Der Briefwechsel zwischen Leonhard Euler und Johann I Bernoulli.

Von G. Eneström in Stockholm.

III. 1739—1746.

Mit dem soeben zitierten Schreiben des Bernoulli vom 18. Februar 1741 brach der Briefwechsel zwischen ihm und Euler keineswegs ab; in der Tat hat Fuss²) sechs weitere Briefe von Bernoulli an Euler veröffentlicht, und wenigstens sieben Briefe an Bernoulli hat Euler nach 1740 geschrieben. Indessen sind alle diese Euler’schen Briefe verloren gegangen, und unter solchen Umständen habe ich keinen hinreichenden Anlaß gefunden, die sechs Bernoulli’schen Briefe noch einmal abzudrucken. In der Einleitung zum ersten Abschnitte³) habe ich nämlich das erneute

²) Correspondance mathématique et physique de quelques célèbres géomètres du XVIIIème siècle publiée par P. H. Fuss. T. II (St.-Petersbourg 1845), S. 59—93.
Der Briefwechsel zwischen Leonhard Euler und Johann I. Bernoulli.

Unter den rein mathematischen Fragen, die in den hier abgedruckten Briefen behandelt werden, sind in erster Linie zu nennen die Integration der unvollständigen linearen Differentialgleichungen mit konstanten Koeffizienten und die Summierung der Reihe

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + n}$$

Den Anlaß, sich mit der ersten Frage zu beschäftigen, bekam Euler dadurch, daß er 1739 zuälligerweise entdeckte, daß die einfache Differentialgleichung

$$ax^3 \frac{dy}{dx} = y$$

dreimal integriert werden könnte. Die Form des Integrals ließ ihm vermuten, daß es durch eine einzige Operation erhalten werden könnte, und

1) Biblioth. Mathem. 50, 1804, S. 249—249.
2) Siehe Fuss, a. a. O. I. S. XXI.
Bibliotheca Mathematica. III. Folge. VI.
bald entdeckte er die Methode, die unvollständige lineare Differential-
gleichung mit konstanten Koeffizienten
\[y + a \frac{dy}{dx} + b \frac{d^2y}{dx^2} + c \frac{d^3y}{dx^3} + d \frac{d^4y}{dx^4} + \ldots = 0 \]
zu integrieren. Was seine Briefe an Bernoulli hierüber enthalten, sowie was
Bernoulli über die Integration einer verwandten Gleichung mitteilte, habe ich
vor 8 Jahren in einem besonderen Aufsatz ausführlich auseinandergesetzt. 1)

Mit der Reihe
\[\sum_{z=1}^{\infty} \frac{1}{z^n + a} \]
hat sich Euler später in seinen gedruckten Schriften vielfach beschäftigt;
die Resultate, die er seinem alten Lehrer brieflich mitteilte, sind also
schon längst bekannt, aber die dabei benutzte Behandlungsweise ist nicht
ohne Interesse, da sie, so viel ich weiß, nicht von Euler veröffentlicht
worden ist. Er verwandelt nämlich die gegebene unendliche Reihe in
eine andere, die nach Potenzen von \(\pi \) fortschreitet, nimmt eine einfache
Transformation vor, differenziert die neue Reihe nach \(\pi \), und erhält dadurch
eine Differentialgleichung, deren Integral er finden kann.

Mehr im Vordergrund werden in den Briefen einige andere Fragen
aus dem Gebiete der Analysis behandelt, z. B. über die Summen der Reihen
\[\sum_{z=1}^{\infty} \frac{1}{z^n} \] und \[\sum_{z=1}^{\infty} \frac{1}{z^2} \]
die Summierung einer endlichen Anzahl von Gliedern der harmonischen
Reihe gibt Euler Anlaß, den angenäherten Zahlenwert der später nach
ihm benannten Konstante zu berechnen. Zur Integralrechnung gehören
wichtige von Euler aufgestellte Reduktionsformeln für das Integral
\[\int x^n (a^n - x^n)^r \, dx. \]

In betreff der rein mathematischen Fragen ist es eigentlich Euler,
der in den Briefen die Resultate seiner Untersuchungen mitteilt, während
Bernoulli meistens auf gelegentliche Bemerkungen beschränkt
oder auf seine früheren Arbeiten hinweist. Anders liegt dagegen die
Sache hinsichtlich der in den Briefen behandelten Gegenstände aus der
angewandten Mathematik. Hier fiel sich Bernoulli offenbar mehr auf
eigenen Boden stellen, und die Briefe handeln ebenso sehr von seinen
eigenen Untersuchungen. Die Übersendung der zwei für die Petersburger
Commentarii bestimmten Abteilungen der Dissertatio hydraulica, sowie
die Fortsetzung der schon im Jahre 1737 begonnenen Diskussion über

1) Enqvist, Sur la découverte de l'intégrale complète des équations différentielles
linéaires à coefficients constants; Biblioth. Mathem. 11a, 1897, S. 45—90.
Der Briefwechsel zwischen Leonhard Euler und Johann I. Bernoulli.

...und die Bewegung schwimmender Körper, bieten BERNOULLI die sicherlich nicht unerwünschte Gelegenheit dar, sich sowohl über die Prinzipien wie auch über gewisse Details der Hydrodynamik zu äußern, und nebenbei die Untersuchungen seines Sohnes DANIELS zu bemängeln. EULER spricht zwar seine Bewunderung für die BERNOUlli'schen Untersuchungen aus, beanstandet aber einzelne Punkte derselben, und zum Teil muß ihm BERNOUlli auch Recht geben.

19.

BERNOLLI an EULER 7. März 1736.

Vir Excelentissimo atque Acutissimo LEONARDO EULERO S. P. D.

Joh. BERNOLLI. 1

Exoptatissimae Tusae litterae d. 20. Decembris st. v. mihi traditae sunt atque a me perlectae summa cum voluptate. Eccel nunc ad Tus mittio parte priorem meditationum meorum hydraulicorum5), quas tandemera

1) Bei dem folgenden Abdruck habe ich auch das Konzept vergessen.

5) Dissertatio hydrostatica de motu aquarem per vasos et per canales, quanuncque figuram habentes. Pars prima aequa de motu aquarem per vasos et canales cylindricos qui ex pluribus tubis cylindricis sibi inovem adaptatis sunt confusi; Comment. acad. se. Petrop. 3, 1757 (gedruckt 1744), S. 3—49. Ein vorläufiger Abdruck findet sich in den Opera omnia (s. IV S. 391—432) des JOHANN BERNOLLI.
Te desiderare testaris, et vel ideae desiderae, quod cognoveris imperfectionem, qua haec doctrina etiamnunc ab alius tractari solet, immo, ut candidae fateris, tu ipse frustra omnes studium in genuina methodo detegenda collocaueris, invita omni, quae polles, perspicacia. Videbis, originem sequioris successus scriptorum hydraulicorum ex eo unice venisse, quod nemo haecemus attendorit, partem aliquam finitam virium promptium insati ad formandum gurgitem, quando aqua cogitur ex uno tubo in alium diversae amplitudinis transire, licet gurgites ipse constare consciatur ex portionum aquae infinitae parva. Post pertinentem diutinamque pensationem animadverti tandem, non sufficie, ut attendatur ad solam illum vim vel pressorem, qua liquor in tubis in motum localem seu progressivum excitetur data cum velocitate, sed praelinea in considerationem trahi debere principium continuatio, quod ut nulla mutatione in effectibus producendi fiat per saltum, sed successive per gradus infinitae parvae, ut in hoc neglego accidit, ubi liquor a velocitate minori ad majorem, vel viceversa, ad minorem contraire debet; unde omnino nescio est, ut prope transitum, vel ante vel post, consciatur aliqua portionum liquoris, quantumvis parva, cujus stratulorum infinitae parvae vel accelerando vel retardando procedant, atque haec portionum, inaequabiliter velocitate caudales, in stratulorum est, quam voco gurgitem: haec omnium ursorum et clarissim ex ipso scripto intelliges.

