CONIECTVRA
CIRCA NATVRAM AEIRS,
PRO EXPLICANDIS PHAENOMENIS IN
ATMOSPÆRA OBSERVATIS.

Auctore
L. EVLERO.

§. 1.
Quanquam nobis in intima naturæ mysteria penetrare, indeque veras causas Phænomenorum agnoscere neutiquam est concedum: tamen cuenir potest, ut hypothesis quaedam factæ pluribus phænomenis explicandis aeque satissi-
ciat, ac si vera causa nobis esset perspecta, quemadmodum felicissimo successu omnes fere motus coelestes ex hypo-
thesi attractionis universalis determinari solent, etiam si
haec ipfa hypothesis ex Physica prorsus sit profuganda.

§. 2. Quam ob rem fortasse similimodo quaepliam hypothesis excogitur poterit, quæ omnibus Phænomenis
Æris et atmosphærae explicandis sufficiat. Talem idem
iam ante quinquaginta annos in Tomo II. veterum Com-
mentariorum proponeo, quæ ad pluræ æris phænomena
exPLICANDA SÆRIS apta videbatur, etiam si facile agnouisset,
talem æris structuram reuera admitteri non posse. Impri-
mis
mis huius Phaenomeni explicatio: quod, dum aër vaporibus est inquinatus, eius elasticitas dimittatur, mihi omnii attentione digna est visa, cum eius causa a nemine adhuc dilucide sit exposita. Illo vero tempore Theoria fluidorum nondum fatis erat exculta, vt idam ideam penitus evoluere valuisse; quamobrem operae pretium fore existimo, illam aëris structuram, quam finxeram, accuratis examinare, et quaeram Phaenomena inde oriri debant, maiori cura inquirere.

§. 3. Naturam aëris autem ita animo conceperam, quasi ex innumerabilibus minimis bullulis seu sphærulis esset compositus, quae flingulae cuticula tenuissima aquosa circumdarentur, intra quas propria aëris materia motu rapidissimo in gyrum circumagatur, in cuius vis centrifuga elasticitas aëris produci erat visa. Totum negotium igitur huc reddit, ut ida hypothesis accuratus perpendatur, et ad cujusmodi phaenomena producenda sit accommodata, inquiratur. Nisi enim manifestas contradictiones inuoluat, fatis probabiliter videtur, aëris phaenomena, actu observata, non multum discrepare posse.

§. 4. Quod igitur primo ad pelliculas illas aqueas fine vaporofias attinet, earum realitas in aqua spumosa atque bullis saponaceis manifesto deprehenditur, unde recte conclutere poterimus, vapore in aëre adscendentes ita dissipari, ut elementa aërea instar cuticulae inuoluant, quae si per omnia elementa aequaliter dispersatur, atmosphaera nihil de polluciditate amittet, sin autem intra sphærulas aæreas confusa hospitentur, refractio radiorum lucis eorumque transitus non mediocriter perturbabitur, unde in aëre

X. 2
aëre inferiore nebulae, in superiore autem nubes oriri videntur. Praeterea, quo plures vapores aëri fuerint admixti, cuticulae illae, sphaerulas aëreas ambientes, evadant densiores, quoad scilicet constitutio harum sphaerularum sufferrer valet.

§ 5. Deinde etiam non desint rationes, quae suadent, propriam aëris materiam in his sphaerulis motu rapidissimo circumagi, cum aliunde causâ elasticitatis repeti nequeat. Praeterea cum iam factum sit, calorem in certa agitatione aetheris consistere, hinc vitique materia illa aëris in sphaerulis motum quendam recipere debet, qui cum in tali angusto spatio sit inclusus, non aliter nisi per motum vorticosum continuari potest, id quod eo magis sit probable, quod autem calore, indeque propertia motu isto verticoso, elasticitas aëris quoque augeatur; unde manifestum est, motum gyratorium in sphaerulis aëris cum causâ caloris arcissime esse connexum.

§ 6. Deinde vero etiam assumi, singula aëris elementa in memoratis sphaerulis per circulos maximos circumagi, vt in iis vndequaque aequalis vis centrifuga, a centro cuissque sphaerulae recedens, oriatur, haecque hypothesei unamquidem cum principiis mechanicis nequitiam consistere possit videatur, cum demonstratum sit, nullum alium motum circa punctum quodpiam fixum in corporibus dari possit, nisi qui peragatur circa axem quemquam fixum. A tali autem motu alia vis centrifuga generari non potest, nisi quae ab axe gyrationis recedat, ideoque in easdem sphaerula maxime ester irregulalis, cum certum sit, elasticitatem aëris in omnes plagas aequaliter tendere.

§ 7.
§. 7. Obieció autem hinc ab illo motu oriunda tantum locum habet in corporibus solidis: in fluidis enim longe aliter se habere potest; atque adeo clare demonstrabo, motum illum intestinum in singulis sphaerulis reuera ita comparatum esse debere, ac si singula elementa in circulis maximis circa centrum revoluerentur.

