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Abstract

This paper contains the first published proof of Fermat’s Little Theorem, that ap−1 ≡ 1 (mod p), for all a
relatively prime to p. Euler’s proof is by induction on a, i.e., he begins by showing that 2p−1 ≡ 1 (mod p), for
p 6= 2, then shows that 3p−1 ≡ 1 (mod p), for p 6= 3, and concludes that ap−1 ≡ 1 (mod p), for all a relatively
prime to p. It is important to note that this method of induction stands in stark contrast to what Euler calls
‘induction’, by which he means Fermat’s habit of asserting the truth of conjectures based on ‘inducting’ from
examples, and which he himself criticizes in the introduction. That is, Euler’s method of proof is a genuine case
of induction as it is known to us today.

According to the records, this paper was presented to the St. Petersburg Academy on August 2, 1736. It
was later published in Commentarii academiae scientiarum Petropolitanae 8, 1741, pp. 141–146, and appears in
Series 1, Volume 2, pp. 33–37 of the Opera Omnia. Its Eneström index is E54.

This translation was completed on August 30, 2004.

§1. Plurima quondam a Fermatio theoremata arith- §1. Many arithmetical theorems, though without
metica sed sine demonstrationibus in medium sunt pro- proofs, were once brought to light by Fermat which
lata, in quibus, si vera essent, non solum eximiae nu- (if they were true) not only would contain exceptional
merorum proprietates continerentur, verum etiam ipsa properties of numbers, but also would greatly promote
numerorum scientia, quae plerumque analyseos limites the science of numbers itself, which seems for the most
excedere videtur, vehementer esset promota. Quamvis part to exceed the limits of analysis. However, although
autem iste insignis Geometra de pluribus, quae pro- the famous geometer claimed, concerning many theo-
posuit, theorematis asseruerit se ea vel demonstrare rems that he proposed, that he either could prove them
posse, vel saltem de eorum veritate esse certum: tamen or that he was at least certain of their truth: neverthe-
nusquam, quantum mihi constat, demonstrationes ex- less he never produced proofs for them at any time,
posuit. Quin potius Fermatius videtur maximam the- insofar as I am aware. But on the other hand, Fermat
orematum suorum numericorum partem per induc- seems to have grasped a large part of his numerical the-
tionem esse assecutus, quippe quae via fere unica ad orems through induction, which indeed seems to be an
huiusmodi proprietates eruendas patere videatur. At almost unique method for bringing to light properties
vero quam parum inductionibus in hoc negotio tribui of this kind. However, I could also speak of how little
possit pluribus exemplis possem declarare; ex quibus induction on many examples can yield in this matter;
autem unicum ab ipso Fermatio desumtum attulisse which was nevertheless sufficient for Fermat himself for
sufficiat. eliciting unique observations.

Loquor nimirum de illo theoremate, cuius falsitatem I am speaking no less about that theorem, whose
iam aliquot ab hinc annis ostendi, quo Fermatius as- falsity I already pointed out several years ago, in which
serit omnes numeros hac forma 22n

+ 1 comprehensos Fermat asserted that all numbers expressible in the
esse numeros primos. Ad veritatem autem huius propo- form 22n

+ 1 are prime numbers. However, induction
sitionis evincendam inductio omnino sufficere videa- may have seemed altogether to suffice for establishing
tur. Nam praeterquam quod omnes isti numeri mi- the truth of this proposition. For apart from the fact
nores quam 100000 sint revera primi, demonstrari etiam that all numbers of that form less than 100,000 are in
facile potest nullum numerum primum, 600 non exce- fact prime, it can still easily be proved that no prime
dentem hanc formulam 22n

+ 1, quantumvis magnus number not exceeding 600 divides any number of the
etiam numerus pro n substituatur, metiri. Cum tamen form 22n

+1, for however large a number is taken for n.
nihilominus constet hanc propositionem veritati non Nevertheless, although it is clear that this proposition
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esse consentaneam, facile intelligitur, quantum induc- is not consistent with truth, it is still easy to see how
tio in huiusmodi speculationibus valeat. much induction can be of use in speculations of this

sort.