Videbis etiam methodum hanc directam mirific e conspirare cum indirecta (qua sola usus est Filio meus in suo Hydrodynamico), etiam ambae dant eandem solutionem problematum hydraulicorum. Poeset autem aliquid mirari, cur, qui ista solvere vult per theoriam virium vivarum, non pariter tenat rationem habere formandi gurgitis, ut potest qui vides, quid nescias, quod infra generandum aliquam partem virium vivarum, neque ac quisquis parvim virium mortuarum; sed causam discriminari explic in scripto meo, monstrans, quantitatem materiae quam componit gurgitem etiam in infinitae parvae, niliolum minus oper habere vi finita vel determinata pressione ad acquirendam accelerationem vel retardationem in stratulorum, sive ad id, ut sose gradatim accommodato ad motum, quem liquor jam habet in tubo, in quem ingredi debet. At vero in vivum vivam, quae est in omni materia gurgitis, quippe quae quantitatis est infinitae parvae et tantum finitam celeritatem in singulis stratulorum habens, oppido patet fere illam vim vivam gurgitis infinitae parvae adeoque prorsus incomparabilem cum totali vi viva totius massae aquae in tubis motae. Hoc ergo notari debuisse a Filio, antiquam aggregatior tractationem Hydraulicum per theoriam conservationis virium vivarum, ne quis scrupulam habere possit, videns neglegi considerationem gurgitis, quae in methodo directe cita paralogismum neglegi non posset; sed quomodo pohuisset hoc praecaverere,
der Briefwechsel zwischen Leonhard Euler und Johann I Bernoulli.

cum ne quidem ideam habuerit naturae gurgitis, quo tempore librum suum scripsit?

Vides, Vir Clariss., figuras rudi admodum et erassa Minerva esse delinatas, sineullo ornamento, sedum ad stereographiae regulas repraesentatas, id sane efficere non potui, si vel maxime voluissetm, ob tremorem manuum meaurum qui cum natate continuo ingraeaveit. Fortasse dabitur apud Vos aliquid ammunoens qui, Te dirigente, figuras elegantius et majore cum figuris delineare poterit, ita ut ad mentem meam respondante.

Ceterum si videro, primam hanc partem hydraulicae meae exercitationis Tibi non displicuisse, transmittam pro fintus alteram partem, quam interea temporis, dum responsio Tua ad me veniret, absolvam, ut ad mittendum sit parata. Deprehendes, illum adhuc magis esse cupiam, ut itu modifico theoriam meam, ut fere opus non sit idea gurgitis, quem sub alia notione involvo; unde nascitur novum principium hydraulicum, a nomine antea animadversum, cujus auxilio statum pervenio ad motum aquae determinandum fluentis per vasum vel canales, non tantum ex tubis cilindricis conflatos, sed quamcumque figuram, eadem irregularum habentem, aliaque explicum phaenomena jucunda et utilia, quae in Physicis quoque sum usum habebant.

Tres quatuorvra illae lineae, quas delevisti in litteris tuis, potuissent sine ulla consequentia indelatae maneret?

Vides Vir Celeb., post tot scriptorum expeditionem parum temporis mihi superesse ad exuicienda pro merito singula epistolae Tuae capita; attingam tamen tumultuarii quantum permittebas me nemen distractio, oscillorum hebeto, atque imprimis manuum lassitudo et tremor. Quod in conventu Vestro praegeris solutionem meam superbat problematis de motu corporum in orbitis mobilibus, gratias ago, quamvis eam non scripsiter ut publice proponeret, alias majori eam cura elaborasseres atque extensissimus magis. Dabitur toto occasio alia vice communicandi quae mihi sunt meditata alia circa hanc materiam, et praeertim quae mihi subhasta sunt ex lectione Newtonianorum non semper recte se habentium.

Gratias erit accepere tomos, quos promissi, Commentariorum, qui post quantum mihi desunt.

In Musicis non valde sum exercitatus, neque hujus scientiae fundamenta satis mihi sunt perspecta, ut de inventis Tuis judicare quassum. Videntur sene egregiae, quae in litteris Tuis obiter tantum attingis; sed

1) Im Konzepte sind hier 13 Zeilen gestrichen (möglicherweise von JOHANN II BRUNSWICK), und darauf folgen die Worte: „cum sine mora tua manus curatum iri“. Er Fuss fehlt alles was im Brief nach „habebunt“ und vor „Vides“ stand.

2) Compendium analyticum pro inveniione vis centralis in orbitis mobilibus plantarum; Comment. acad. sc. Petrop. 10, 1738 (gedruckt 1747), S. 93—101.
cum videro ipsum tractatum Tuum, quam de harmoniae principiis edere statuisti, spero fore ut excide lux clarior mihi affulgerit ad inventorum Tuorum praestantiam positis introspeciendam.

Eadem ob causam nolvi nunc diutius inhaerere ipsis, quae hac tum inter nos agitata sunt de sita et motu corporum aequae instatantium, antiquum visus mihi sit Tuus hoc de re tractatus, quem ad finem percutunt esse ipsis. Interim bene est quod nunc agnosceas veritatem nonnullorum, quae monueram tam de sita obliquo coni et conoidis parabolici, quam de modo multiplicandi corporis particularis per quadrata distantiarum, non a centro ejus gravitatis, sed ab axe horizontali, per centrum transante, circa quem sunt oscillationes. Corpus aliquod tribus utique modis in quies et aequilibrio conservatur. 1\superscript{a} Si corpus duabus viribus aequilibus sed oppositis et ad se invicem tendentibus sollicitatur, fiet aequilibrium, quod olim in alia occasione vocavi coactus, idque est quod nunc vocas firmum. 2\superscript{a} Quodae virae illae duae aequales et oppositae a se invicem tendunt, hoc est, quae corpus non pereunt, sed transire conantur, fiet iterum aequilibrium, quod a Te vocatur infirmum, mihi vero pro scopo, quern olim tuis habueram, illud aequilibrium iterum vocabatur coactus. 3\superscript{a} Si nullis omnino viribus oppositis corpus sollicitatur, nec praeceperit ad se invicem nec trahendo a se invicem, erit utique aequilibrium, quod a me dico aequilibrium otiosum, idque quia, si talis corpus in causa aliqua externa ex sito suo tantisper disturbatur, non amplius aequilibrit ad pristinum suum situm redire. Sic ex gr. corpus sphaericum et homogeneum aequae insidens ac quiescens, si nonnulli circa centrum suum rotetur, manebit in hoc novo sito et non repetat priorum. Patet autem tale aequilibrium nec firmum esse nec infirmum, quodquid ideo commode vocavi otiosum, quia est quasi in statu indifferentiae. Utramque corpus aequae et quiescens sit in aequilibrio firmo vel infirmo, ex hoc utique cognoscitur, si nimium nonnulli ex sito aequilibrii deponentur, et ita quidem ut pars immersa idem semper volumen in aqua occupet, tunc centrum gravitatis corporis vel ascendet ina recta verticali, vel descendit observaturation; si prius, conclusendum erit corpus esse in aequilibrio firmo; si posteriorius, erit aequilibrium infirmum; si neque ascendit neque descendit, erit in statu neutro, seu indifferentiae, quod, ut dixi, mihi vocatur aequilibrium otiosum. In casu firmitatis attendendum est, quantum ex assunta inclinatione centrum gravitatis ascendet, tam enim ex utrosque collatione calculari potest lex accelerations oscillationum corporis, atque inde determinari longitudo penduli isochroni. Sufficient theoriam ac fundamentum deterrisse, calculum instituire non vaeat tot aliis laboribus et negotiis distrahat. De castro gratissimum mihi fuit intelligere, quod ad admirationem usque Tibi placuerint, quae scripsis de oscillationibus verticalibus,
propter simplicitatem expressionis et insignem usum quem praestare possunt in explorandis navium ponderibus; maluissem autem ut ipse quoque calculus facisses ex Tuo ingenio, quo mihi patuisset, annon eruvem in radicinando, non ingenuae fatore, me Tuis luminibus plus fidere quam meis.

