI. sin a =
tang b

tangB
or sin b =

tang a

tangA

Corollary 3

13. It is only necessary to note these six formulae, which contain many of the
properties of right spherical triangles, and it will be possible to solve every
imaginable case of such triangles.

Problem 3

14. Find the area of a right spherical triangle.

Solution

In the right triangle APM (Fig. 1) let the base AP = x and the side PM = y,
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and having drawn the infinitely close meridian Omp, one will have Pp = dx
and mn = dy. Moreover, having Mn = dx cos y, the element of the area
PMmp will be = dx dy cos y, taking dx for a constant. Thus, the area itself
will

PMmp = dx sin y ,

which, being the differential of the area of the triangle APM , this will be

=

∫
dx sin y .

Now we have found that

dx =
dy cos ζ

cos y
√

cos2 y − cos2 ζ
,

where ζ marks the angle PAM ; consequently, the area of the triangle will be

=

∫
dy sin y cos ζ

cos y
√

cos2 y − cos2 ζ
.

In place of y we introduce the angle AMP = θ; and because

sin θ =
cos ζ

cos y
and cos θ =

√
cos2 y − cos2 ζ

cos y
,

we shall have

dθ cos θ =
dy cos ζ sin y

cos2 y
;

thus

dθ =
dy cos ζ sin y

cos y
√

cos2 y − cos2 ζ
,

so that the sought-after area of the triangle becomes

=

∫
dθ = θ + Const .

In order to assign this constant its proper value, one must consider that the
area should vanish when the point M collapses into A, in which case the
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Figure 3: Copy of Euler’s figure; labels for a,x,y,s,α, and φ added

angle θ becomes 90◦ − ζ; thus it must be that 90◦ − ζ + Const = 0, so that
Const = ζ − 90◦. Consequently, the sought-after area of the triangle will be

= ζ + θ − 90◦ ;

in other words, the excess of the sum of the two angles ζ and θ over a right
angle shall express the area of the triangle APM .

Corollary 1

15. Thus, the sum of the angles PAM and AMP is always greater than a
right angle, and the excess becomes larger as the area of the triangle increases.
And the product of the great-circle arc measuring this excess, multipied by
the radius of the sphere, will give the area of the spherical triangle.

Corollary 2

16. From this, the area of an arbitrary spherical triangle is easily deduced:
for, since such a triangle can be resolved into two right triangles, one will
find its area, when one multiplies the excess over 180◦ of the sum of the three
angles, by the radius of the sphere.

Problem 4

17. Given two arbitrary points E and M on the surface of a sphere(Fig. 3),
find the shortest line EM between them.
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Solution

From one of the poles O, let meridians OE and OM be drawn, where the
location of the latter is regarded as variable. We denote

the meridian OE = a, OM = x, and the angle EOM = y.

Morever, let the desired quantities be

the arc EM = s, the angle OEM = α, and the angle OME = φ,

the last being variable with the quantities x, y, and s, while a and α remain
constant. Let the infinitely close meridian Om be drawn, to which is drawn
from M the perpendicular Mn. One will have

mn = dx, the angle MOm = dy, and Mn = dy sinx,

where we take the radius of the sphere to be one. Then we shall have

tang φ =
Mn

mn
=
dy sinx

dx
,

or

sinφ =
dy sinx

ds
and cosφ =

dx

dy
.

Now having ds =
√
dx2 + dy2 sin2 x, it is required that the formula∫ √

dx2 + dy2 sin2 x

be a minimum. To this end, we set dy = p dx; the formula to be minimized
becomes ∫

dx

√
1 + pp sin2 x =

∫
Z dx,

so that

Z =

√
1 + pp sin2 x.
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Now in general, if one has dZ = M dx+N dy+P dp, the equation to minimize3

is N dx− dP = 0; applied to the present case, we have

N = 0 and P =
p sin2 x√

1 + pp sin2 x
.

But since N = 0, our equation will be

dP = 0 and thus P = Const.,

Consequently, we shall have

p sin2 x√
1 + pp sin2 x

= C, or
dy sin2 x√

dx2 + dy2 sin2 x
= C ;

that is,
dy sin2 x

ds
= sinx sinφ = C .

To evaluate the constant C, we must consider that, when making the angle
EOM = y vanish, x becomes = a and φ = 180◦ − α, or sinφ = sinα, so in
this case we have sin a · sinα = C. Consequently, the nature of the minimum
yields the equation

dy sin2 x√
dx2 + dy2 sin2 x

= sin a sinα.

But it is still necessary to integrate the differential equation; writing C again
in place of sin a sinα, we have

dy =
C dx

sinx
√

sin2 x− CC
,

and since ds =
dy sin2 x

C
, we have

ds =
dx sinx√

sin2 x− CC
.

