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Introduction to the translation

This translation is the pleasant collaborative effort of student and professor. Walter Jacob is a
senior undergraduate mathematics major and Tom Osler has been a  professor of mathematics for the
past 45 years. We found making this translation a delightful challenge.

The modern reader might find this paper particularly difficult to read because of the primitive
mathematical notation available to Euler. He did not have our notations for summation, functions or
definite integrals. Without the notation ( )f x  it becomes especially difficult to explain these results.( In
later papers we find Euler using : ( )f x .)

For this reason we have rewritten many of Euler’s expressions in modern notation in the Notes
that follow this translation and in our Synopsis of E46. We recommend that the reader consult both of
these while studying this translation.

We tried to imagine how Euler would express himself if he was fluent in modern English. He
sometimes wrote in very long sentences which we converted into several smaller ones. In the body of
the translation we did not change any of Euler’s notations, but we did use modern notation in our Notes
and Synopsis. We did not find any typographical errors in Euler’s paper, thus any errors that the reader
finds here are probably ours.

1. In the past, using integration, I found approximations to the sums of certain series and very

easily applied the method to series whose sums converge. I also gave some examples of this method by

differentiating the harmonic series. It is now time to perfect this method and also to look forward to

deriving many interesting examples involving the approximate sum. In this method the calculation of
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the approximate sum is reduced to integration. Let n be a positive number indexing the terms of the

series, which sums to s. As  n is a discrete variable, the sum s changes with each unit increase in n. The

term x becomes very small as n becomes very large. The instantaneous rate of growth of n is 1 and the

corresponding instantaneous rate of growth of s is  x, therefore : 1:dn ds x= . Thus we have ds xdn=

and s xdn= ∫ . In this the unknown constant of integration needs to be added. On the other hand, if the

sum s is from an infinite series that converges, this constant of integration vanishes.  Accordingly by

this method we obtain a sum  from the term x  starting at any point in the infinite sum.  When we add

this  to the (previously determined) finite sum s  we obtain the total sum of the series.

2. On the other hand  this method always sums the series with some small error. By using different

comparisons, we determine values between which the true sum exists.  In this work great light is shed

on the unknown, if, before performing the  calculation, we consider a continuous curve appropriate for

our series. By examining the graph, we imagine a method of discovery that can later be applied to some

remarkable examples. We proceed now to examine the figure in which the summation of series is

compared the integration under the curve.
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3.  In the series, whose sum we investigate, .a b c d e etc+ + + + +  the index is n and the terms x are

known functions of n. We sum over the interval AP partitioned into AB, BC, CD, DE etc. which

denotes equal sections of length 1.  On the points A, B, C, D etc. we erect ordinates Aa, Bb, Cc, Dd etc. 

which equal respectively the terms of the series a, b, c, d etc. At 1AP n= − we have the ordinate

Pp x= . To these ordinates, we extend lines of length  =1 to form the rectangles Aβ, Bγ, Cδ, Dε etc up

to Pρ.  Therefore the sum of these rectangles equals the sum of the series a+b+c+d+...+x.  Hence to

discover the sum of this series, we must determine an approximation to the area of these rectangles.

4. Through the points a, b, c, d, e, f, ...p we extend the curved line abcdef...p, as is natural, to the

point where the abscissa is AP=n-1=t and the ordinate is Pp=x.  The term x is composed of n and

constants, if in place of n we write t+1 we will have an equation for the curve x  in terms of t . 

If the next ordinate after x is y, it will have index n+1 and the equation  will have abscissa n and

ordinate y . We naturally get the curve abc...pq. This series will give y in terms of n, from which we

find the equation between n and y which naturally describes the curve.

5.     The area under this curve with base AQ  between the ordinates Aa to Qq is slightly less than the

sum of all the areas of the rectangles Aβ+Bγ+...+Pρ, and the difference is the sum of all the curvilinear

triangles abβ, bcγ, ... pqρ. With the above sum of the rectangles equal to the series a+b+c+...+x, this

sum is larger than the area  AaqQ.  The area under the curve is =∫ydn and when this integral is

evaluated, with lower limit n=0, we get the inequality ....a b c x ydn+ + + > ∫ .
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6.  Therefore we have discovered a lower limit, such that the sum of the series is larger, and we

now find the upper limit by a similar method.  Suppose (Fig. 2) again we partition the interval AP into

increments AB, BC, CD, ... PQ, which are of unit length, and ordinates are erected, such that Bβ=a,

Cγ=b, Dδ=c, and  at AP=n we erect two final ordinates Pπ=x and Qζ=y.  Now y  is the final term of

the sequence, just after  x, and α is the first term which is represented by the ordinate Aα.  In fact the

total of the rectangles Ba+Cb+Dc+...Po is equal to the sum of the series a+b+c+d+...+x.