Quae nunc uberior afferis, Vir Exo., de isoperimetris, credo equidem, Te omnia probe ruminasse atque ad veritatis trivium emendisse, ita ut vir quicquam restet, quod acerrimam Tuam sagacitatem subterfugere posuisti; ad me quod attinet, dum adeo est quod habe sepouisi, ut mihi ea plane non amplius sint praestantia, quare ab his desisso.

Lectu juventissimum fuit, quod addis in fine litterarum Tuorum de proprietate Tibi observata circa elasticae rectangulam (vel etiam linearium, ambae enim eandem faciant curvam) in quae si abscessa ponatur \(x \), est applicata \(\frac{ax^2}{y(a^2 - x^2)} \) et longitudo curvae \(\frac{a^2x}{y(a^2 - x^2)} \), quas expressiones ita comparatas dicis ut inter se comparari nequeant. At inventisti si abscessa ponatur \(a \), rectangulam sub applicata et area comprehendens aequalis esse partes circulari, cujus diameter sit abscessa \(a \). Est utique haec observatio notata dignissima, sed vellem scire, an hanc proprietatem a priori et de industria quesiveris et invenieris, aut aut illam, ut saepne accidere solet, aliud quaerendo detexeris per casum fortuitum. Ego jam olim observavi circa hanc lineam duas simul ipsam proprietatem non minus elegantem, etsi inventa facillimum, quae in hoc consistit, quod earum, non quidem rectangulam, sed summam sit aequalis quadranti circumferentiae ellipsos, cujus axis minor \(2a \) et axis major \(2a \sqrt{2} \). Vid. Act. Lips. 1684. m. Octob.¹) Hoc autem valet non tantum de tota curva, cujus abscessa \(x = a \) ejusque applicata maxima, sed indefinitae de quibus-cunque paribus earum ad se invicem spectantibus, quarum utique summam semper aequalis est areae ellipticae, qui pro abscissa habet \(x \) in axes minori a centro sumtant, a cujus arcus longitudine etiam dependere demonstravi loco citato dimensionem arcus lemniscatae curvae, quam adhibui ad construendam isochronam paracentricam DEBNITI, quam tum temporis multum rumoris excitaverat.²) Quando autem affirmas applicatam \(\frac{ax^2}{y(a^2 - x^2)} \) et longitudinem curvae \(\frac{a^2x}{y(a^2 - x^2)} \) ita esse comparatas, ut inter se comparari

nequeat, nescio an hoc intellectum velis generaliter et sine ulla exceptione; an vero non putes posse quidem comparari pro aliqua x determinatae longitudinis, sed non indefinite pro singulis x, sicuti revera datur aliqua hujusmodi expressio, nemo haec: \[
\int_{aa}^{x'dx} \frac{x'dx}{\sqrt{a^2 - x'^2}},
\]
quam in casu x = a inveni\(^1\)aequalis esse tria curvae totius, adeo ut habentur
\[
\int_{aa}^{x'dx} \frac{x'dx}{\sqrt{a^2 - x'^2}} = 8 \int_{aa}^{x'dx} \frac{x'dx}{\sqrt{(a^2 - x'^2)}},
\]
Optarum ut ad hoc investigandum aliquid temporis colloces, siquidem non minus notata dignum videtur, quod Tuam illud alterum:
\[
\int_{aa}^{x'dx} \frac{x'dx}{\sqrt{(a^2 - x'^2)}}, \int_{aa}^{x'dx} = \text{circulo.}
\]
Quod supra in hac pagina scripti bis verbis: sed vellem scire etc., id nunc didici ex litteris Tuus ad filium DANIELEM datis,\(^2\) quas mihi legendas exhibuit, postquam tumum meam epistolam hucusque jam absolutissim.
Curiosa sunt theorema in illis Tuus litteris contenta: ego jam olim similis inveni, sed mea magis geometrica sunt, ex considerazione curvarum deducta, Tu vero analytica magis, ope calculorum eruta. Combinando haec nostra in corpus commune, poterimus doctrinam de curvis inter se comparandis mirum quantum augere.
Quod denique doles frequens damnum ex tot iteratis decoctionibus merestorum mihi illatum, facis quidem, quod Christiana inculoat charitas, idque mihi solamnis loco erit, sed cum cogito, me hic Basilae esse, ubi perpetuis vexationibus fortunae obnoxius sum, ubi omni mea scientia vix minimam jacturae partem reparare possim, dum alibi honoribus et honorum copia abundare potuisse, param abest, quin tandem animum despondeam atque scientiarum culturae, quod vixero, valedicam.
Valeas vero et Tu, Vir Excell., diutissime, mihique favere perge.
Dabam Basilae a. d. 7. Mart. 1739.

20.
Euler an Bernoulli 5. Mai 1739.

Viro Celoberrimo atque Excellentissimo JOHANNI BERNOLLI S. P. D.

LEONHARDUS EULER.

Quantum attentionem atque adeo admirationem excitaverint profundissime Tuae de fluxu aquarum meditationes non solum apud me, sed etiam universam Academiam, litteris vix satia exprimere possum. Quod quidem ad me attinet, sic judico, Te, Vir Excellentissime, hanc rem ipsa expedivisse, quemadmodum ego non solum optavi, sed etiam jam dudum ipse effecer, etiam irrito constat, sum amicus. Nunc ante plurimum lucis haec in re mihi se foemoratus, cum ante haec materia ingenti caligine mihi esset obscura, neque quicquam uni indirecta methodo definiisse: quia ob causam Tibi me eo magis obstrictum agnosco. Interim alteram meditationem Tusum per amore impatientia expectamus, ex qua mihi persuasio non minus me esse professuram, quam ex parte priore. Quaenam autem theoriam Tusum in his schedis tantum ad causas speciales accommodasti, ubiromque explicationem in sequente dissertatio nobiscum communicanda promittis, operam tamen dedi, ut ipsa hanc theologiam Tusum ad vasa conjungasque figurae extenderem, qua in re si intentum scopum fuero assecutus, id quidem Tibi Ipse tribunas, Vir Celeb., sin secus, summo desiderio ab Te corrigi cupio.