3Another reference to Euler’s work on the calculation of variations. See the footnote
to paragraph 1[tr].
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Now one finds through the rules of integration that

y = − arcsin
C cosx

sinx
√

1− CC
+ arcsin

C cos a

sin a
√

1− CC

= − arccos

√
sin2 x− CC

sinx
√

1− CC
+ arccos

√
sin2 a− CC

sin a
√

1− CC
,

s = − arccos

√
sin2 x− CC√

1− CC
+ arccos

√
sin2 a− CC√

1− CC

= − arcsin
cosx√
1− CC

+ arcsin
cos a√
1− CC

,

where the added constants are such that, making y = 0 and s = 0, x becomes
= a. But the two arcs of circles being reduced to one will give

y = arcsin
C cos a

√
sin2 x− CC − C cosx

√
sin2 a− CC

(1− CC) sin a sinx
,

s = arcsin
cos a

√
sin2 x− CC − cosx

√
sin2 a− CC

1− CC
,

from which we derive the following two equations:

(1− CC) sin a sinx sin y = C cos a
√

sin2 x− CC − C cosx
√

sin2 a− CC,

(1− CC) sin s = cos a
√

sin2 x− CC − cosx
√

sin2 a− CC .

But, taking the cosines of the angles y and s, we shall have:

(1− CC) sin a sinx cos y =
√

(sin2 a− CC)(sin2 x− CC) + CC cos a cosx

(1− CC) cos s =
√

(sin2 a− CC)(sin2 x− CC) + cos a cosx.

And replacing C by its value sin a sinα, since√
sin2 a− CC = − sin a cosα,

for we regard here the angle α as obtuse, so that the angle φ is acute from
the point E; because, setting y = 0, the angle φ becomes 180◦ − α, thus its
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cosine is − cosα. We shall have:

(1− sin2 a sin2 α) sinx sin y = sinα cos a
√

sin2 x− sin2 a sin2 α + sinα cosα sin a cosx,

(1− sin2 a sin2 α) sinx cos y = − cosα
√

sin2 x− sin2 a sin2 α + sin a cos a sin2 α cosx,

(1− sin2 a sin2 α) sin s = cos a
√

sin2 x− sin2 a sin2 α + sin a cosα cosx,

(1− sin2 a sin2 α) cos s = − sin a cosα
√

sin2 x− sin2 a sin2 α + cos a cosx,

to which must be added

sinx sinφ = sin a sinα .

Corollary 1

18. Since sin a sinα = sinx sinφ, one will have:√
sin2 x− sin2 a sinα = + sin x cosφ.

Thus, our four formulae become:

(1− CC) sin y = sinα cos a cosφ+ cosα cosx sinφ(I)

(1− CC) cos y = − cosα cosφ+ sinα cos a cosx sinφ(II)

(1− CC) sin s = cos a sinx cosφ+ sin a cosα cosx(III)

(1− CC) cos s = − sin a cosα sinx cosφ+ cos a cosx,(IV)

setting, to abbreviate, CC in place of sin2 a sin2 α or sin2 x sin2 φ.

Corollary 2

19. These four formulae can be combined in several different ways, from
which simpler formulae can be deduced. First, let us take

(I) · cosα + (II) · sinα cos a,

and we shall have

(1− CC)(cosα sin y + sinα cos a cos y) = (cos2α + sin2 α cos2 a) cosx sinφ.
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Now
cos2 α + sin2 α cos2 a = 1− sin2 α sin2 a = 1− CC,

from which we derive

cosα sin y + sinα cos a cos y = cosx sinφ ==
sin a sinα

tang x
,

or

tang x sin y + tangα tang x cos a cos y = tangα sin a.

Corollary 3

20. Let make this combination

(I) · sinα cos a− (II) · cosα,

resulting in

(1− CC)(sinα cos a sin y − cosα cos y) = (sin2 α cos2 a+ cos2 α) cosφ

= (1− CC) cosφ,

from which, dividing by 1− CC, we get

sinα cos a sin y − cosα cos y = cosφ.

Corollary 4

21. The combination
(I) · sinx− (III) · sinα

gives
(1− CC)(sinx sin y − sinα sin s) = 0 ,

or

sinx sin y = sinα sin s,
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whence, since sinx sinφ = sin a sinα,

sin a sin y = sinφ sin s ,

in other words, the proportion

sin a : sinφ = sinx : sinα = sin s : sin y

Corollary 5

22. This combination:

(I) · sin a cosα sinx+ (IV) · sinα cos a

gives

(1− CC)(sin a cosα sinx sin y + sinα cos a cos s)

= cosx(sin a cos2 α sinx sinφ+ sinα cos2 a).