§. 8. Primo autem, cum materia aërea sit homogenea, omnes eius particularis inter se aequales concipere licet, quibus adeo initio celeritates aequales sint impressae, quibus ergo singulae, si essent solitariae, in plano uniformiter in directum ferrentur, in superficie autem sphaerica in circulis maximis essent progressuales; unde si cuisque celeritas fuerit \(c \) et \(r \) radius sphaeric, cuisque vis centrifuga foret \(\frac{c g}{r^2} \), qua seilicet a centro sphaeric recedere conaretur; vbi \(g \) exprimit altitudinem lapsus gravium vno minuto secundo, liquide celeritas per spatium vno minuto secundo percursum definitur.

§. 9. Consideremus iam duas huiusmodi particulas A et B, secundum directiones AC et BC ita motas, Fig. 1, vt in C conveniunt et collisionem paterentur, quippe sina quae corpusculum A descripturum esset spatium \(CA = c \), alterum vero BC secundum directionem CB celeritate eadem \(c \). Iam vt videamus quanam mutatio nem collisionis sit productura, toti systemat, mente saltem, imprimamus celeritatem \(= c \), secundum directionem BC, quo pacto corpusculum B in quiete siffetur in puncto C, corpusculum vero A, sumto \(CB = C b = c \), motum habebit secundum diagonalem CD parallelogrammi CBD a, qua retro producia in d, collisione perinde peragetur, ac si

\[X \ 3 \]
corpusculum A motu d C in alterum corpusculum B, in C quiescens, impingeret. Conflat autem, tum corpusculum A in C esse quieturum, alterum vero B celeritatem esse acquisitum C D. Iam restituatur motus mente impressus celeritate C b. Hoc modo corpus prius A nunc motum acquirit C b, alterius vero B motus componetur ex motu C D et C b, unde si compleatur parallelogrammam C D a b, istud corpus iam motum habebit C a. Vnde patet, motus vtriusque corporis per collisionem inter se permutari, ita ut vtriusque motus ab altero contaminetur. Hinc cum inter bina corpuscula nullum differimen intercedat, totus motus se habebit ac si vtrumque corpusculum motum insitum sine vlla mutatione prosequeretur, vnde etiam vtriusque vis centrifuga nullam mutationem ob collisionem subibit.

§. 10. Quod si iam tales collisiones in infinitum multiplicentur, omnes motus nihilominus in circulis sphærae maximis, at vero successuæ ab aliis aliisque corpusculis, peragentur; quamobrem omnes vires centrifugae directe a centro recedent, et quidem eadem quantitate c c 2 8 5.

§. 11. In motu ergo vorticoso, quem materiam ætis propriae, in singulis sphæralis memoratis, tribuimus, tuto assumere possimus, omnes plane motus in circulis maximis peragi, atque singulas particulas par vi centrifuga a centro sphæralae recedere conari; quamobrem omnes obiectiones, quae olim contra vortices Cartesianos sunt motae, omnem vim amittunt. Neque tamen itidcirco arbitrator, illos Cartesii vortices admitti posse; at vero illi vortices, per quos Vir Celeb. Daniel Bernoulli olim atractionem vni-

... in mundo explicare est annis, hinc summan vim acquirunt, atque omnes objectiones contra factae quam sponte euanscant.

§ 12. Contemplemur nunc sphaerulae quamcunque, naturam aeris constituentes, cuius extrema crusta aqua, seu materia vaporosa consistet, intra quam materia aeris propria motu ante descripro in gyrum agatur. Sum-Tab. IV. to igitur centro sphaerulae in O, sit OR = r radius totius sphaerulae, seu extimae eius superficie, sitque R S crustae aquae, ponaturque OS = s, ita ut crassitie crustae aquae sit RS = r - s; tum vero sit ST crassitiae crustae aeris gyrantis, quae ergo, post O T = t, erit s - t. Intimum autem huius sphaerulae spatium, a centro O vsque ad T, repletum sit aetherae puro, gravitate destituto, sicut siciliet agitatione materia aeres propria perpetuo ad motum crescit, modo magis modo minus, pro gradu caloris seu frigoris.

§ 13. Hinc ergo, denotante π peripheriam circuli, cuius diameter = r, erit volumen totius sphaerulae = πr3; unde pater, volumen crustae aquae fore \(\frac{1}{2} \pi (r^2 - s^2) \), et volumen crustae aeris \(\frac{1}{2} \pi (s^2 - t^2) \); volumen denique aethericum erit \(\frac{1}{2} \pi t^2 \). Quod si fames densitatem aquae vnitate designemns, erit massa crustae aquae \(\frac{1}{2} \pi \delta (r^2 - s^2) \). At si densitatem materiae aeris propriae vocemus \(\delta \), erit eius massa \(\frac{1}{2} \pi \delta (s^2 - t^2) \). Quare cum ipsae aether densitate carere sit eunfundus, erit tota massa in sphaerula contenta \(\frac{1}{2} \pi (r^2 - s^2) + \delta(s^2 - t^2) \), quae scilicet simul exprimit gondus totius sphaerulae, cuius radius...
dius = \tau; vnde manifestum est, aetherem in medio contentum recte neglect poisse.