Sit igitur [Fig. 1] vas cujusque figurae \(A B D C \), initio, quo aqua per foramen \(CD \) effluere incepit, usque ad \(AB \) aqua repleta, cuius altitudo \(AC \) sit \(a \), et foraminis \(CD \) amplitudo \(n \). Ponamus aquam jam usque in \(PS \) subsidisse hinc tempore aquam per foramen \(CD \) effluere celeritate altitudini \(z \) debita, minimo autem tempus aquae subsidere superficiem \(PS \) per spatium \(PP \); sitque \(PP = dp \) atque amplitudo vasis \(PS = s \), denotabim \(z + ds \) altitudinem celeritate aquae aestuosa debita, cum aper tis superficies usque in \(PS \) subsidit. Ut nunc mutatio motus hoc tempus aquae usque inmotescat, concipiatur superficies quaeorque aquae \(RY \), ponaturque \(AR = r \), et amplitudo \(RY = y \); ceteras hujus stratis \(RY \) debita altitudini \(\frac{nr^2}{y} \); et quia tempus aquae quiusque parvo superficies \(RY \) descendit in \(ry \), cetera ejus celeritas debita altitudini
\[
\frac{nn \delta s}{yy} + \frac{nn \delta x}{yy} - \frac{2nn \delta y}{y^2}.
\]

Est autem, quia eodem tempusculo suprema superficies \(PS\) per \(P\) descendere posuitur
\[
s \delta p = y \delta r.
\]
Cum igitur superficies \(R Y\) descendendo per altitudinem \(R R = \delta r\) ita acceleratur, ut altitudo eius eceleratit debita augmentum capiat
\[
= \frac{nn \delta x}{yy} - \frac{2nn \delta y}{y^2},
\]
hoc augmentum per spatium percursum \(\delta r\) divisum dabit vim acceleratricem
\[
= \frac{nn \delta x}{yy \delta r} - \frac{2nn \delta y}{y^2 \delta r}.
\]
Quae per massam strati \(R Y y r = y \delta r\) multiplicata praebet vim motricem hujus strati
\[
= \frac{nn \delta x}{y} - \frac{2nn \delta y}{yy}.
\]
Transferatur haevis motrix ad datam amplitudinem \(n\), prohibit ea
\[
= mn^2 \left(\frac{\delta x}{yy} - \frac{2 \delta y}{y^3} \right) = mn^2 \left(\frac{\delta x}{yy} \cdot \frac{\delta r}{s \delta p} - \frac{2 \delta y}{y^3} \right)
\]
\[
ob \frac{1}{y} = \frac{\delta r}{s \delta p},
\]
quam substitutionem eo facio, quo differentialia \(\delta r\) et \(\delta y\) ingrediuntur, quae a variabilitate sectionis \(R Y\) pendent. Tota igitur vis motricis elementum erit
\[
= mn^2 \left(\frac{\delta x}{s \delta p} \cdot \frac{\delta r}{y} - \frac{2 \delta y}{y^3} \right),
\]
cujus integrale ita est capiendum, ut tantum quantitates \(r\) et \(y\) tabulam variabiles spectentur. Integra ergo
\[
\int \frac{\delta x}{s \delta p} \left(\frac{\delta r}{y} + \frac{x}{yy} - \frac{e}{s e} \right)
\]
exprimet vim motricem pro volumine aquae \(SPRY\), ac posito \(y = n\) habebitur vis motricis totalis aquam urgens ad amplitudinem \(n\) relata.

Construatur in hunc finem nova curva \(EVZF\), in qua sit \(ZR = \frac{1}{y}\) exiguitate \(\frac{\delta r}{y}\) n casin hujus curvae \(PCFV\), ponatur haevis \(a\) \(PCFV = R\), etique vis motricis totalis
\[
= mn^2 \left(\frac{\delta s}{s \delta p} \cdot \frac{R + S}{m n} - \frac{e}{m e} \right)
\]
quae vi motrici actuali seu cylindro aqueo altitudinis \(CP\) et basis \(= m\) aequalis ponit debet. Sit igitur altitudo \(CP = x\), erit \(P = \delta p = - \delta x,\)

atque integrando vir sic

Ad quomque

per quod

erit id

quantitatem

et

ubi quod

amplitudinem

unde

atque

\[
\frac{g}{mn^2},
\]

quae

Ad quomque

quidam jam

genere

tantius

soluti
atque cum \(R \) sit area \(CPVF \), erit per coordinata \(x \) et \(s \); \(R = \frac{dx}{s} \), hoc integrali ita capto ut evanesat positio \(x = 0 \). Posito ergo \(dx \) loco \(dp \), ob vim motricem actum \(\approx mx \) habebitur hanc aequatio
\[
- \frac{n^2Rdx}{sdx} + s - \frac{n^2v}{v} = x,
\]
sive
\[
dx + s\left(\frac{dx}{R} - \frac{sdx}{n^2R} \right) = \frac{xdx}{n^2R}
\]
Ad quam aequationem integrandam sumo integrale quantitatis \(\frac{dx}{R} - \frac{sdx}{n^2R} \) per quam \(s \) est affecta, quod ob \(dR = \frac{dx}{s} \) est \(R = \frac{sdx}{n^2R} \) positoque
\[
\int \frac{dx}{n^2R} = 1s,
\]
erit id integrale \(\frac{R}{s} \), numerusque hujus logarithmico respondens \(\frac{R}{s} \), quae quantitas aequationem illam, si multiplicetur, integrabilem reddat, proditque
\[
\frac{R}{s} = C - \int \frac{sdx}{n^2s}
\]
et
\[
s = \frac{CS}{R} - \frac{S}{R} \int \frac{sdx}{n^2s}
\]
ubi quantitatem constantem \(C \) eo determinari opertet, quo fiat \(s = 0 \), posito
\(x = a \). Exemplo verissim se esse manifestabit; si ponamus vas cylindricum
amplitudinis \(m \), quod in fundo habeat foramen \(= n \); erit \(s = m \); et \(R = \int \frac{dx}{s} = m \); \(1S = \int \frac{sdx}{n^2R} = \int \frac{m^2dx}{n^2s} = \frac{m^2}{n^2} 1x \); unde fit
\[
S = x n^2,
\]
atque
\[
\int \frac{\frac{x}{n^2}}{m^2 - \frac{x}{n^2}} = \frac{m}{n^2} \int \frac{m^2 - \frac{x}{n^2} + \frac{x}{n^2}}{m^2 - \frac{x}{n^2} - \frac{m^2}{n^2}}
\]
quae tandem praebet
\[
x = \frac{m m^2 x}{m^2 - 2n^2} \left(1 - \frac{\frac{m^2 - 2n^2}{m^2}}{x} \right).
\]
Ad hunc igitur aequationem sine gurgitis consideratione est perventum, quippe cujus ratio in integratione, ubi amplitudo foraminis \(n \) est inducta, jam fuit habita; id quod Ipse inuis, Vir Celsius, quando dicis, si res generaliter consideretur, gurgite nequidem opus esse.

Determinatio oscillationum verticalium, quae in corpora aquae intantia cadere possunt, cum ob ipsum questionem tum etiam simplicitatem solutionis mihi tantopere placuit, ipsa vero solutio non solum mihi non
difficilis visa est, sed ex tempore calculus, quem instituist, statim convenientiam declaravit. Quoniam autem cupitis, Vir Excellentissime, see solutionem videre, ea ita se habet.