Now, since sinx sinφ = sin a sinα, the value of the formula becomes

sinα cosx(sin2 a cos2 α + cos2 a) = (1− sin2 a sin2 α) sinα cosx = (1− CC) sinα cosx,

so that, dividing by 1− CC, one will obtain

sin a cosα sinx sin y + sinα cos a cos s = sinα cosx,

which becomes, since sin y =
sinα sin s

sinx
,

sin a cosα sin s+ cos a cos s = cosx

Corollary 6

23. Now this combination

(I) · cos a− (IV) · cosα sinφ
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gives

(1− CC)(cos a sin y − cosα sinφ cos s) = cosφ(sinα cos2 a+ sin a cos2 α sinα sinx sinφ) ,

whose value is, since sinx sinφ = sin a sinα,

sinα cosφ(cos2 a+ sin2 a cos2 α) = (1− CC) sinα cosφ ;

thus, dividing by 1− CC, one has

cos a sin y − cosα sinφ cos s = sinα cosφ ,

which, since sin y =
sinφ sin s

sin a
, changes into

cos a sinφ sin s− sin a cosα sinφ cos s = sin a sinα cosφ ,

or

tang φ sin s− cosα tang a tang φ cos s = sinα tang a .

Corollary 7

24. We consider the combination

(II) · cos a sinx− (III) · cosα .

which gives

(1− CC)(cos a sinx cos y + cosα sin s) = cos x(sinα cos2 a sinx sinφ+ sin a cos2 α) ,

whose value, since sinx sinφ = sin a sinα, will be

sin a cosx(sin2 α cos2 a+ cos2 α) = (1− CC) sin a cosx .

Then dividing through by 1− CC, one will have

cos a sinx cos y + cosα sin s = sin a cosx ,

21



and since sin s =
sinx sin y

sinα
, one will obtain

sinα cos a sinx cos y + cosα sinx sin y = sinα sin a cosx ,

or

tangα cos a tang x cos y + tang x sin y = tangα sin a ,

just as in paragraph 19.

Corollary 8

25. This combination

(II) · sin a cosα− (III) · cos a sinα sinφ

gives

(1− CC) (cos a sinα sin s sinφ− sin a cosα cos y) = cosφ
(
sin a cos2 α + cos2 a sinα sinx sinφ

)
.

whose value, since sinx sinφ = sin a sinα, is

cos a cosφ
(
cos2 α + cos2 a sin2 α

)
= (1− CC) sin a cosφ .

Thus, dividing by 1− CC, one will have

cos a sinα sin s sinφ− sin a cosα cos y = sin a cosφ.

Now, having sin s =
sin a sin y

sinφ
, one will obtain

cos a sinα sin y − cosα cos y = cosφ,

just as in paragraph 20.

Corollary 9

26. Now this combination

(II) · sin a sinx− (IV) · 1

gives

(1− CC)(sin a sinx cos y − cos s) = cos a cosx(sin a sinα sinx sinφ− 1) ,
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which since sin x sinφ = sin a sinα, has the value

cos a cosx
(
sin2 a sin2 α− 1

)
= −(1− CC) cos a cosx .

Thus, dividing by −(1− CC), one will have

cos s− sin a sinx cos y = cos a cosx .

Corollary 10

27. This combination:

(II) · 1− (IV) · sinα sinφ

gives

(1− CC) (cos y − sinα sinφ cos s) = cosα cosφ (sin a sinα sinx sinφ− 1) ,

so that

sinα sinφ cos s− cos y = cosα cosφ .

Corollary 11

28. The combination:

(III) · sin a cosα + (IV) · cos a

gives

(1− CC) (sin a cosα sin s+ cos a cos s) = cos x
(
sin2 a cos2 α + cos2 a

)
;

thus

sin a cosα sin s+ cos a cos s = cosx,

just as in paragraph 22.
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Figure 4

Corollary 12

29. Finally, the combination

(III) · cos a− (IV) · sin a cosα

gives

(1− CC) (cos a sin s− sin a cosα cos s) = sin x cosφ
(
cos2 a+ sin2 a cos2 α

)
,

thus

cos a sin s− sin a cosα cos s = sinx cosφ =
sin a sinα cosφ

sinφ
,

or

tang φ sin s− tang a tang φ cosα cos s = tang a sinα ,

just as in paragraph 23.