§. 14. Hic autem flatim liquet, densitatem \delta non ex flatu aëris ordinarii, qui iam ob elasticitatem plurimum est expansus, aestimari debere. Cum enim aër, in spatia \textit{S T inclusus}, omni elasticitate destitutur, quandoquidem demum eius agitatione elasticitas aëris naturalis productur, iste aër in nostra sphærula contentus in eo flatu regem riri cenfundus est, ac si ad sumnum densitatis gradum iam effici compressus. Phaenomena autem confluentes deprehendimus, aërem naturalem in spatium quasi oqtingentes minus comprim posse, qui numeros respondet rationi inter densitatem aëris et aquae; neque ergo crrabimus si densitatem aëris, ad sumnum compressionis gradum reducimus, densitati aquae aequalem flatuam, ita vt sit \delta = \tau. Probabile autem admodum videtur, aërem ad talem flatum reducium, simulque omni elasticitate caretum, vix a natura aquae esse discrepaturum. Hinc igitur, posito \delta = \tau, massa atque etiam pondus nostrae sphærulae erit \tau \times \pi (\tau - \tau^2) fiue aequabitur ponderi massae aquae idem volumen habentis.

§. 15. Inueñigemus nunc totam vim centrifugum, quae ex motu gyratorio cruciae aeræae \textit{S T} oriri debet; quem in finem consideremus punctum quoddam medium \textit{X}, posita eius distantia a centro \textit{OX = x}, eiusque celeritate gyroraria = \epsilon, erit vis centrifuga in puncto \textit{X = \frac{c^2}{2g} x}. Hac scilicet vi elementum materiae in \textit{X} conatur a centro \textit{O recedere}, vnde in ista crucia aeræa orietur flatus pressionis a termino \textit{T ad S continuo crescens.}

§. 16.
§. 16. Constat autem, in fluidis fiatum pressioni commodissime exprimi posse per certam altitudinem, quam hic vocemus \(p \), qua designatur, pressionem fluidi aequalem esse ponderi cylindri, ex eadem materia constantis, et cuAli altdito sit \(\sigma \). Pro nostra ergo cau designtur \(p \) altitudinem columnae aquae, cuAuis pondus aequatur pressioni in puncto \(X \), dum sit in eadem basi premit. Hinc ergo, tumto elenentum \(x = d \), ita vt pressio in \(x \) sit \(\sigma = dp \), euidens est, incrementum pressionis \(dp \) aequari debere vi centrifugae, qua elenentum \(x = a \) centro repellitur, unde pater fore \(dp = \frac{ec}{2g} dx \), sicque integrando nanciscimus \(\sigma = \frac{ec}{2g} l \), quod integrale ita determinari debet, ita tumto \(x = t \) euanescat, ita tum pro puncto \(X \) pressio sit \(\sigma = \frac{ec}{2g} l \frac{a}{t} \). Quare promotum puncto \(X \) vsque ad \(S \), pressio hoc lito erit \(\sigma = \frac{ec}{2g} l \frac{a}{t} \). Tanta sic licet pressione ita crusta aerea, simulque tota prorsus phaenomina, conabitur se expandere, ac reuera se expandereret, nisi unde quaque paribusque viribus comprimeretur.

§. 17. Quantumvis autem talis bullula siue expandatur siue comprimirur, in ea semper eadem quantitas materiae manet inclusa, quia neque materiae contentae exitus, neque nouae ingeniius concepitur. Ponamus ergo quantitatem materiae inclusae aequari globulo aequo, cuius radium \(= a \), quandoquidem omnum cumulatum ad densitatem aquae redimimns. Hinc ergo quantitas materiae in hac bullula contentae erit \(\frac{1}{3} \pi a^2 \), qua cum partim ex crista aqua partem ex aerea eindem cum aqua densitatis conflict, ponamus massam aquae esse \(\frac{1}{3} \pi \lambda a^2 \), ita tum quantitas materiae aereae propriae sit \(\frac{1}{3} \pi (\lambda - \lambda) a^2 \); quantitas

Ad Aba Acad. Imp. Sc. Tom. III. P. L.

\(\Sigma \) ergo.
ergo aquae per aerem dispersae erit ad quantitatem aeris propriam vt $\lambda : x - \lambda$.

§ 18. Supra autem inuenimus, volumen crustae aquae esse $\frac{4}{3} \pi (r^3 - s^3)$, unde erit $r^3 - s^3 = \lambda a^3$. Deinde cum volumen materiae aerea inuentum sit $\frac{4}{3} \pi (s^3 - t^3)$, erit $s^3 - t^3 = (x - \lambda) a^3$. Hinc igitur tam s^3 quam t^3 per a^3 et s^3 definire poterimus: erit sic igitur $s^3 = r^3 - \lambda a^3$ et $t^3 = r^3 - a^3$. Quare cum altitudinem pressioni debitam inueniurus

$$p = \frac{c \cdot c}{s \cdot g} \frac{r^3}{s} = \frac{c \cdot c}{s \cdot g} \frac{r^3 - \lambda a^3}{s},$$

weit nunc $p = \frac{c \cdot c}{s \cdot g} \frac{r^3 - \lambda a^3}{r^3 - a^3}$.