Insidat aquae corpus quandoque [Fig. 2] AECFB in aequilibrio, quod circa sectionem aquae MN saltem sit cylindricum, ita ut inter oscillandum aequalis semper sectio in superficie aquae versetur. Sit pondus hujus corporis = M; sectio horizontalis MN in superficie aquae facta = n, et volumen partis submersae = V: unde pressio aquae in partem submersam exorta erit = M. Jam ponatur aqua in vaso finitae amplitudinis contineri sitque amplitudo vasis KL = m; ac demergatur corpus profundius per altitudinem AC = c, ascendet aqua in vaso per intervallum Mμ = Nν, ita ut sit (m - n) Mμ = nτ, seu Mμ = \(\frac{nτ}{m - n} \). Volumen ergo, quod nunc aquae est submersum erit

\[V + n \left(c + \frac{nτ}{m - n} \right) = V + \frac{mnτ}{m - n}, \]

unde vis aquae sursum urgens erit

\[\frac{M}{V} \left(V + \frac{mnτ}{m - n} \right); \]

vi gravitatis autem deorsum nititur pondere M, quare sursum sollicitabitur vi

\[\frac{mnM\tau}{(m - n)V}; \]

qua vis quia est proportionalis spatii x quo corpus descendit, indicat oscillationes fore isochronae. Quocircum si ponatur longitudine penduli simplicis isochroni = L, ortur vis ad situm aequilibrii urgens = \(\frac{M\tau}{L} \), unde resultat ista aequatio

\[\frac{mn}{(m - n)V} = \frac{1}{L}, \]

seu

\[L = \frac{(m - n)V}{mn} = V \left(\frac{1}{n} - \frac{1}{m} \right). \]

Ac si amplitudo vasis KL = m infinita statuat, erit longitudine penduli isochroni \(L = \frac{V}{n} \); omnia uti Tu invenisti, Vir Celeberrime.

Ceterum Tibi placuisse, Vir Excellentissime, theoremata mea de reductione quarundam formularum integralium magnopere gaudeo, eamque methodo non satis directa ad ea pervenirem; tamen methodus ita est comparata, ut ejusmodi theorematum inde secutura esse praeviderim. Interim eo majori attentione diga mihi ea videntur, quo minus via directa ad
Der Briefwechsel zwischen Leonardus Euler und Johann I Bernoulli.

caev vol demonstranda vel invenienda patet: hocque ipse magnopere discrepant a theoremati in se quidem elegantissimi, quorum mentionem facis, scilicet esse
\[\int \frac{a^2 \, dx}{\sqrt{(a^4 - x^4)}} + \int \frac{x^2 \, dx}{\sqrt{(a^4 - x^4)}} \]

eas quo \(x = a \) quadrantes circumferentiae ellipsoidos, cujus axis minor est \(2a \), et major \(= 2a \sqrt{2} \); item esse sodem casum
\[\int \frac{a^2 \, dx}{\sqrt{(a^4 - x^4)}} = 3 \int \frac{x^2 \, dx}{a^4 \sqrt{(a^4 - x^4)}} \]
quorum quidem theorematum veritas, statim ac investigatur sponte se probet. Quando autem scripsi formulas
\[\int \frac{a^2 \, dx}{\sqrt{(a^4 - x^4)}} \quad \text{et} \quad \int \frac{x^2 \, dx}{\sqrt{(a^4 - x^4)}} \]
ita esse comparatas, ut inter se comparari nequeant, id utique latissimo sensu intellectum volo, neque methodis consuetis relationem ullam definiri possit absens. hocque pacto has formulas discernere volui ab aliis, quae inter se comparari possunt, cujusmodi sunt
\[\int \frac{dx}{\sqrt{(a^4 - x^4)}} \int \frac{x^2 \, dx}{\sqrt{(a^4 - x^4)}} : \int \frac{x^2 \, dx}{\sqrt{(a^4 - x^4)}} ; \text{etc.} \]

quorum si unusus integrales esset data, simul reliquarum omnium integrations habentur. Circa hujusmodi comparationes mihi jam pridem ipse aliquo theoremate formavi, ex quibus statim perspicere possum utrum unusus formulae integrales ad integrationem aliquus cuseum reduci quaerat neque. Theorematum vero ipse ita se habent; generaliter quidem sine ulla ad definitum quemdam ipsius \(a \) valorem restrictione. 1)

I. \(\int x^{m-n} \, dx \ (a^n - x^n)^k \)
\[= \frac{x^{m-n+1} (a^n - x^n)^{k+1}}{(m-n+1) a^n} + \frac{m+n+k+1}{m-n+1} A^n \int x^{m} \, dx \ (a^n - x^n)^k \]

II. \(\int x^{m+n} \, dx \ (a^n - x^n)^k \)
\[= \frac{x^{m+1} (a^n - x^n)^{k+1}}{m+n+k+n+1} + \frac{(m+1) a^n}{m+n+k+n+1} \int x^{m} \, dx \ (a^n - x^n)^k \]

1) So viel ich weiß, führt diese übersichtliche Zusammenstellung der 6 Reduktionsformeln von Euler her. Selbstverständlich enthält sie kein wesentlich Neues, denn schon Neumann hatte sich mit ähnlichen Untersuchungen beschäftigt; übrigens können vier der Gleichungen durch einfache algebraische Transformationen aus den zwei übrigen erhalten werden, und diese zwei (Gl. II. und VII.) hatte Nikolaus I. Bernoulli schon 1720 benutzt, um einen von Johann Bernoulli aufgestellten Satz zu beweisen (siehe Johann Bernoulli, Opera omnia, t. II S. 415, 419—422).
III. \[\int x^{n - 1} \, dx \left(a^n - x^n \right)^{k + 1} \]
\[= \frac{x^n}{n - 1} \left(a^n - x^n \right)^{k + 1} + \frac{n + 1}{n - 1} \int x^n \, dx \left(a^n - x^n \right)^k \]

IV. \[\int x^{n + 1} \, dx \left(a^n - x^n \right)^{k - 1} \]
\[= -\frac{x^{n + 1}}{n - 1} \left(a^n - x^n \right)^k + \frac{n + 1}{n - 1} \int x^{n + 1} \, dx \left(a^n - x^n \right)^k \]

V. \[\int x^n \, dx \left(a^n - x^n \right)^{k - 1} \]
\[= -\frac{x^n}{n - 1} \left(a^n - x^n \right)^k + \frac{n + 1}{n - 1} \int x^n \, dx \left(a^n - x^n \right)^k \]

Horum theorematum primum statim, ponendo \(n = 4; \ m = 4; \ k = -\frac{1}{2} \)
prebet
\[\int \frac{dx}{\sqrt[4]{(a^4 - x^4)}} = \frac{x}{a^4} \sqrt[4]{(a^4 - x^4)} + \frac{3}{a^4} \int \frac{x^4 \, dx}{\sqrt[4]{(a^4 - x^4)}} \]
unde caelo quo \(x = a \) erit
\[\int \frac{dx}{\sqrt[4]{(a^4 - x^4)}} = 3 \int \frac{x^4 \, dx}{\sqrt[4]{(a^4 - x^4)}} \]

Simul autem intelligitur ex his formulis eunusmodi formulae integrales generaliter cum ista \(\int \frac{a^4 \, dx}{\sqrt[4]{(a^4 - x^4)}} \) comparari queant, mox iter autem inter illas non contineri istam \(\int \frac{x^4 \, dx}{\sqrt[4]{(a^4 - x^4)}} \) ex quo eo magis notatum dignum est productum harum duarum formularum casu quo \(x = a \) ope circuli indicari posse, cum neutris in se spectatiae integratio a quadratura circuli pendet, neque inter se comparari queant.

Methodus autem qua ego in inventione horum novorum theorematum sum usus, huc reedit. Resolvi utramque formulam seorsim in expressiones infinitas, quae deinceps in se invicem multiplicavii, ac producti summarem peculiari modo investigavi,\(^1\) quam per circulum exprimis posse comprehendend.