Problem V

30. Find all the properties (Fig. 4) between the sides and the angles of an
arbitrary spherical triangle.
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Solution

Whatever be the proposed spherical triangle ABC, one of the angles A can
be regarded as the pole of the sphere; then the sides AB and AC will each
be meridians, and the third side BC the shortest line that can be drawn on
the surface of the sphere from point B to point C, so that this triangle ABC
can be compared with the figure ECM , which we have just considered in the
previous problem. Thus, if we use the letters A, B, C to denote the angles
of the same name, and if we set the sides AB = c, AC = b, and BC = a, the
previous designations are reduced to the present ones in this fashion:

Former designations. . . . . . . . . . . . . a, x, s, y , α , φ
New designations . . . . . . . . . . . . . . . c, b , a, A, B, C

The formulae found in the corollaries of the preceding problem will now
furnish us the following properties for the spherical triangle ABC:

I. sin a : sinA = sin b : sinB = sin c : sinC by paragraph 21

cosC = cos c sinA sinB − cosA cosB by paragraph 20
II. cosB = cos b sinA sinC − cosA cosC by analogy

cosA = cos a sinB sinC − cosB cosC by paragraph 27

cos c = cosC sin a sin b+ cos a cos b by analogy
III. cos b = cosB sin a sin c+ cos a cos c by paragraph 22

cos a = cosA sin b sin c+ cos b cos c by paragraph 26

sin a tangC − sinB tang c = cos a cosB tangC tang c by paragraph 23
IV. sin b tangA− sinC tang a = cos b cosC tangA tang a by analogy

sin c tangB − sinA tang b = cos c cosA tangB tang b by paragraph 19

And it is to these four properties, which all the formulae that we found in
the previous problem are reduced.

Corollary 1

31. The first property contains a well-known quality of all spherical triangles,
by which we know that the sines of the sides have the same ratio as the sines
of their opposite angles.
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Corollary 2

32. Thus, in a spherical triangle, if we know one side with its opposite angle,
and besides this another angle, or side, we shall immediately find the side,
or the angle, opposite.

Corollary 3

33. Each of the formulae which we have just found contains only four quan-
tities belonging to the triangle. Therefore, if three of these are known, the
fourth may be determined.

Corollary 4

34. Therefore, from these [formulae] one can derive the rules for the resolu-
tion of all spherical triangles. Now as there are six objects in each triangle,
namely, the three sides and the three angles, if three of these are known, the
other three can be found, as we shall see in the following problems.

Problem 6

35. Given the three sides of a spherical triangle (Fig. 4), find the angles.

Solution

In the spherical triangle ABC let the three sides AB = c, AC = b, and
BC = a be given. It is required to find the three angles A, B, and C; this is
done by means of the third property, which furnishes us:

cosA =
cos a− cos b cos c

sin b sin c
,

cosB =
cos b− cos a cos c

sin a sin c
,

cosC =
cos c− cos a cos b

sin a sin b
.
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Corollary 1

36. Thus we have

1− cosA =
sin b sin c+ cos b cos c− cos a

sin b sin c
,

or

1− cosA =
cos(b− c)− cos a

sin b sin c
,

because

cos(b− c) = cos b cos c+ sin b sin c.

Corollary 2

37. Now, since in general

cos p− cos q = 2 sin
1

2
(q − p) sin

1

2
(p+ q) ,

our formula will change into

1− cosA =
2 sin 1

2
(a− b+ c) sin 1

2
(a+ b− c)

sin b sin c
.

Thus, since

1− cosA = 2(sin
1

2
A)2,

we shall have

sin
1

2
A =

√
sin 1

2
(a− b+ c) sin 1

2
(a+ b− c)

sin b sin c
,
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and in the same way

sin
1

2
B =

√
sin 1

2
(b− a+ c) sin 1

2
(b+ a− c)

sin a sin c
,

sin
1

2
C =

√
sin 1

2
(c− a+ b) sin 1

2
(c+ a− b)

sin a sin b
.

Corollary 3

38. In adding unity to the cosines found, one has

1 + cosA =
cos a− cos b cos c+ sin b sin c

sin b sin c
=

cos a− cos(b+ c)

sin b sin c
.

Thus, since 1 + cosA = 2(cos 1
2
A)2, the same conversion will give

cos
1

2
A =

√
sin 1

2
(b+ c− a) sin 1

2
(b+ c+ a)

sin b sin c

cos
1

2
B =

√
sin 1

2
(a+ c− b) sin 1

2
(a+ c+ b)

sin a sin c

cos
1

2
C =

√
sin 1

2
(a+ b− c) sin 1

2
(a+ b+ c)

sin a sin b
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Corollary 4

39. From these are derived the tangents of the half-angles A, B, C:

tang
1

2
A =

√
sin 1

2
(a− b+ c) sin 1

2
(a+ b− c)

sin 1
2
(b+ c− a) sin 1

2
(b+ c+ a)

tang
1

2
B =

√
sin 1

2
(b− a+ c) sin 1

2
(b+ a− c)

sin 1
2
(a+ c− b) sin 1

2
(a+ c+ b)

tang
1

2
C =

√
sin 1

2
(c− a+ b) sin 1

2
(c+ a− b)

sin 1
2
(a+ b− c) sin 1

2
(a+ b+ c)