§ 19. Cum porro densitas reperiatur, si massa per volumen dividatur, quia nostro caelo massa est $\frac{4}{3} \pi a^3$, volumen autem $\frac{4}{3} \pi r^3$, erit densitas hoc loco $\frac{a^3}{r^3}$. Sed si ergo densitatem hanc designemus littera q, erit $q = \frac{a^3}{r^3}$, ideoque $r^3 = \frac{a^3}{q}$, qui valor in nostra formula substitutus praebet $p = \frac{c \cdot c}{s \cdot g} \frac{1 - \frac{a^3}{r^3}}{1 - \frac{a^3}{q}}$; ubi, ut notandum, q exprimit densitatem aeris, dum aequa densitas unitate designatur; ideoque q semper erit fractio quam minima. In superficie scilicet Terrae erit quasi $q = \frac{1}{760}$, vel $q = \frac{1}{800}$

§ 20. Cum igitur q sit fractio tam exigua, erit falsis exactis:

$$l \left(x - \lambda \right) q^3 = x \left(x - \lambda \right) q^3 - \frac{1}{3} \lambda^3 q^3 - \frac{1}{3} \lambda^3 q^3,$$

$$l \left(x - q \right) = x - q - \frac{1}{3} q^3 - \frac{1}{3} q^3,$$

qui posterior logarithmus a priori subtraxit relinquit

$$l \left(\frac{x - \lambda}{x - q} \right) = \left(x - \lambda \right) q + \frac{1}{3} \left(x - \lambda^3 \right) q^3 + \frac{1}{3} \left(x - \lambda^3 \right) q^3,$$

quocirca habeamus pro pressione p hanc formulam:

$$p = \frac{c \cdot c}{s \cdot g} \left(\left(x - \lambda \right) q + \frac{1}{3} \left(x - \lambda^3 \right) q^3 + \frac{1}{3} \left(x - \lambda^3 \right) q^3 \right)$$

cuius
cuius seriei plerumque sufficit primum terminum, vel ad ssumum bina priora acceptisse.

§. 21. Tam igitur insignem relationem inter densitatem aeris q et altitudinem presisioni debitam p sumus adepti, cum fiet

$$p = \frac{\varepsilon}{\varepsilon} (\varepsilon - \lambda) q + \frac{\varepsilon}{\varepsilon} (\varepsilon - \lambda) \lambda q + \frac{\varepsilon}{\varepsilon} (\varepsilon - \lambda^2) q^2,$$

ubi tam litterae p et q quam λ determinatos fortuntur valores. Erit igitur p altitudo Barometri aquae, presisionem Atmosphaerarum equilibrantem, cuius igitur pars citer decima quarta dabat altitudinem Barometri mercurialis; tum vero erit q ad x ut densitas aeris ad densitatem aequae. Denique λ exprimit portionem vaporum aqueorum per Atmosphaeram dispersorum. His observatis solus primus terminus seriei pro p inuentae, $\frac{\varepsilon}{\varepsilon} (\varepsilon - \lambda) q$, insigni phaenomeno iam nobis egregie explicat. Inde enim patet, quo plures vapores cum aere sint permixti, quorum quantitas est ut λ, presisionem p esse debere tantum minorem, pro eadem igitur aeris densitate q, atque haece explicatio, quam iam olim loco supra citato inuenieram, notari maxime digna est visa.

§. 22. Neque vero solus primus seriei terminus igitam elasicitatis aeris diminutionem declarat, sed etiam omnes sequentes termini minores sunt, quam si esset $\lambda = 0$, nullique vapores in aere verifarentur. Ceterum hic quoque notari oportet, etiam litteram ε insignem variationem subire posse, pro rapiditate moxus gyratorii in nostris sphærulis vel bullulis, quae cum gradui caloris proportionalis
nalis esse videatur, aut có aldim insttum vel diminutum, calóre etiam quantitas c c vel increctet vel diminuetur.

§. 23. Quin etiam hiúe ipsa celeritas \(c\), qua materia aeréa in ballulis gyratur, absúlue determinari potest, pro data scilicet altitudine \(p\) et densitate \(q\) cum humiditate \(\lambda\). Summo enim primo tantum ferei termino, qui ad hoc institutum prorsus sufficit, erit \(c = \frac{4 \lambda}{1 - \lambda} q\); unde patet, hanc celeritatem directe proportionalem esse altitudine Barometri \(p\), reciproce vero densitati aeris \(q\); tum vero, autiam ob humiditatem \(\lambda\), celeritatem \(c\) etiam auge- ri. Consilat autem in pedibus Rhenanis, esse \(6.5 = 93.4\). Illius igitur formulae radix quadrata dabit celeritatem gy- rationis in paribus pedibus expressam: Indicabit enim num- merum pedum, qui hab celeritate vno minuto secundo percurrerentur.

§. 24. Cum calor a celeritate prorsi dubio pen- deat, indagemus istam celeritatem tam pro maximó calore, qui in aere aperto observari solet, et qui in Thermometro Delisiáno respondet quasi centum gradibus, quam pro summo frigore, quod respondet 200 gradibus in co- dem Thermometro. Pro priore ergo cauf, quia aér est rarísimus, sumamus \(q = \frac{1}{1000}\), simulque ipsi \(p\) summam altitudinem tribuamus, quae est quasi 34 pedum in Baro- metro aquae. Ipsam humiditatem vero hic penitus ne- gligamus, ut fit \(\lambda = \sigma\). Ex his iam valoribus colligitur

\[c = 9.3, 7.5 \times 34 \times 1000 = 3187500, \]

ideoque ipsa celeritas \(c = 1790\) ped, quae ergo respondet 100 gradibus Thermometri Delisiáni.