\(^1\) Die Method, worauf Ermih hier hinteuten, ist wohldie methode er in seiner Abhandlung De productio ex infinitis factoribus orbis (Comment, acad. sc. Petr. 11, 1783 [gedruckt 1766], S. 8—31) anwendete (siehe speziell S. 11—13).
Deinde vero hanc methodum magis extendi, eusque ope reliqua Theoremata Filio Tuo Celeb. missa elicui.1)

Incipi nuper in hanc aequationem differentialem tertii ordinis
\[a^n \frac{d^n y}{dx^n} = y \cdot dx^n, \]
posito \(dx \) constante, quae etiam præa prænse integrata diffcilis visae est, triplicem tamen integrationem admittat, ut concessi circuli et hyperbolae quadratari ad aequationem finitam se reduci patiatur;2) aequatio vero integralis hanc prodit
\[y = b e^{\frac{x}{a}} + c e^{-\frac{x}{2a}} \sin \frac{(f + x) \sqrt{3}}{2a}, \]
denotante \(c \) numerum, cujus logarithmus est \(= 1 \), seu
\[c = 1 + \frac{1}{1} + \frac{1}{1.2} + \frac{1}{1.2.3} + \frac{1}{1.2.3.4} + \text{etca.} \]

arcus vero \(\frac{(f + x) \sqrt{3}}{2a} \) in circulo cujus radius est \(= 1 \) abscindit, ejusque sinus in alterum integralis terminum introducit: ut \(b, c \) et \(f \) sunt quantitates constantes arbitrarise ex tribus integrationibus ortae. Quosdi autem integratio aequationis istius alicu modo tenetur, prouti pluribus modis absolvit potest, perversit tandem ad hujusmodi aequationem
\[vdv + dv (a \cdot \frac{x}{a} + bx + c) = \varphi \frac{dx}{y} \text{ atque eliminando } v. \]

Quae ergo necessario separationem variabilium atque constructionem ope circuli et hyperbolae admittere debet: quas autem pacto separatio obtineat, id quidem non adeo obvium videtur, methodo tamen quaedam ab Hermanno quondam in Comm. Tom. II. exposita3) absolvit potest; id quod fit ponendo \(dv = \varphi ds \) atque eliminando \(v \).

Tractavi quoque nuper circa fluxum ac refluxum maris occupatus4)

1) Vgl. den Brief von Daniel Bernoulli an Euler vom 12. Dezember 1742 (Fuss, a. a. O. II, S. 514).
3) J. Hermann, De constructione aequationum differentialium primi gradus per viam separationis indeterminatorum; Comment. acad. sc. Petrop. 2, 1727 (gedruckt 1729), S. 188—199.
4) Siehe die Preischrift von Euler, Inquisitio physica in causam fluxus et refluxus maris; Pièces qui ont remporté le prix de l'académie royale des sciences en M. DCC.XL sur le flux et reflux de la mer (Paris 1741), S. 285—350.
sequens problema mechanicum, quo singularis oscillationum casus continetur. In recta AB [Fig. 3] extat corpus C mobile sursum et deorsum quod a duobus viribus sollicitatur. Altera harum virium pendet a distantia corporis C a puncto C, ipsisque distantias est proportionalis; a qua corpus continuo versus punctum C, nisi ibi existat, sollicitatur. Quod si igitur corpus a sola haec vi moveretur tum circa punctam C oscillationes modo ascendendo modo descendendo perageret tautochronas itaque haberetur casus oscillationum isochronarum Hugenianum notissimus. Pono autem corpus praeter hanc vim urgeri ab alia cuius tam directio quam quantitas a tempore jam effluxo pendat. Tempora sollicit per arcus circuli $EMGFmH$ ex primo, viresque sollicitantes sinus arcuum tempora exprimuntur proportionales facio; ita ut corpus sursum sollicitetur, si sinus fuerint affirmativi, deorsum vero, si sinus sint negativi. Sic si temporis initium ponatur in E, post tempus EM corpus sursum pelletur vi, quae est ut sinus PM; hocque pacto sursum ab ista vi urgebatur quod tempus EGF durat; cum autem praeterlabitur majus tempus, putes $EGFm$, tum corpus deorsum sollicitabitur vi, quae est ut sinus PM, haecque sollicitatio deorsum tendens durabit, donec tempus recidat in punctum E, ex quo sollicitationes sursum directae reducant. Quod autem hic igitur, ut motus corporis C ab his duobus viribus sollicitati definitur, ejusque locus in recta AB ad quovis tempus assignetur. Ponamus tempus jam effluxisse, quod arc EM indicetur, tumque corpus in puncto S versari. Sit distantia $CS = s$, arcus seu tempus $EM = t$, ejus sinus $PM = y$, postio radio circuli $OE = 1$, tunc ut sit

$$t = \int \frac{dy}{\sqrt{1 - yy^2}};$$

ex huius solutio problematis perductur ad hanc aequationem

$$a^2 d\theta + s \theta^2 = by dt^2$$

sumto elemento dt constante. Ista autem aequatio differentio-differentialis

1) Siehe die Abhandlung von Euler De novo genera oscillationum; Comment. acad. so. Petrop. 11, 1739 (gedruckt 1750), S. 128–149.
praefer opinionem bis se integrari passa est,1) aique ex aequatione integrati situm corporis C ad quodvis tempus una cum ipsius coloritate definitum potah. Producunt autem pro varia relatione litterarum a et b, a quibus ambae vires sollicitantes pendunt, tantum diverso ac mirabili motus, ut cetera indoles nisi calculo peracto praeventi omne nequaut. Circa hunc motum id notatum dignum accidit, unico casu spatio per quae corpus C in recta AB execut perpetuo crescere, oscillationes tamen eundem durationis maner: reliquis autem casibus omnibus excursiones esse finitae ac definitae magnitudinis.

Ceterum denuo veniam peto ob lineas illas in supercilibus litteris deletas,2) hancque ob causam integrum epistolam libenter transcripiisseum, si id tempus permisisset. Interim noli suspicari, Vir Excellentissime, illas lineas ce fuisse deletas,3) ... Hunc itaque ne idem mihi usus eveniat,...4) Quod superest Tuo me favore ac benevolentiae commendo, Tibi omnia fausta et felicis et animo appetem. Vale, Vir Excellentissime, atque adhuc diuissime rei litterariae praecesse ne gravesc.

Dabam Petropoli d. 5. Maii
1739.

Aufschrift:

A Monsieur

Monsieur Jean Bernoulli

Professeur en Mathematiques, et Membre Honoraire des Academies de St. Petersbourg,
de celles de Paris, de Londres etc.

à Bâle.

20*.

Bernoulli an Euler August (?) 1739.

Verlaes; scrieri in Eumani Brief vom 15. September 1738 ("tardius ad litteras max postremas respondit, quam quidem optassemen").

21.

Euler an Bernoulli 15. September 1739.

1) Hier beschäftigt sich Eumani also mit einer linearen Differentialgleichung zweiter Ordnung mit konstanten Koeffizienten von der Form

$$a^2 \frac{d^2 s}{dt^2} + s = b \sin t.$$

Eulani Methodo zur Integration dieser Gleichung ist auseinandergesetzt in seihen eben zitierten Preischrift S. 300—304 und in der vielleicht früher restituierten abhandlung: De novo genere oscillationum (vgl. S. 3 Anm. 1), S. 134—141.

3) Hier sind zwei Zeilen gestrichen, vielleicht von Johann II Bernoulli.