Corollary 5

40. These formulae are very useful for performing the computation by means
of logarithms. Now, having found one of the angles, say A, the other two are
found very easily; by the first property one has

sinB =
sin b sinA

sin a
and sinC =

sin c sinA

sin a
,

provided that it is known whether the angles are larger or smaller than a
right angle. But, in using the formulae found, this ambiguity disappears,
since one finds the half-angles, which are always smaller than a right angle.

Corollary 6

41. The tangents of the half-angles provide other significant formulae, be-
cause, multiplying two together, one will have:

tang
1

2
A tang

1

2
B =

sin 1
2
(a+ b− c)

sin 1
2
(a+ b+ c)

,

and since

sin p+ sin q = 2 sin
1

2
(p+ q) cos

1

2
(p− q)
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and

sin p− sin q = 2 sin
1

2
(p− q) cos

1

2
(p+ q)

one will obtain

1 + tang
1

2
A tang

1

2
B =

2 sin 1
2
(a+ b) cos 1

2
c

sin 1
2
(a+ b+ c)

and

1− tang
1

2
A tang

1

2
B =

2 sin 1
2
c cos 1

2
(a+ b)

sin 1
2
(a+ b+ c)

.

Corollary 7

42. Likewise, in adding or subtracting two of these tangents, one obtains

tang
1

2
A± tang

1

2
B =

(
sin 1

2
(a+ c− b)± sin 1

2
(b+ c− a)

)√
sin 1

2
(a+ b− c)√

sin 1
2
(b+ c− a)

√
sin 1

2
(a+ c− b)

√
sin 1

2
(a+ b+ c)

or

tang
1

2
A± tang

1

2
B =

sin 1
2
(a+ c− b)± sin 1

2
(b+ c− a)

tang 1
2
C sin 1

2
(a+ b+ c)

,

if one introduces the value of the tangent of C. Thus, using the reduction
shown above [paragraph 41], we shall have these two equations:

tang
1

2
A+ tang

1

2
B =

2 sin 1
2
c cos 1

2
(a− b)

tang 1
2
C sin 1

2
(a+ b+ c)

tang
1

2
A− tang

1

2
B =

2 sin 1
2
(a− b) cos 1

2
c

tang 1
2
C sin 1

2
(a+ b+ c)

.
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Corollary 8

43. Now, since

tang
1

2
(A+B) =

tang 1
2
A+ tang 1

2
B

1− tang 1
2
A tang 1

2
B
,

we shall find by the formulae of the two previous corollaries:

tang
1

2
(A+B) =

cos 1
2
(a− b)

tang 1
2
C cos 1

2
(a+ b)

and similarly

tang
1

2
(A+ C) =

cos 1
2
(a− c)

tang 1
2
B cos 1

2
(a+ c)

tang
1

2
(B + C) =

cos 1
2
(b− c)

tang 1
2
A cos 1

2
(b+ c)

.

Corollary 9

44. In the same way, since

tang
1

2
(A−B) =

tang 1
2
A− tang 1

2
B

1 + tang 1
2
A tang 1

2
B
,

we shall have:

tang
1

2
(A−B) =

sin 1
2
(a− b)

tang 1
2
C sin 1

2
(a+ b)

and similarly

tang
1

2
(A− C) =

sin 1
2
(a− c)

tang 1
2
B sin 1

2
(a+ c)

tang
1

2
(B − C) =

sin 1
2
(b− c)

tang 1
2
A sin 1

2
(b+ c)

.
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Problem 7

45. In a spherical triangle, being given the three angles, find the three sides.

Solution

Let ABC be a spherical triangle, whose angles A, B, and C are given. It is
required to find the three sides

AB = c, AC = b, and BC = a.

Now property (II) of paragraph 30 gives us the cosines of these sides expressed
as follows:

cos a =
cosA+ cosB cosC

sinB sinC

cos b =
cosB + cosA cosC

sinA sinC

cos c =
cosC + cosA cosB

sinA sinB
.

Corollary 1

46. From this we derive from this the following formulae:

1− cos a = −cosA+ cos(B + C)

sinB sinC
,

1 + cos a =
cosA+ cos(B − C)

sinB sinC
.