§. 25.
§. 25. Simili modo pro summo frigore 200 gradibus respondente, sumamus denitatem \(q = \frac{200}{75} \) altitudinem vero Barometri etiam minimam accipiamus, scilicet \(p = 32 \) pedum; hincque colligitur

\[
c = 93, 75 \times 32 \times 700 = 2034375,\]

ideoque \(c = \frac{2034375}{200} \), quae ergo celeritas ducentis gradibus Thermometri \(\textit{Belliiani} \) respondet, ita ut differentia inter has duas celeritates sit 360 pedum. Hinc intelligitur, si plura huiusmodi experimenta instituantur, haud difficile fore pro singulis gradibus huius Thermometri respondentes celeritates assignare. Quo pacto illud Thermometrum ad multi maiorum perfectionis gradum evehetur.

§. 26. Eodem modo etiam reliqua instrumenta, quibus æris indoles explorarent soler, beneficio nostrae formularum magis percipi poterunt. Quod quidem ad Barometrum attiner, id vixilla emendatione indiget, si modo pro quouis caloris gradus ratio denitatis mercurii habeatur; quo enim mercurius minorem habuerit denitatem, quod sit in magno calore, tum altitudine barometrica secundum eandem rationem minus debet, ut ad certam denitatem axam recocetur. Summo autem frigore, quo Mercurius in spatium aliquanto minus contrahitur, ideoque eius denititas augetur, ob hanc rationem altitudine Barometri observata aliquantulum augeri debeat.

§. 27. Praecipuum autem instrumentum, quod ad Theoriam nostram explorandum requiritur, est Manometrum, nunc quidem fere prorsus obsolctum, quo denititas æris indicatur, et cuius descriptio exstat in \textit{Wolfii Elementis}.
Elementis Mathesis Tomo II, ut et in Mémoires de l'Académie Royale de Paris 1705. Pro usu autem nostro optandum esset, ut gradibus arbitrariis in tali instrumento signatis describerentur numeri, indicantes, quoties densitas æris minor sit quam densitas aquae, quam tamen fissam spectare possimus, quippe cujus exiguæ variationis, a maiore vel minore calore oriundæ, ratio facile haberi poterit. Pluribus autem experimentis erit opus, ante quam hoc instrumentum ad summum perfectionis gradum perducatur.

§. 28. Supersit autem adhuc instrumentum, humiditatis æris dimetiendae aptum, quod Hygrometrum appellantare solet. Plura hujusmodi instrumenta passim exstant descripta; verum valde dubitandum videtur, num verum aquae quantitatem, per æream disperiam, declarat. Interim tamen plurimis etiam nonis experimentatis opus erit, haec instrumenta ita instruere, ut quousque tempore verum valorem nostræ litterae λ hoc est eam fractionem, quae indicet, quotam rotius voluminis partem aqua succumbat in ære occupet, doceat, a quo perfectionis gradu etiamnunc plurimum sumus remoti.

§. 29. Cum igitur in Thermometro Delisianno gradui 200, quo insignis frigus indicatur, respondeat celeritas 1430 pedum in minuto secundo, quia congelatio Mercurii adhuc maiorem gradum frigoris postulat, ei circiter respondebit celeritas 1200 ped. ita ut, nisi celeritas ista fuerit maior, Mercurius fluiditatem penitus amittat. Deinde cum gradui 100 respondeat celeritas 1790 pedum, quia terminus congelationis in gradum 150 cadit, cui
cui ergo respondebit celeritas 1610 ped., celeritate maior opus erit, ad aquam in flatur fluiditatis conservam.

§ 30. Quia porro gradus ebullitionis aquae in hoc Thermometro est 0, et propemodum conveniet celeritas 2750 ped., ibi ergo aqua ebullire incipiet. Et quia in nostra formula altitude Barometri potissimum ingrediatur, hinc intelligere licet, cur, auta aëris elasticitate, maior gradus ad ebullitionem aquae requiritur, et cur, minuta elasticitate, aqua etiam in minore gradu caloris ebullire queat, quemadmodum experimentis est comprobatum, cuius phaenomeni ergo causa in nostra formula fine dubio erit quaerenda.

§ 31. Neque vero celeritas, ad quemuis caloris gradu aëri inducendum requirita, tantum ad aerem speiare est cenenda, cuilibet minimae-particulae tanta celeritate commoueri debent, sed etiam in omnibus plane corporibus perinde locum habere videtur. Omnes quoque naturae scrutatores in hoc conveniunt, quod causa caloris in motu quodam pernicissimo minimaliorum particularium consistat. Quae ergo sententia non solum nostra Theoriae maxime est conformis, sed etiam ipsam celeritatem, cuilibet gradu caloris convenientem, assignare velimus. Quanquam autem haec celeritas maxime enormis videatur, tamen perpendendum est, in natura dari celeritates adhibe incomparabiliter maiores, cuilibet omnium caloris sit quaerenda, nigrum non est, hinc tam insigne celeritatis gradu generari posse.