4) Hier sind zwozi Zeilen gestrichen, ohne Zweifel im Zusammenhang mit der oben erwähnten Streichel.
Inhalt. Die in Aussicht gestellte zweite Abtheilung von JOHANN ERMANNUS
Dissertatio hydraulicae. — Fortsetzung neuer Teile der Commentarii der Peters-
burger Akademie. — Euclides Methodo, die Reihe
\[
\frac{1}{1 + n} + \frac{1}{4 + n} + \frac{1}{9 + n} + \frac{1}{16 + n} + \ldots
\]
su summieren. — Integration der unvollständigen linearen Differentialgleichungen
n-ter Ordnung mit konstanten Koeffizienten.

Vito Celeberrimo atque Excellentissimo JOANNI BERNOULLI S. P. D.
LEONHARDUS Euler.
Tardius ad litteras Tus postremas, Vir Excellentissime, respondeo, quam equidem optassem atque officium meum ergo Te summam postulasset:
cujus morae causa in absentia Illustissimi Praesidis Nostri, qui cum Aula
Imperatoria Peterholfi commorabatur, est positam... 3)
Ego interea summo studio expecto alteram partem meditationum
Tuarum hydraulicaeum, quarum desiderium apud me eo majus existit, quod
muito plura, quam ego quidem suspicatus eram, in his praestississe nuncias;
quoniam Te, Vir Celeb., academiae nomine: maximopere rogo, ut hoc
scriptum, quamprimum licuerit, nobiscum communicare velis; neque ab hoc
proposito retardatione editionis Commentariorum nostrorum deterreare.
Nam nunc quidem sex tomi prioresiam prodierunt, et septimus non
solum sub prolo sudat, sed etiam brevi tempore spatio usque ad decimum
publice comparebatur; preterea ego etiam operam dabo, ut scripta Tus
eximia his ipsius Tomis, qui nunc parantur, commode inseri quas. Ceterum
Tomos, qui Tibi adhuc desunt, Lipsiae accipies, una cum Tractatu meo de
Musica, quem ut benevole accipere ac perlegere velis, vehementer etiam
atque etiam rogo.

Perscripsi nuper Filio Tuo Clar. summationem meas hujus seriei:
\[
\frac{1}{1 + n} + \frac{1}{4 + n} + \frac{1}{9 + n} + \frac{1}{16 + n} + \frac{1}{25 + n} + \text{etc.} = s;
\]
cujus seriei casum, quo \(n = 0 \) jam pridem inveniarem, Tecumque, Vir
Celeberrime, communicaveram, 2) quem etiam patruelis Tus, Vir Consul-
tilissimus NICOLAI BERNOULLI, examini subjicere est dignatur. 3) Metho-
dus, qua ad summam hujus seriei perveni, quia mihi quidem peculiaris
videatur, Tibi fortasse, Vir Celeberrime, haud erit ingrata: ea autem ita se habet.
Posita summa seriei quam quero = s, singulos terminos modo consueco
in series geometricas converto; ipsi \(n \) vero valorem affirmativum tribuo,

1) Hier sind drei ahnliche Zahlen gezähnt, möglicherweise von JOHANN II. BERNOULLI.
2) Vgl. den Brief von JOHANN BERNOUlli an Euler vom 2. April 1787 (Biblioth.
Mathem. 5a, 1804, S. 239).
3) Vgl. Biblioth. Mathem. 5a, 1804, S. 278.
quia si hoc casum summa fuerit reperta, alter casus se sponte esset offert ponendo
a negativum. Sit igitur
\[s = \frac{1}{1 + a} + \frac{1}{4 + a} + \frac{1}{9 + a} + \frac{1}{16 + a} + \frac{1}{25 + a} + etc. \]
\[s = \frac{1}{1} - \frac{n}{1} + \frac{n^2}{2} - \frac{n^3}{3} + \frac{n^4}{4} - \frac{n^5}{5} + etc. \]
\[+ \frac{1}{2^2} - \frac{n}{2^2} + \frac{n^2}{2^3} - \frac{n^3}{2^4} + \frac{n^4}{2^5} - \frac{n^5}{2^6} + etc. \]
\[+ \frac{1}{3^2} - \frac{n}{3^2} + \frac{n^2}{3^3} - \frac{n^3}{3^4} + \frac{n^4}{3^5} - \frac{n^5}{3^6} + etc. \]
\[+ \frac{1}{4^2} - \frac{n}{4^2} + \frac{n^2}{4^3} - \frac{n^3}{4^4} + \frac{n^4}{4^5} - \frac{n^5}{4^6} + etc. \]
\[etc. \]
sive
\[s = 1 - \frac{n}{1} + \frac{n^2}{2^2} + \frac{n^3}{3^2} + \frac{n^4}{4^2} + \frac{n^5}{5^2} + etc. \]
\[- n^2 \left(\frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + etc. \right) \]
\[+ n^3 \left(\frac{1}{2^3} + \frac{1}{3^3} + \frac{1}{4^3} + \frac{1}{5^3} + etc. \right) \]
\[- n^4 \left(\frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \frac{1}{5^4} + etc. \right) \]
\[etc. \]

Quodsi autem ponatur \(\pi \) peripheria circuli, cujus diameter est \(= 1 \),
summatio singularum serierum per potestates ipsius \(\pi \) absolvit potest, ut adeo \(j x \) ostendi:1) igitur nemen
\[1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + etc. = a \pi^2, \ a = \frac{1}{6}, \]
\[1 + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \frac{1}{5^4} + etc. = \beta \pi^4, \ \beta = \frac{2\pi^2}{5}, \]
\[1 + \frac{1}{2^6} + \frac{1}{3^6} + \frac{1}{4^6} + \frac{1}{5^6} + etc. = \gamma \pi^6, \ \gamma = \frac{4\pi^2}{7}, \]
\[1 + \frac{1}{2^8} + \frac{1}{3^8} + \frac{1}{4^8} + \frac{1}{5^8} + etc. = \delta \pi^8, \ \delta = \frac{4\pi^2}{9}, \]
\[\epsilon = \frac{4\pi^2 + 4\beta \gamma}{11}, \ etc. \]

Erut igitur:
\[s = a \pi^2 - \beta n \pi^4 + \gamma n^2 \pi^6 - \delta n^3 \pi^8 + \epsilon n^4 \pi^{10} - etc. \]
hincque
\[2s^2 = 2a^2 \pi^4 - 4a \beta n \pi^6 + 4a \gamma n^2 \pi^8 - 4a \delta n^3 \pi^{10} + 4a \epsilon n^4 \pi^{12} - etc. \]
\[+ 2\beta^2 - 4\beta \gamma + 4\beta \delta + 2\gamma^2 \]

1) Vgl. den Brief von Euler an JOHANN BERNOULLI vom 27. August 1737
Biblioth. Mathem. 5.4. 1904. S. 267—288.}
Quare si superiores litterarum \(\beta, \gamma, \delta, \epsilon \) etc. determinationes in subsidium vocentur, erit
\[
2s^2 = 5\beta^4 - 7\gamma n^4 + 9\delta n^3 + 11\epsilon n^2 + 13\zeta n + 15\eta + \text{etc.}
\]

Multiplicetur ubique per \(d\pi \) et integretur, erit
\[
\int 2s^2 d\pi = \beta\pi^5 - \gamma n^4 + \delta n^3 + \epsilon n^2 + \zeta n + \eta + \text{etc.}
\]

Haece vero eadem series a superiori ita pendet ut sit
\[
\frac{\pi n^5}{n} - \pi s = 2n \int s s d\pi
\]