§2. Hanc ob rationem omnes huiusmodi numerorum §2. For this reason, all such properties of numbers,
proprietates, quae sola inductione nituntur, tam diu pro which rested upon induction alone, I now judge to have
incertis habendas esse arbitror, donec illae vel apodic- uncertainty, until they are either supplied with clearly
ticis demonstrationibus muniantur vel omnino refellan- valid proofs or altogether refuted. I have submitted to
tur. Non plus etiam illis theorematis, quae ego ipse illi judgment no more than those theorems, which I myself
schediasmati, in quo de memorato theoremate Ferma- judge to be resting on extempore speech, in which I
tiano numerisque perfectis tractavi, subieci, fidendum dealt with the aforementioned theorem of Fermat and
esse censerem, si tantum inductionibus, qua via qui- with perfect numbers, if they should rest only on in-
dem sola tum temporis ad eorum cognitionem perveni, duction, by which way alone, certainly, I arrived at rec-
niterentur. Nunc vero, postquam peculiari methodo ognizing them in the first place. But now, as I have
demonstrationes horum theorematum firmissimas sum attained the firmest proofs of these theorems by my
adeptus, de veritate eorum non amplius est dubitan- own method, there can be no more doubt concerning
dum. Quocirca tam ad veritatem illorum theorematum their truth. And on this account, in order to establish
ostendendam, quam ad methodum ipsam, quae forte the truth of those theorems, which is a method in itself
etiam in aliis numerorum investigationibus utilitatem and which may even bear usefulness in other investiga-
afferre poterit, in hac dissertatione meas demonstra- tions of numbers, I have resolved to set forth my proofs
tiones explicare constitui. in this paper.

§3. Propositio autem, quam hic demonstrandum §3. Now, the proposition, which I am prepared to
suscepi, est sequens: prove, is the following:

Significante p numerum primum, formula ap−1−1 sem- Letting p denote a prime number, the formula ap−1 − 1
per per p dividi poterit, nisi a per p dividi queat. can always be divided by p, unless a can be divided by

p.

Ex hac enim propositione demonstrata sponte relin- Now, the truth of the remaining theorems follows if
quorum theorematum veritas fluit. Casum quidem for- this proposition is proved. Indeed, I already gave the
mulae propositae, quo est a = 2, iam ab aliquo tempore proof of the case of the proposed statement in which
demonstratum dedi; attamen tum demonstrationem ad a = 2 at an earlier time; but nonetheless it was not
generalem formulam extendere non licuit. Quamobrem clear that the proof would extend to the general case.
primo huius casus probationem afferre conveniet, quo So for this reason, it is fitting to offer an examination
transitus ad generaliora eo facilior reddatur. Demon- of this case first, whereby the transition to the more
stranda igitur erit sequens propositio: general case would be easier from there. Therefore, the

following proposition will be proved:

Significante p numerum primum imparem quem- Letting p be any odd prime number, the formula
cunque, formula 2p−1 − 1 semper per p dividi poterit. 2p−1 − 1 can always be divided by p.

Demonstratio. Proof.
Loco 2 ponatur 1 + 1, eritque (1 + 1)p−1 = 1 + p−1

1 + In place of 2, take 1 + 1, and the formula becomes
p−1
1

p−2
2 + p−1

1
p−2
2

p−3
3 + p−1

1
p−2
2

p−3
3

p−4
4 etc. cuius se- (1 + 1)p−1 = 1 + p−1

1 + p−1
1

p−2
2 + p−1

1
p−2
2

p−3
3 +

riei terminorum numerus est = p et proinde impar. p−1
1

p−2
2

p−3
3

p−4
4 , and so on. The number of terms of

Praeterea quilibet terminus, quamvis habeat fractionis this series is equal to p and consequently odd. For
speciem dabit numerum integrum; quisque enim nu- this reason, even though every term has the form of a
merator, uti satis constat, per suum denominatorem fraction, each still gives a whole number; because each
dividi potest. Demto igitur seriei termini primo 1 erit numerator, as is clearly sufficient, can be divided by
(1+1)p−1−1 = 2p−1−1 = p−1

1 + p−1
1

p−2
2 + p−1

1
p−2
2

p−3
3 + its denominator. Then take away the initial term of 1

p−1
1

p−2
2

p−3
3

p−4
4 + etc. quorum numerus est = p − 1 from the series to obtain: (1 + 1)p−1 − 1 = 2p−1 − 1 =

et propterea par. Colligantur igitur bini quique ter- p−1
1 + p−1

1
p−2
2 + p−1

1
p−2
2

p−3
3 + p−1

1
p−2
2

p−3
3

p−4
4 + . . . . So
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mini in unam summam, quo terminorum numerus fiat the number of terms is p − 1 and therefore even. Now,
duplo minor; erit 2p−1 − 1 = p