Now, since in general cos p+ cos q = 2 cos 1
2
(p+ q) cos 1

2
(p− q), we shall have

1− cos a = −
2 cos 1

2
(A+B + C) cos 1

2
(B + C − A)

sinB sinC

1 + cos a =
2 cos 1

2
(A+B − C) cos 1

2
(A−B + C)

sinB sinC
.
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Corollary 2

47. Thus, since 1 − cos a = 2(sin 1
2
a)2 and 1 + cos a = 2(cos 1

2
a)2, we obtain

the following formulae:

sin
1

2
a =

√
−

cos 1
2
(A+B + C) cos 1

2
(B + C − A)

sinB sinC

sin
1

2
b =

√
−

cos 1
2
(A+B + C) cos 1

2
(A+ C −B)

sinA sinC

sin
1

2
c =

√
−

cos 1
2
(A+B + C) cos 1

2
(A+B − C)

sinA sinB
,

where it must be noted, that since the sum of the angles A+B+C is always
greater that two right angles, the half-sum is greater than a right angle, and
therefore its cosine is negative.

Corollary 3

48. For the cosines of the half-sides one will have:

cos
1

2
a =

√
cos 1

2
(A+B − C) cos 1

2
(A−B + C)

sinB sinC

cos
1

2
b =

√
cos 1

2
(B + A− C) cos 1

2
(B − A+ C)

sinA sinC

cos
1

2
c =

√
cos 1

2
(C + A−B) cos 1

2
(C − A+B)

sinA sinB
,

and these formulae facilitate the use of logarithms.

Corollary 4

49. From the sine and cosine of the half-sides their tangents are easily de-
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rived; these will be

tang
1

2
a =

√
−

cos 1
2
(A+B + C) cos 1

2
(B + C − A)

cos 1
2
(A+B − C) cos 1

2
(A−B + C)

,

tang
1

2
b =

√
−

cos 1
2
(A+B + C) cos 1

2
(A+ C −B)

cos 1
2
(B + A− C) cos 1

2
(B − A+ C)

,

tang
1

2
c =

√
−

cos 1
2
(A+B + C) cos 1

2
(A+B − C)

cos 1
2
(C + A−B) cos 1

2
(C − A+B)

,

where again, one can easily use the calculus of logarithms.

Corollary 5

50. Multiplying two of these tangents together, one will obtain

tang
1

2
a tang

1

2
b = −

cos 1
2
(A+B + C)

cos 1
2
(A+B − C)

.

Now from this the two following formulae are derived:

1− tang
1

2
a tang

1

2
b =

2 cos 1
2
(A+B) cos 1

2
C

cos 1
2
(A+B − C)

,

1 + tang
1

2
a tang

1

2
b =

2 sin 1
2
C sin 1

2
(A+B)

cos 1
2
(A+B − C)

.

Corollary 6

51. And if we add or subtract together two of these formulae, we shall ob-
tain:

tang
1

2
a± tang

1

2
b =

(
cos 1

2
(B + C − A)± cos 1

2
(A+ C −B)

)√
− cos 1

2
(A+B + C)√

cos 1
2
(A+B − C)

√
cos 1

2
(A+ C −B)

√
cos 1

2
(B + C − A)

,
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Now having

tang
1

2
c =

√
−

cos 1
2
(A+B + C) cos 1

2
(A+B − C)

cos 1
2
(C + A−B) cos 1

2
(C − A+B)

,

one will have

tang
1

2
a± tang

1

2
b =

(
cos 1

2
(B + C − A)± cos 1

2
(A+ C −B)

)
tang 1

2
c

cos 1
2
(A+B − C)

.

Corollary 7

52. From this is obtained, by the simplifications shown:

tang
1

2
a+ tang

1

2
b =

2 cos 1
2
C cos 1

2
(A−B) tang 1

2
c

cos 1
2
(A+B − C)

and

tang
1

2
a− tang

1

2
b =

2 sin 1
2
(A−B) sin 1

2
C tang 1

2
c

cos 1
2
(A+B − C)

.

Corollary 8

53. Thus we find as above:

tang
1

2
(a+ b) =

cos 1
2
(A−B)

cos 1
2
(A+B)

tang
1

2
c

tang
1

2
(a+ c) =

cos 1
2
(A− C)

cos 1
2
(A+ C)

tang
1

2
b

tang
1

2
(b+ c) =

cos 1
2
(B − C)

cos 1
2
(B + C)

tang
1

2
a .
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Corollary 9

54. In the same way, the tangents of the half-difference of the sides will be:

tang
1

2
(a− b) =

sin 1
2
(A−B)

sin 1
2
(A+B)

tang
1

2
c

tang
1

2
(a− c) =

sin 1
2
(A− C)

sin 1
2
(A+ C)

tang
1

2
b

tang
1

2
(b− c) =

sin 1
2
(B − C)

cos 1
2
(B + C)

tang
1

2
a .

