the hands, no ill effect follows, whence it may be concluded, that the quantity of the venom being very quickly absorbed by the capillary vessels of the skin, and its entrance into the body prevented. The Indians, however, that travel through these regions frequently catch them between both hands, to satisfy the curiosity of their people, but it is not to be doubted, but that if the Cope were not soon made upon the palm of a delicate person, where there were no capillaries, or at least more susceptible, it would produce the very same effects, and be hurtless to the part of the body upon which any other part of the body.

They who have occasion to pass through these valleys, if they find themselves bit by any of the species, and feel the tells, take care not to scratch or touch the place, (for the least touch will hurt the Cope, and it will do no harm until it is eaten) but if the Indians accompany them to search, where they feel the bite, and if it happen, to be a Cope, the Indians blow off the by with their mouths, or at least, in some determined manner, upon the herb or leaves before they eat it, but not without this, it sometimes happens that the pustules are eaten, the consequence of which is a swelling, and immediate death.

Of the general and fundamental principles of all motions, in which all the parts of the body, whether in solids or fluids, should be ascertained.

By M. Euler, from the first Berlin Memoirs.

Suppose a body infinitely small, or whose whole mass is united in a single point, and let that mass be M. Suppose also that this body has received any force of motion, and is facilitated by any forces whatever. To determine the motion of this body, we are only to consider its distance from any fixed and immovable plane. At the present instant its distance from such plane, which we call the first distance, is the force acting upon the body, according to directions parallel and perpendicular to the plane, and let P be the force resulting from the composition of these.

A very ingenious correspondent in South Carolina, has favored us G with the following remarks on the weather, which shows its temperature in every month, with regard to both its heat and cold, and which is constantly verified in the three following examples.

I. \(\dot{x} = \dot{y} = \dot{z} = \dot{Q} = \dot{P} \\
II. \dot{x} = \dot{y} = \dot{z} = \dot{Q} = \dot{P} \\
III. \dot{x} = \dot{y} = \dot{z} = \dot{Q} = \dot{P} \\
If the body is not solicited by any other forces, is that \(P = q, Q = q, R = q, S = q \), the above formulae, I being constant, will be reduced to these.

Weather at Charles Town, Sc. compar'd.

Weather at Edinburgh.

At London in July 1793.

At Jamaica.

As Jamaica had been 83 degrees at last season.

By the above it then appears, that in the space of one year the quicksilver altered by a scale of eighty-two degrees of Fahrenheit's thermometer, that it was at 80 degrees, the thermometer sometimes on the same day between sun rise and sun set, and on the contrary, in the space of 24 hours, was from 40 degrees colder than it had been on the preceding day; a most amazing variation and such as well be thought to affect the inhabitants in a remarkable manner, especially when it is considered, that such an alteration of weather as this might affect the quicksilver ten or twelve degrees suddenly, make it necessary to put on a thicker clothing.

The last summer with us was 32 degrees warmer than at Edinburgh in 1792, which is thought very surprising, our winter was nineteen degrees colder.

Our heat exceeded the greatest heat of the west from London 30 degrees, and we were in that month 15 degrees warmer than we were at Jamaica, as I am well informed.

So hot had our summer at that time changed suddenly, so as it has been requisite to put on the mercury to that point which indicated