Quocirca ob \(\epsilon = \frac{1}{6} \) erit
\[
\frac{n^3}{6} - \pi s = 2n \int s s d\pi
\]

ae differentiando habebitur
\[
\frac{\pi^2 d\pi}{2} - \pi ds - s d\pi = 2n ss d\pi,
\]

quae debito modo integrata praebet\(^1\)
\[
s = \frac{\pi \psi^n - 1}{2n} + \frac{\pi \psi^n}{n (\psi^n - 1)}
\]

denotante \(\epsilon \) numerum, cuius logarithmus est \(= 1 \). Haecque expressioni idcirco est summa hujus seriei
\[
\frac{1}{1+n} + \frac{1}{4+n} + \frac{1}{8+n} + \frac{1}{16+n} + \text{etc.}
\]

\(^1\) Da Buxius die vorgelegte unendliche Reihe ganz wie ein Polynom mit einer endlichen Anzahl von Termen behandelt, ist je eigentlich bei einem Mathematiker des 18. Jahrhunderts nicht besonders auffallend. Kühner ist dagegen dem Anschein nach sein Verfahren, die Zahl \(n \) als eine veränderliche Größe zu betrachten, aber man findet leicht, daß dies Verfahren hier durchaus korrekt ist, da es sich in Wirklichkeit nur um die Summe der Reihe
\[
a n^2 - b n^4 + c n^6 - d n^8 - e n^{10} - \ldots
\]

handelt. Bekanntlich hat sich Buxius in seinen Schriften sehr oft mit der Summation der Reihe
\[
\frac{1}{1+n} + \frac{1}{4+n} + \frac{1}{8+n} + \frac{1}{16+n} + \text{etc.}
\]

beschäftigt, aber der hier benutzten Methode hat er sich meines Wissens dabei nicht bedient. Freilich hat er in seiner Abhandlung De seriebus quadratiso consideratioes (Comment. acad. Petrop. 12, 1760 [gedruckt 1762], S. 53—96) sin paenula (siehe S. 86, 99) \(n \) als veränderliche Größe betrachtet, aber für einen anderen Zweck.
Der Briefwechsel zwischen Leonhard Euler und Johann I Bernoulli.

quando quidem \(n \) significat numerum affirmativum. Si autem \(n \) sit numerus negativus, ut sit

\[
s = \frac{1}{1-n} + \frac{1}{4-n} + \frac{1}{9-n} + \frac{1}{16-n} + \text{etc.}
\]

habebitur ista aequatio

\[
\frac{\pi^2 n}{2} - \pi s \text{d}x = -2n \text{ssd}x,
\]

quia pariter integrata suppeditat istam summam expressionem:

\[
s = \frac{1}{2n} - \frac{\pi}{2} \cot A \pi n,
\]

in qua \(\cot A \pi n \) mibi denotat in circulo cuius radius \(= 1 \), cotangentem arcus, qui sit \(= \pi n \); in tali autem circulo \(\pi \) denotabit dimidium peripheriam, seu arcan \(180^\circ \). Quidam igitur fuerit \(\pi n \) arcus vel \(90^\circ \), vel \(270^\circ \), vel \(450^\circ \), vel etc., hoc est vel \(n = \frac{1}{4} \), vel \(n = \frac{9}{4} \), vel \(n = \frac{25}{4} \), vel etc., summam sarsno ob cotangentem \(= 0 \), erit \(= \frac{1}{2n} \). Utraque autem expressio, quae prodit tam pro \(n \) affirmativo quam negativo, etiam \(\pi \) plus una dimensione nasquam habet, tamen posito \(n = 0 \), praebet, \(s = \frac{1}{6} \pi^2 \); qui est singularis casus methodi Tuae, Vir Celeb., determinandi valores expressionum, quae certo quodam caso videantur fieri indefinitae. Istam meam summam methodum rego, ut cum Viro Excellentissimo Nicolao Bernoulli cum summis mei erga Ipsum offici testificatione communicare velis.

Inveni nuper singulararem modum aequationes differentiales altiorum graduum una vice in integrandi, ut statim ad aequationem finiam perveniat. Palet autem haec methodus ad omnes aequationes, quae in hae generali forma continentur:

\[
y + a \frac{dy}{dx} + b \frac{d^2 y}{dx^2} + c \frac{d^3 y}{dx^3} + d \frac{d^4 y}{dx^4} + \text{etc.} = 0
\]

posito \(dx \) constante. Ad hanc aequationem generalis integrandum considero aequationem hanc seu expressionem algebraicam:

\[
1 - \alpha p + b p^3 - c p^5 + d p^8 - et c. = 0.
\]

Hace expressio si fieri possit in factores simplices reales hujus formae \(1 - \alpha p \) resolutur: si autem hoc fieri nequeat, resolvatur in factores duarum dimensionum hujus formae \(1 - \alpha p + \beta pp \), quaes resoluto realiter semper insitui potest, hocque modo prodat superior expressio sub forma producti ex factoribus vel simplicibus \(1 - \alpha p \) vel duarum dimensionum \(1 - \alpha p + \beta pp \), omnibus realibus. Facta autem haec resolutions, dico valorem ipsius \(y \) finitam per \(x \) et constantes expressum constare ex tot
membris, quot factores habentur expressionis illius algebraicae, singulosque factores praebere singula integratis membra. Nempta factor simplex \(1 - \alpha p\) dabit integralis membrum

\[C_0 - \frac{a}{a}, \]

factor autem compositus \(1 + \alpha p + \beta pp\) dabit integralis membrum hoc

\[c^{\frac{a a}{\beta}} \left(U \sin \Delta - \frac{\alpha Y(4\beta - a\alpha)}{2\beta} + D \cos \Delta - \frac{\alpha Y(4\beta - a\alpha)}{2\beta} \right). \]

ubi \(sin\Delta\ et\ \cos\Delta\ mihi\ denotant\ sinum\ vel\ cosinum\ arcur\ sequentis\ in\ circulo\ cujus\ radius\ \{9\}\\}\\}\\}\\}\\}\\}\\]\n
in circulo cujus radius \(= 1\) sumi: notandum autem est, si expressio \(1 + \alpha p + \beta pp\) in factores simplices reales resolvi nequeat uti pono, tum fore \(4\beta > a\alpha\) idque integrale reale. Proposita sit exempli gratia haec aequatio

\[y dx = h dx y,\ \text{seu} \ y - \frac{h dx y}{dx} = 0; \]

ex hae nasceretur expressione algebraica haec \(1 - h^2 p^4\), cujus factores reales sunt tres \(1 - hp, 1 + hp\ et 1 + h^2 p^2\); ex quibus oritur aequatio integralis haec:

\[y = C_0 \frac{\alpha}{\alpha} + D e^{\frac{\alpha}{\alpha}} + E \sin \Delta \frac{\alpha}{\alpha} + F \cos \Delta \frac{\alpha}{\alpha}; \]

in qua expressione ob quadruplicem integrationem unica operatione peractam quatuor insunt novae constantes \(C, D, E\ et F\), uti natura integrationis postulat. Alia vice, si tibi, Vir Excellentissime, placuerit, hujus methodi demonstrationem perscribam.

Vale interim, Vir Celeberrime, Tuaque ergo me benevolentiam atque amorem mihi conserva.

22.

Bernoulli an Euler 9. Dezember 1739.

Inhalt. Über die Versorgung der Fortsetzung der zweiten Abteilung von Johann Bernoullis Dissertatio hydrostatica. — Über die Summe der Reihe

\[\frac{1}{1 + a} + \frac{1}{2 + a} + \frac{1}{3 + a} + \frac{1}{4 + a} + \cdots \]