The use of these formulas will be of great importance in the problems which
follow.

Problem 8

55. In a spherical triangle (Fig. 4), given two sides with the angle between
them, find the third side and the other two angles

Solution

Let ABC be a triangle, for which are given the two sides AB = c and AC = b,
together with the angle A between them, and it is required to find the side
BC = a and the angles B and C.

To begin, the third formula of the third property [paragraph 30] yields

cos a = cosA sin b sin c+ cos b cos c,

and the third formula of the fourth property gives the angle B,

tangB =
sinA tang b

sin c− tang b cos c cosA

from which one takes by analogy:

tangC =
sinA tang c

sin b− tang c cos b cosA
.
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Now the expressions for the cotangents will be more convenient, so that one
has the following formulae for the solution:

cos a = cosA sin b sin c+ cos b cos c

cotB =
sin c cot b− cos c cosA

sinA

cotC =
sin b cot c− cos b cosA

sinA
.

Corollary 1

56. Since

cos b cos c =
1

2
cos(b− c) +

1

2
cos(b+ c)

and

sin b sin c =
1

2
cos(b− c)− 1

2
cos(b+ c),

the cosine of side a can be expressed by the addition and subtraction of
simple cosines in this manner:

cos a =
1

4
cos(A− b+ c) +

1

4
cos(A+ b− c)− 1

4
cos(A− b− c)

− 1

4
cos(A+ b+ c) +

1

2
cos(b− c) +

1

2
cos(b+ c) .

Corollary 2

57. But if one wishes to use logarithms, this formula is less convenient. How-
ever, logarithms could be applied here by introducing a new angle u, setting

tang u =
cosA sin b

cos b
,
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or tang u = cosA tang b, and having found this angle u, one will have:

cos a = tang u cos b sin c+ cos b cos c =
cos b cos(c− u)

cosu
,

from which the side a will easily be found by means of logarithms.

Corollary 3

58. The same introduction of the angle u, so that

tang u = cosA tang b,

also makes the other formulae appropriate for the application of logarithms,
for one will have:

tangB =
sinA tang b

sin c− tang u cos c
=

sinA tang b cosu

sin(c− u)
=

tangA sinu

sin(c− u)
.

As for the other angle C, it will be found by the rule

sinC =
cosA sin c

sin a
.

Corollary 4

59. But the most convenient search for the angles B and C will be drawn
from the formulae given in paragraphs 43 and 44, whence one will have

tang
1

2
(B + C) =

cos 1
2
(b− c)

cos 1
2
(b+ c)

cot
1

2
A ,

tang
1

2
(B − C) =

sin 1
2
(b− c)

sin 1
2
(b+ c)

cot
1

2
A .

For having half of the sum along with half of the difference, one will have
each separately, and from this the side a can then be obtained by the rule

sin a =
sin b

sinB
sinA =

sin c

sinC
sinA .
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Problem 9

60. In a spherical triangle (Fig. 4), being given two angles with the side be-
tween them, find the third angle with the two sides.

Solution

Let ABC be a triangle, in which are given the two angles A and B, with the
side between them AB = c; it is required to find the third angle C together
with the two other sides AC = b and BC = a.

To begin, the first formula of the second property(paragraph 30) gives:

cosC = cos c sinA sinB − cosA cosB

and the third formula of the fourth property gives

tang b =
sin c tangB

sinA+ cos c cosA tangB
,

and by analogy

tang a =
sin c tangA

sinB + cos c cosB tangA
.

From which, taking the cotangents, one will have the following solution:

cosC = cos c sinA sinB − cosA cosB

cot a =
cotA sinB + cos c cosB

sin c

cot b =
cotB sinA+ cos c cosA

sin c
.

Corollary 1

61. The two sides will be found more easily from the formulae of paragraphs
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52 and 53, from which one takes:

tang
1

2
(a+ b) =

cos 1
2
(A−B)

cos 1
2
(A+B)

tang
1

2
c

tang
1

2
(a− b) =

sin 1
2
(A−B)

sin 1
2
(A+B)

tang
1

2
c ,

where it is easy to use logarithms.

Corollary 2

62. After having found the sides a and b, one will easily find the angle C,
since it is

sinC =
sinA

sin a
sin c =

sinB

sin b
sin c ,

or one could also, if desired, express cosC by simple cosines in this fashion:

cosC =
1

4
cos(c+ A−B) +

1

4
cos(c− A+B)− 1

4
cos(c− A−B)

− 1

4
cos(c+ A+B)− 1

2
cos(A−B) +

1

2
cos(A+B) .