7. Now in a similar way we draw through the points α, β, γ, ... π  the curved line  αβγ...π, which is

shown, and we see that at the end of the segment AP=n the ordinate is Pπ=x.  Therefore the area,

which is between the curve and the segment AP, is =∫xdn, where this integral is defined such that  lower

limit of integration is  n=0.  In truth  this area is larger than the area of the sum of the rectangles Ba,

Cb, ... Po, which we describe by ....a b c x xdn+ + + < ∫ .Therefore ∫xdn and ∫ydn are the upper and

lower limits of the series.
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8. So far we have obtained close approximations to the sums of these series by neglecting the

small triangles in each figure. In the first figure it is necessary to add these triangles to the area of the

curve ∫ydn, to obtain the sum of the series.  In truth these triangles are curvilinear as well as larger, than

if they were rectilinear, because of the concavity of the curve.  The sum of these rectilinear triangles is

equal to ( ) : 2Aa Qq AB−  or 
2

a y−  Hence if ∫ydn is added to
2

a y−  it will not be sufficient to complete

the area. Thus we have ....
2

a ya b c x ydn −
+ + + > +∫ .

9. In the second figure, from the area AαπP, which is =∫xdn, we subtract the area of  the triangles

αaβ, βbγ, ... ωoπ  to obtain the true sum of the rectangles.  We suppose the area of the curvilinear

triangle αaβ is less than the rectilinear triangle, which is  
2

a b−
=  and the sum of all of these rectilinear

triangles is 
2

a y−  In truth 
2

a y− is less than the sum of all of the curvilinear triangles, so if 
2

a y− is

subtracted from ∫xdn, we get ....
2

a ya b c x xdn −
+ + + < −∫ .
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10.  The value of the former of these two new limits is closer than the latter.  The former

2
a yydn −

+∫ is slightly less than the sum of a+b+c+...+x; the difference being the total  of all of the

segments bound by the arcs ab, bc etc. and the corresponding chords ab, bc etc.  A value close to the

area of these segments is estimated by the extending the chord cb  to the left until it intersects the

ordinate Aa at n, We bisect the segment na  by m and notice that the line  bm is an approximation to the

tangent of the curve at b.  The area of the segment aba is nearly one third the area of the triangle abm

and consequently one sixth the area of the triangle abn.

11.  Therefore if Aa=a, Bb=b, and Cc=c, an=a-2b+c and since AB=1 the triangle 2
2

a b cabn − +
=

Therefore this sixth part equaling 2
12

a b c− + is the first curvilinear segment aba.  Similarly  the second

segment = 2
12

b c d− + and the furthest = 2
12

x y z− + , denoting by z the term indexed by n+2.  Therefore

the result of the sum of all of the segments = 
12 12

a b y z− −
− which add to the greater sum gives us
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( ) ( ).......
2 2 12 12
a y a b y za b c x ydn − −

+ + + + = + − + −∫ .

12. The value of this expression is extremely close to the true sum of the series, which it is indeed

when we do not neglect (any part) of the segments. If the series converges,  this formula gives

approximate sums as close to the true value  as you wish. This is made possible, by first finding the

exact sum of the initial terms of the series and finally appending the sequence of points a, b, c etc.  The

greater the number of initial terms added exactly, the better the approximation we can obtain.  Also if

we have an infinite series, then the final terms  x and y disappear, and in ∫ydn let the upper limit be

n=∞, so that the sum of the infinite series = 7
12 12

a bydn + −∫ .

13. We seek the sum to the millionth term  of the series 1 1 1 11 .
2 3 4 5

etc+ + + + , and we 

begin by adding the first ten terms exactly and get  2.928968.  The sum of the remainder of the terms

1 1 1 1.......
11 12 13 1000000

etc+ +  is estimated by our method  is 1
11

a = , 1
12

b = , 1
10

x
n

=
+

, 1
11

y
n

=
+

and 1
12

z
n

=
+

 also 11log
11

nydn +
=∫ . With the value  n = 999990 the desired sum is

1000001 1 1 1 1 1log 2.928968
11 22 132 2000002 12000012 12000024

+ + − − + +  or = 14.392669,

approximately.