1
p−1
2 + p

1
p−1
2

p−2
3

p−3
4 + collect each pair of terms into one sum, so that the

p
1

p−1
2

p−2
3

p−3
4

p−4
5

p−5
6 + etc. cuius seriei ultimus termi- number of terms is less by a half, to obtain: 2p−1 −1 =

nus ob p numerum imparem erit p
1

p−1
2

p−2
3 · · · 2

p−1 = p. p
1

p−1
2 + p

1
p−1
2

p−2
3

p−3
4 + p

1
p−1
2

p−2
3

p−3
4

p−4
5

p−5
6 +, and so

Apparet autem singulos terminos per p esse divisibiles, on. Since p is an odd number, the last term of this
nam, cum p sit numerus primus et maior quam ullus series is p

1
p−1
2

p−2
3 · · · 2

p−1 = p. So it is clear that each
denominatorum factor, nusquam divisione tolli poterit. term is divisible by p, because, as p is a prime number
Quamobrem si fuerit p numerus primus impar, per il- and greater than every factor in the denominators, it
lum semper 2p−1 − 1 dividi poterit. q.e.d. can never be removed by division. For this reason, if p

is an odd prime number, 2p−1−1 can always be divided
by it. 2

Aliter Or Alternately:
Si 2p−1−1 per numerum primum p dividi potest, dividi If 2p−1 − 1 can be divided by a prime number, then its
quoque poterit eius duplum 2p − 2 et vicissim. At est alternate form 2p − 2 can in turn also be divided. And
2p = (1+1)p = 1+ p

1 + p
1

p−1
2 + p

1
p−1
2

p−2
3 · · · p

1 +1. Quae 2p = (1+1)p = 1+ p
1 + p

1
p−1
2 + p

1
p−1
2

p−2
3 · · · p

1 +1. And
series terminis primo et ultimo truncata dat p

1 + p
1

p−1
2 + this series, with the first and last terms removed, gives

p
1

p−1
2

p−2
3 +· · · p

1
p−1
2 +p = 2p−2. Perspicuum autem est p

1 + p
1

p−1
2 + p

1
p−1
2

p−2
3 + · · · p

1
p−1
2 + p = 2p − 2. Now it

istius seriei quemvis terminum per p esse divisibilem, si is clear that each term of this series is divisible by p,
quidem p fuerit numerus primus. Quamobrem etiam if indeed p is a prime number. For this reason, 2p − 2
semper 2p − 2 per p et propterea quoque 2p−1 − 1 per can also always be divided by p, and accordingly so can
p dividi poterit, nisi sit p = 2. q.e.d. 2p−1 − 1, unless p = 2.

§4. Cum igitur 2p−1 − 1 per numerum primum im- §4. Therefore since 2p−1 − 1 can be divided by an
parem p dividi queat; facile intelligitur per p quoque odd prime number p; it is easy to see that the formula
dividi posse hanc formulam 2m(p−1) − 1 denotante m 2m(p−1) − 1 can also be divided by p, with m as any
numerum quemcunque integrum. Quare sequentes for- whole number. For this reason, all the following for-
mulae quoque omnes 4p−1 − 1, 8p−1 − 1, 16p−1 − 1 etc. mulas: 4p−1 − 1, 8p−1 − 1, 16p−1 − 1, and so on, can
per numerum primum p dividi poterunt. Demonstrata be divided by a prime number p. Therefore the truth
igitur est veritas theorematis generalis pro omnibus ca- of the general theorem has been proven for all cases, in
sibus, quibus a est quaevis binarii potestas, et p qui- which a is any power of two, and p is any prime number
cunque numerus primus praeter binarium. except two.

§5. Demonstrato nunc hoc theoremate eius ope se- §5. Now with this theorem proved we prove the
quens quoque demonstrabimus. following with its help.

Theorema. Theorem.
Denotante p numerum primum quemcunque praeter 3, If p is any prime number except 3, then 3p−1 − 1 can
per illum semper haec formula 3p−1 − 1 dividi poterit. always be divided by it.