Problem X

63. In a spherical triangle, given two sides with an angle not between them
(Fig. 4) or equivalently, given two angles with a side not between them, find
the other quantities belonging to the triangle.

Solution

Let ABC be the triangle in which is given, for the first case, the two sides
BC = a and AC = b together with the angle A; one immediately knows the
angle B because

sinB =
sinA

sin a
sin b .
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For the other case, let A and B be the given angles, together with the side
BC = a, one will immediately have the side b because

sin b =
sin a

sinA
sinB .

Consequently, in the one and the other case, one will be able to regard as
given the two sides BC = a and AC = b, as well as the two opposite angles
A and B. Thus, it is a matter of finding the side AB = c and the angle C.
Now the first formula of the fourth property gives:

sin a tangC − sinB tang c = cos a cosB tangC tang c ,

from which, transposing the sides a and b with the angles A and B, we shall
have

sin b tangC − sinA tang c = cos b cosA tangC tang c .

From these two equations, eliminating either tangC or tang c, we have either

tang c =
sinA sin a− sinB sin b

sinA cosB cos a− cosA sinB cos b

or

tangC =
sinA sin a− sinB sin b

cosB cos a sin b− cosA sin a cos b
,

to which must be added this equation

sinA sin b = sinB sin a .

Corollary 1

64. Since sinA : sinB = sin a : sin b, we shall have also

tang c =
sin2 a− sin2 b

cosB sin a cos a− cosA sin b cos b
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and

tangC =
sin2A− sin2B

sinB cosB sin a− sinA cosA cos b
.

Corollary 2

65. But paragraphs 43, 44, 53, and 54 again furnish us more convenient
solutions, which are these:

tang
1

2
c =

cos 1
2
(A+B)

cos 1
2
(A−B)

tang
1

2
(a+ b) =

sin 1
2
(A+B)

sin 1
2
(A−B)

tang
1

2
(a− b)

and

tang
1

2
C =

cos 1
2
(a− b)

cos 1
2
(a+ b)

cot
1

2
(A+B) =

sin 1
2
(a− b)

sin 1
2
(a+ b)

cot
1

2
(A−B) ,

to which the use of logarithms can easily be applied.

Problem 94

66. Find (Fig. 3) the area of an arbitrary spherical triangle.

Solution

Let EOM be the spherical triangle under consideration; let us name as above
(paragraph 17) the side OE = a, the angle OEM = α, the angle EOM =
y, side OM = x and the angle OME = φ. This being set, the trilinear
figure MOm will represent the differential of the area which we seek, and
since mn = dx and Mn = dy sinx, the product dy dx sinx expresses the
differential of MOm, whence

MOm = dy

∫
dx sinx = dy(1− cosx)

4In both the original publication and the Opera Omnia, a second ”Problem 9” occurs
at this point in the text[tr ]
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and hence the area

EOM = y −
∫

dy cosx .

Now we have found

dy =
C dx

sinx
√
x2 − CC

,

so that

the area EOM = y −
∫

C dx cosx

sinx
√

sin2 x− CC
.

Then having found sinφ =
C

sinx
, because C = sin a sinα and since

cosφ =

√
sin2 x− CC

sinx
,

we shall have

dφ cosφ = −C dx cosx

sin2 x
,

thus

dφ = − C dx cosx

sinx
√

sin2 x− CC
and −

∫
C dx cosx

sinx
√

sin2 x− CC
= φ+ Const.

Consequently, the area of the triangle EOM will be

= y + φ+ Const. = α + y + φ− Const.

To know this constant, suppose y = 0 and since φ then becomes = 180◦−α,
the area of this vanishing triangle will be = 180◦−Const. and hence Const. =
180◦. So we have

the area of the triangle EOM = α + y + φ− 180◦ .
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Corollary 1

67. Therefore, to find the area of any spherical triangle, one only needs to
take the excess of the sum of its three angles over two right angles, when
the radius of the sphere is expressed by 1. Now in an arbitrary sphere one
will take a great circle arc which is the measure of the said excess, and the
product of this arc by the radius of the sphere will give the desired area of
the spherical triangle.

Corollary 2

68. Thus, the larger a spherical triangle, the more will the sum of its angles
exceed two right angles, and when the area of the triangle occupies one-eighth
of the surface of the sphere, this excess will equal one right angle. For an
arc of a great circle of 90◦ multiplied by the radius gives half the area of the
great circle, hence the eighth part of the surface of the sphere. From this one
will obtain this rule to find the area of the entire spherical triangle. One will
say, as 8 right angles, or 720◦, is to the excess of the sum of the three angles
over two right angles, so is the whole surface of the sphere to the area of the
triangle under consideration.
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