§ 32.
§ 32. Sed reueruntur ad nostram formulam ut
pra inuentam et ad solvm aerum proprium accommodatam,
quae haec quafuer elementa: i) altitudinem pressionis debi-
tam p; ii) densitatem aeris q; iii) gradum caloris, for-
mula e_0; iv) gradum humiditatis λ complecti-
tur. Ex datis horum elementorum ternis quibusque quar-
tum assignari potest; ita, si dentur densitas aeris q, gradus
caloris e_0, cuius loco br. gr. scribamus h et gradus hu-
miditatis λ, hinc alto, pressione debita, p in genere ita
exprimitur, vt sit $p = bh \frac{1-\lambda q}{1-q}$, quam pro faciliori cal-
culo in hanc seriem resolvimus:

$$ p = b ((x-\lambda)q + \frac{1}{2}(x-\lambda)q^2 + \frac{1}{3}(x-\lambda)q^3 + \text{etc.}) $$

cuius applicatio iam fatis est exposta.

§ 33. Ponamus nunc dari primo altitudinem
pressione debita p, secundo densitatem aeris q, et tertio
humiditatem λ, hinc gradus caloris $b = \frac{e_0}{e_0}$ ita definitur,

vt sit $b = \frac{p}{h \frac{1-\lambda q}{1-q}}$, hincque, logarithmis per seriem ex-
pressis, erit

$$ b = p : ((x-\lambda)q + \frac{1}{2}(x-\lambda)q^2 + \frac{1}{3}(x-\lambda)q^3 + \text{etc.}) $$
cuius serici plerumque sufficit solum primum terminum
cum secundo sumisse.

§ 34. Sin autem detur altitude pressione debita
p, mensura caloris b, ac tertio humiditas λ, inde ad den-
sitatem q inueniendam recurrendum est ad exponentialia,
cum sit $e^b = \frac{1-\lambda q}{1-q}$, unde post $br. gr. e^b = k$, erit $q = k-\lambda$,

et
et quia b plerumque plurimum excedit p, cum per seriem fit

$$k = 1 + \frac{p}{b} + \frac{p^2}{b^2} + \frac{p^3}{b^3} + \text{etc.}$$

erit

$$q = (\frac{p}{b} + \frac{p^2}{b^2} + \frac{p^3}{b^3} + \text{etc.}) : (1 + \frac{p}{b} + \frac{p^2}{b^2} + \frac{p^3}{b^3} + \text{etc.})$$

§. 35. Denique si detur altitude pressioni debita p, mensura caloris b, et densitas q, per formulam exponentialis $e^b = k = \frac{1 - \lambda q}{1 - q}$ humiditas λ ita determinetur, ut sit $\lambda = \frac{1 - b(v - n)}{1 - q}$, quae expressio hoc laborat defcet, ut minimus error, in elementis datis p, k et q committus, enormes errores in valore λ producat.

§. 36. Imprimis autem nostra formula commodissime adhiberi potest ad Problema aerometricum maximi momenti resolvendum, quo quaeris solutum, quanta vi opus sit ad aerem in spatium quantumuis minus coarctandum, cuius ergo solutionem hic subiungimus.

Problema.

Investigare, quanta vis requiratur, ad datum aëris volumen in spatium quantumuis minus comprimendum.

Solutio.

§. 37. Ponamus aerem comprimendum in tubo cylindrico contineri, cuius amplitude sit $= f f$ et compressionem per emboli intrusionem produci; tum si altitudo, pressioni debita, fuerit $= p$, vis requirita acquabitur _Acta Acad. Imp. Sc. Tom. III. P. I._
ponderi columnae aequae, cuius basis \(= ff \) et' altitudo \(= p \), ita vt ista vis per massam aequam expressa sit \(= ff p \). Ponamus in flau naturali, vnde compressio inchoat, altitudinem preessioni debitam esse \(= a \), densitatem vero aeris naturalem \(= b \); at vero mensurae caloris cum humiditate, quoniam durante compressione nullam mutationem patientur, sint vt ante \(b \) et \(\lambda \), ita vt sit \(a = b \lambda \left(\frac{1}{\lambda} - \frac{\lambda}{b} \right) \), siue proxime \(a = (\lambda - \lambda) b b \).

\section{38.} Ponamus nunc intrussione emboli istud aeris volumen iam in spatium \(n \) vicibus minus esse compressum, ita vt iam eius densitas sit \(q = n b \), vnde quae- ri debet altitudo preessioni debita \(p \), huic densitati respondens, quia ergo, loco \(q \) scribendo \(n b \), erit \(b l \lambda n b \), vnde nisi compressio iam saties sit notabilis, sitae exacte erit \(p = b \lambda (\lambda - \lambda) n b \). Hinc patet, -pressionem \(p \) exacte proportionalem esse numero \(n \), siue pressionem semper densitati esse proportionalem, nisi compressio iam sit vehementer magna.

\section{39.} In majoribus autem compressionibus adhiberi etiam connexiet secundum seriei terminum, ita vt sit
\[
p = b \lambda (\lambda - \lambda) n b + \frac{1}{\frac{1}{\lambda} - \frac{\lambda}{b}} (\lambda - \lambda) n n b b,
\]
cum initio suscitet \(p = a \), quae ergo altitudo quanto iam sit maior, definiri debet ex hac formula:
\[
\frac{a}{n} = n + \frac{1}{\frac{1}{\lambda} - \frac{\lambda}{b}} \lambda \lambda n n b b;
\]
vnde patet, vim compressionem plusquam \(n \) vicibus esse maiorem, proximus vt per experimenta est observatum.