14. We now examine the  series 1 1 1 11 .
4 9 16 25

etc+ + + + , whose sum to infinity is desired.  If the first

ten terms are added, we get 1.549768.  The values needed for the remainder are 1
121

a = , 1
144

b = ,
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2

1
( 10)

x
n

=
+

, 2

1
( 11)

y
n

=
+

. From these we get 1 1
11 11

ydn
n

= −
+∫  and at n=∞ this becomes

1
11

ydn =∫ .  Therefore the series summed to infinity is 1 1 1 1.549768
11 12.121 12.144

+ − + . When

expressed in decimal form this is given by 1.644920.

Notes for E46 

Euler uses primitive notations for describing functions, series, and definite integrals. To help

clarify his mathematics we will use modern notation in these notes. The following table compares

Euler’s variables and notation with the modern notation we will use in these notes.

Description Euler’s Notation Our Modern Notation

Series to be

summed

a b c p+ + + +
Also
a b c x+ + + +

( ) ( 1) ( 2) ( 1)f f f fα α α β+ + + + + + −

Specific Values x and p

y  and q

( )1f β −

( )f β

Curve shown in
Figure 1

abcde pq ( )y f x=

Curve shown in
Figure 2

αβγδ πζ ( 1)y f x= −

Integral for Lower
Bound of Series ydn∫ ( )f x dx

β

α
∫

Integral for Upper
Bound of Series xdn∫ ( 1)f x dx

β

α

−∫

Euler’s figures 1 and 2 can be combined to give us the following modern version.
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α+ 1α α+2 a+3 β − 1

y = f ( x )

y = f ( x - 1 )

Figure 1: Sum bound by two curves

x

y

β
A B C P Q

Section 1. Euler states that he will find approximations to series. The end result will be 

( ) ( ) ( ) ( 1) ( ) ( 1)( ) ( )
2 12 12n

f f f f f ff n f x dx
ββ

α α

β α α α β β

=

+ − + − +
≈ + + −∑ ∫ .

Sections 2 to 5. Euler uses the curve ( )y f x=  to obtain the lower bound

(2)
1

( ) ( )
n

f x dx f n
β β

αα

−

=

< ∑∫ .

Sections 6 and 7. Euler uses the curve ( 1)y f x= −  to obtain the upper bound

(3)
1

( ) ( 1)
n

f n f x dx
ββ

α α

−

=

< −∑ ∫ .

Section 8.  The estimate given by (2) can be improver by adding to the integral the sum of the areas of

all the small curvilinear triangles STQ, one at the top of each rectangle. See figure 2.



10

R

S

Q

P

c-1 c c+1
Figure 2: Triangular and curvilinear areas

T

In this section Euler sums the areas of the rectilinear triangles and gets the improved lower bound

(4)
1( ) ( )( ) ( )

2 n

f ff x dx f n
β β

αα

α β −

=

−
+ <∑∫ .

Section 9. Applying the ideas used in the previous section Euler improves the upper bound

(5)
1 ( ) ( )( ) ( 1)

2n

f ff n f x dx
ββ

α α

α β−

=

−
< − −∑ ∫ .

Section 10. In this section Euler begins examining the curvilinear segment of area SQS shown shaded

in figure 2. He assumes that his readers are familiar with the following lemma which we prove now:

Lemma: Let the arc PQS be a segment of a parabola, and let PQR be a chord as shown in Figure 2.

Then the area of the curvilinear segment QSQ equals one sixth the area of the triangle QSR.

Proof:  For the moment, assume that the curve shown in figure 2 is a parabola. Since all parabolas are
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similar, we can use the equation 2( )y f x x= = to describe this curve. In the following we give our

results using the notation ( )f x  for the curve as well as the specific value 2x . We do this because we

will approximate a general function by a parabola in the next section and will need the results in terms

of ( )f x . The slope of the chord PQR is

 
2 2( 1) ( ) ( 1) 2 1

1 1
f c f c c c c+ − + −

= = + . 

The equation for this chord is then 

2( 1) ( )( ) ( ) (2 1)( )
1

f c f cy f c x c c c x c+ −
= + − = + + − . 

The ordinate of the point R is then 

2

( 1) ( )( ) (( 1) )
1

2 ( ) ( 1)
2 1

f c f cy f c c c

f c f c
c c

+ −
= + − −

= − +

= − −

and thus the length of the vertical segment RS is 

2 2( 1) (2 ( ) ( 1)) ( 1) ( 2 1) 2f c f c f c c c c− − − + = − − − − = . 

The area of the triangle RSQ is then

(6)           ( )( 1) 2 ( ) ( 1)
1 1

2
f c f c f c− − + +

= .