Demonstratio. Proof.
Si 3p−1 − 1 per numerum primum p excepto 3 dividi If 3p−1−1 can be divided by any prime number p except
potest, tum 3p − 3 per p dividi poterit, quoties p fuerit 3, then 3p − 3 can be divided by p, whenever p is any
numerus primus quicunque, et vicissim. Est vero 3p = prime number, and in turn. But 3p = (1+2)p = 1+ p

1 ·
(1 + 2)p = 1 + p

1 · 2 + p
1

p−1
2 · 4 + p

1
p−1
2

p−2
3 · 8 · · · + p

1 · 2+ p
1

p−1
2 ·4+ p

1
p−1
2

p−2
3 ·8 · · ·+ p

1 ·2
p−1 +2p. Each term

2p−1 + 2p, cuius seriei singuli termini praeter primum of this series can be divided by p, except for the first
et ultimum per p dividi poterunt, si quidem p fuerit and last, provided that p is a prime number. Therefore,
numerus primus. Per p igitur dividi potest ista formula the formula 3p − 2p − 1 can be divided by p, and this
3p−2p−1, quae aequalis est huic 3p−3−2p+2. At 2p− is equal to 3p − 3 − 2p + 2. And 2p − 2 can always be
2 semper per p numerum primum dividi potest; ergo divided by p; therefore so can 3p − 3. For this reason,
etiam 3p−3. Quare 3p−1−1 semper per p dividi potest, 3p−1 − 1 can always be divided by p, whenever p is a
quoties p fuerit numerus primus excepto 3. q.e.d. prime number except 3. 2
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§6. Eodem modo ulterius progredi liceret ab hoc ip- §6. In the same manner as above, we may proceed
sius a valore ad sequentem unitate maiorem. Sed quo from one value of a to the value larger by one. But in
demonstrationem generalis theorematis magis concin- order to make the proof of the general theorem more
nam magisque genuinam efficiam, sequens praemitto. concise and more genuine, I advance the following.

Theorema. Theorem.
Denotante p numerum primum, si ap − a per p dividi Letting p be a prime number, if ap − a can be divided
potest; tum per idem p quoque formula (a + 1)p − a− 1 by p, then (a + 1)p − a − 1 can also be divided by the
dividi poterit. same value p.

Demonstratio. Proof.
Resolvatur (1 + a)p consueto more in seriem, erit (1 + If (1+a)p is expanded in the usual manner into a series,
a)p = 1 + p

1a + p
1

p−1
2 a2 + p

1
p−1
2

p−2
3 a3 + · · · p

1ap−1 + ap; we have (1 + a)p = 1 + p
1a + p

1
p−1
2 a2 + p

1
p−1
2

p−2
3 a3 +

cuius seriei singuli termini per p dividi possunt praeter · · · p
1ap−1 + ap. The individual terms of this series

primum et ultimum; si quidem p fuerit numerus primus. can all be divided by p, except for the first and last,
Quamobrem (1+a)p−ap−1 divisionem per p admittet; provided that p is a prime number. For this reason,
haec autem formula congruit cum hac (1+a)p−a−1− (1 + a)p − ap − 1 admits division by p; but this for-
ap + a. At ap − a per hypothesin per p dividi potest, mula is equivalent to (1 + a)p − a − 1 − ap + a. And
ergo et (1 + a)p − a − 1. q.e.d. ap − a can be divided by p by hypothesis, so therefore

(1 + a)p − a − 1 also. 2

§7. Cum igitur, posito quod ap − a per p numerum §7. Therefore, since by assuming that ap − a can
primum dividi queat, per p quoque haec formula (a + be divided by the prime number p, the formula (a +
1)p − a − 1 divisionem admittat; sequitur etiam (a + 1)p−a−1 also admits division by p; it also follows that
2)p − a − 2, item (a + 3)p − a − 3 et generaliter (a + (a+2)p−a−2, (a+3)p−a−3 and in general (a+b)p−a−b
b)p −a− b per p dividi posse. Posito autem a = 2, quia can be divided by p. Then by setting a = 2, because
2p − 2, uti iam demonstravimus, per p dividi potest, 2p − 2, as we have proven, can be divided by p, it is
perspicuum est formulam (b + 2)p − b − 2 divisionem clear that the formula (b + 2)p − b − 2 ought to admit
per p admittere debere, quicunque integer numerus loco division by p, for whatever whole number is substituted
b substituatur. Metietur ergo p formulam ap−1 − 1, in place of b. Therefore p divides the formula ap−1 − 1,
nisi fuerit a = p vel multiplo ipsius p. Atque haec unless a = p or a is a multiple of p. And so this is
est demonstratio generalis theorematis, quam tradere the proof of the general theorem, which I undertook to
suscepi. provide.
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