\section{40.}
§ 40. Sin autem compressio longe ulteriorius continuari concipiatur, recursum endum erit ad formulum logarithmamicum \(p = b l \frac{\lambda n b}{n} \), quae, comparata cum pressione initiali \(a = b l \frac{\lambda b}{b} \), dabit

\[\frac{p}{a} = l \frac{\lambda n b}{n} \cdot l \frac{\lambda b}{b} . \]

Quia autem posterior logarithmus est latius exacte \((1-\lambda)b\), erit

\[\frac{p}{a} = (1-\lambda)b \cdot l \frac{\lambda u b}{u} ; \]

unde patet, cau \(n b = x \) linæ \(n = \frac{x}{n} \), viceque requisitam fieri infinitam.

§ 41. Quo haec clarissimus perspiciat, ponamus pro statu initiali esse \(b = \frac{1}{n} \), sine densitatem aëris ad aequales densitatem esse \(n \) ad \(800 \), humiditatem autem \(\lambda \) pentitus feoponamus, eritque ergo a pressio Atmosphæræ naturalis, et quaecumque nunc, quotuplo maior pressio requiratur ad aëris volumen in spatum \(n \) vicibus minus conractandum; tum igitur formula ante data nobis praebibit,

\[\frac{z}{a} = 800 l \frac{800}{800-n} ; \]

vbi logarithmis vendum erit hyperbolcis. Ita si aëris in spatum quadruplentes minus comprimatur, hoc est, \(n = 400 \), dicit \(\frac{z}{a} = 554 \); scilicet vis, quae tantum effet quadruplentes maior, non sufficit, sed requiritur vis 554 vicibus maior. Quodsi autem condensatio in spatum 700 est minus postulatur, vi opus erit 1663 vicibus maiore.

§ 42. Operae igitur prætium videtur, pro hac hypothesi \(b = \frac{1}{n} \) et \(\lambda = 0 \) tabulam construere, indicantem, quotuplo maior fiat vis comprimens requisita ad aërem

\[Z = \]
in spatium n cuplo minus redigendum. Sequens tabula igitur ostendet pro singulis numeris n valorem formulæ
\[\frac{D}{a} = 800 \times \frac{100}{n+1}, \]
vbi pro condensationibus minoribus erit
\[\frac{D}{a} = n + \frac{1}{2} \times \frac{n}{100} + \frac{1}{2} \times \frac{n^2}{100^2}, \]
ita vt tantum logarithmis hyperboliciis indigemus, quando numerus n vitra 100 affurgit.

<table>
<thead>
<tr>
<th>n</th>
<th>(\frac{D}{a})</th>
<th>n</th>
<th>(\frac{D}{a})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000</td>
<td>100</td>
<td>135,92</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>125</td>
<td>166,11</td>
</tr>
<tr>
<td>3</td>
<td>300</td>
<td>175</td>
<td>197,49</td>
</tr>
<tr>
<td>4</td>
<td>400</td>
<td>200</td>
<td>230,14</td>
</tr>
<tr>
<td>5</td>
<td>500</td>
<td>225</td>
<td>264,19</td>
</tr>
<tr>
<td>6</td>
<td>600</td>
<td>250</td>
<td>299,75</td>
</tr>
<tr>
<td>7</td>
<td>700</td>
<td>275</td>
<td>336,97</td>
</tr>
<tr>
<td>8</td>
<td>800</td>
<td>300</td>
<td>376,60</td>
</tr>
<tr>
<td>9</td>
<td>900</td>
<td>350</td>
<td>460,28</td>
</tr>
<tr>
<td>10</td>
<td>1000</td>
<td>400</td>
<td>554,48</td>
</tr>
<tr>
<td>20</td>
<td>2000</td>
<td>450</td>
<td>661,34</td>
</tr>
<tr>
<td>30</td>
<td>3000</td>
<td>500</td>
<td>784,64</td>
</tr>
<tr>
<td>40</td>
<td>4000</td>
<td>550</td>
<td>930,52</td>
</tr>
<tr>
<td>50</td>
<td>5000</td>
<td>600</td>
<td>1099,0</td>
</tr>
<tr>
<td>60</td>
<td>6000</td>
<td>650</td>
<td>1339,2</td>
</tr>
<tr>
<td>70</td>
<td>7000</td>
<td>700</td>
<td>1663,5</td>
</tr>
<tr>
<td>80</td>
<td>8000</td>
<td>750</td>
<td>2218,1</td>
</tr>
<tr>
<td>90</td>
<td>9000</td>
<td>800</td>
<td>2777,8</td>
</tr>
<tr>
<td>100</td>
<td>10000</td>
<td></td>
<td>infinit.</td>
</tr>
</tbody>
</table>