The area of the curvilinear segment QSQ is given by the area of the quadrilateral under the

chord QS minus the area under the parabola from c h−  to c. This is given by

2 2 2 2 3 3
2

1

( 1) ( 1) ( 1)1 1
2 2 3 3

c

c

c c c c c cx dx
−

 − + − + −
− = − − 

 
∫

which simplifies to 1
6

. Comparing this with (6) we see that the lemma is proved. 

Section 11. Using the lemma just proved, Euler approximates the short segment of the curve ( )y f x=
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above each rectangle by a parabola and thus can estimate the areas of the curvilinear segments like SQS

shown in figure 2. When these segments are added and combined with (4) we get  

1 ( ) ( ) ( ) ( 1) ( ) ( 1)( ) ( )
2 12 12n

f f f f f ff n f x dx
ββ

α α

α β α α β β−

=

− − + − +
≈ + + −∑ ∫ .

Adding ( )f β  to both sides we get the main result

(7) ( ) ( ) ( ) ( 1) ( ) ( 1)( ) ( )
2 12 12n

f f f f f ff n f x dx
ββ

α α

β α α α β β

=

+ − + − +
≈ + + −∑ ∫ .

Section 12.  If our series in infinite, then β = ∞  and (1) becomes

(8) 7 ( ) ( 1)( ) ( )
12 12n

f ff n f x dx
α α

α α∞∞

=

+
≈ + −∑ ∫ ..

We can also compare (7) with the Euler-Maclaurin summation formula (see [1]),

( )( 1) 1) 1

2

( ) ( )( ) ( ) ( ) ( )
2 !

k k kk

n k

Bf ff n f x dx f f h
k

ββ

α α

β α
β α

∞
− − −

= =

+
= + + −∑ ∑∫ .

(Most likely Euler did not know this result at the time he wrote this paper.) The first term in the

summation is ( )2 '( ) '( )
2!
B f fβ α− , and since 2

1
6

B =  this term becomes '( ) '( )
12

f fβ α− .

Approximating the derivatives by ( 1) ( )'( )
1

f ff α α
α

+ −
≈  and ( 1) ( )'( )

1
f ff β β

β
+ −

≈  we get (7).

Section 13. Euler seeks the sum
1000000

1

1
n n=
∑ . For convenience we use (7) to introduce the notation 

(9) ( ) ( ) ( ) ( 1) ( ) ( 1)( , ) ( )
2 12 12

b

a

f b f a f a f a f b f bS a b f x dx + − + − +
= + + −∫ .

Euler does not simply calculate
1000000

1

1 (1,1000000)
n

S
n=

≈∑ , rather, he first finds the sum of the first ten

terms exactly, and then adds the estimate from (9). We repeated his calculations using Mathematica to

get
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1000000 10

1 1

1 1 (11,1000000)
n n

S
n n= =

≈ +∑ ∑

= 2.9289682539682539683 + 11.463701643751678813

= 14.392669897719932781.

If we sum more terms exactly, the approximation should improve. Consider the computations in the

following table

a = number of terms in the
exact part of the sum

1000000

1 1

1 1 ( 1,1000000)
a

n n
S a

n n= =

≈ + +∑ ∑
10 14.392669897719932781

100 14.392726642856255069

1000 14.392726722782731017

10000 14.392726722865640332

100000 14.392726722865723548

Section 14.: In his second example Euler approximates 2
1

1
n n

∞

=
∑ . Since the series is infinite he can use (8).

As before we define

7 ( ) ( 1)( , ) ( )
12a

f a f aS a f x dx
∞ − +

∞ = +∫ . 

Euler makes his estimate using a two part calculation, and we repeat it using Mathematica

10

2 2
1 1

1 1 (11, )
n n

S
n n

∞

= =

≈ + ∞∑ ∑

= 1.5497677311665406904 + 0.09515132384450566268

= 1.6449190550110463530.

The following table shows the effect of using more terms in the exact sum
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a = number terms in the
exact part of the sum

2
1 1

1 1 ( 1, )
a

n n
S a

n n

∞

= =

≈ + + ∞∑ ∑
10 1.6449190550110463530

100 1.6449340644802745199

1000 1.6449340668479777984

10000 1.6449340668482264115

The exact value of this sum is 
2

2
1

1
6n n
π∞

=

= =∑  1.6449340668482264365. While Euler became famous for

discovering this exact value, we assume this paper was written before his discovery since he never

compares his approximate value with it.
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