§ 43.
§. 43. Manifestum est vires, ad aërem compri-

§. 44. Quae haecenus sunt tradita ad aërem in

§. 45. Sit igitur primo altitude Barometri aëque pro-

De variatione status aëris

§. 43. Manifestum est vires, ad aërem compri-

§. 44. Quae haecenus sunt tradita ad aërem in
certo loco. existentem refringuntur. Nunc autem vide-
mus, quae leges status aëris per Atmosphaeram siue ascen-
dendo siue descendentio immutetur. Hic igitur in certo Tab. IV.
Terrae loco A status aëris tali quam cognitum assumemus, Fig. 3.
hincque verticaliter ascendentio inuestigabimus, quomodo pro quouis altitudine A Z = z, status aëris siue habitu-
rus; ubi evidens est, si ad interiora Terrae descendere velimur, altitudinem z tantum negatitum esse accipiendum. Hic igitur ante omnia pro loco fixo A status aëris defi-
niri oportet, sicutem pro quouis altitudine A Z = z ele-
menta calculi cum hoc loco comparari conuenient.
\[\text{in } Z \text{ vero } = \Phi; \text{ quarto denique ponatur celeritas motus gy-} \\
\text{ratorii in subsidium vocati pro loco } A = \epsilon, \text{ pro } Z \text{ vero } = u. \]
\[\text{Tum vero pro loco } A \text{ fit breuitatis gratia } \frac{c}{\epsilon} = b, \text{ pro loco } Z; \]
\[\text{autem fit } \frac{u}{\epsilon} = v; \text{ vbi notetur, quantitates } b \text{ et } v \text{ longi-} \\
\text{tudinem plurium millium pedum desigirare, propterea quod} \\
\text{celeritas } c \text{ plerumque inter terminos } 1400 \text{ et } 1800 \text{ ped-} \\
\text{sum continetur. Quia igitur valores litterae } c \text{ iam ad} \\
\text{gradus Thermometri reloos assimilimus, pro praeicipias va-} \\
loribus celeritatis } c \text{ valores quantitaris } b \text{ in sequenti tabu-} \\
la \text{adiungamus, incipiendo a } c = 1200 \text{ vsque ad } c = 2000 \text{ per } 50 \text{ ascendendo:} \]

<table>
<thead>
<tr>
<th>c</th>
<th>b</th>
<th>c</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>15350</td>
<td>1650</td>
<td>29040</td>
</tr>
<tr>
<td>1250</td>
<td>16667</td>
<td>1700</td>
<td>30827</td>
</tr>
<tr>
<td>1300</td>
<td>18026</td>
<td>1750</td>
<td>32667</td>
</tr>
<tr>
<td>1350</td>
<td>19440</td>
<td>1800</td>
<td>34560</td>
</tr>
<tr>
<td>1400</td>
<td>20907</td>
<td>1850</td>
<td>36507</td>
</tr>
<tr>
<td>1450</td>
<td>22427</td>
<td>1900</td>
<td>38507</td>
</tr>
<tr>
<td>1500</td>
<td>24000</td>
<td>1950</td>
<td>40560</td>
</tr>
<tr>
<td>1550</td>
<td>25627</td>
<td>2000</td>
<td>42667</td>
</tr>
<tr>
<td>1600</td>
<td>27307</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

§ 45. Quia densitas aeris ascendendo decrescit,
\[\text{enidens est, solum primum terminum seriei supra datae} \\
\text{abunde sufficere; unde fluctue libet } p = (1 - \Phi) \epsilon q, \]
\[\text{quae formula etiam tuto adhiberi potest, si in vitiaera} \\
\text{terrae descendamus. Hinc igitur densitas in loco } Z \text{ erit} \]
\[q = \frac{p}{(1 - \Phi)\epsilon}, \text{ unde si per elementum } Z z = dz \text{ viterius} \\
\text{ascendamus, pressio in } z \text{ erit } p + dz p, \text{ quae autem minor} \\
\text{erit} \]
erit quam in \(Z \) ponendo aëris in intervallo \(Z \) contenti, quod. reperiemus, si elementum \(d z \) per densitatem \(q \) multiplicemus, vnde \(d \dot{p} = - q d z \). Ergo, loco \(q \) substituto valore modo datum erit \(d \dot{p} = - \frac{\rho d\dot{z}}{(1-\Phi)v} \), hinc- quod \(d\dot{z} = - \frac{(1-\Phi)v d\dot{p}}{\rho} \), quae æquatio, quia \(\Phi \) quanm functiones altitudinis \(z \) sunt spectandae, ita reprecentari debet: \(\frac{d\dot{z}}{(1-\Phi)v} = - \frac{d\dot{p}}{\rho} \), cuius integrale est
\[
\int \frac{d\dot{z}}{(1-\Phi)v} = C - \dot{p} ,
\]
quam constantem \(C \) ita definiri oportet, vt casu \(z = \sigma \)
quo simul integrale \(\int \frac{d\dot{z}}{(1-\Phi)v} \) evanesescere debet, euadat \(\dot{p} = a \).
Vnde erit: \(C = k \alpha \), ideoque \(\int \frac{d\dot{z}}{(1-\Phi)v} = k \frac{z}{\rho} \).

§. 4.6. Sinistrum igitur membrae linii æquatio-
nis erit certa functionis \(z \), pendens a ratione, seu-
sum quam tam calor quam humiditas ascendendo sine
crescit sine decrescit; membra vero dextrum tamut:
al
titudinem barometricam tam in \(A \) quam in \(Z \) involvit,
cuius logarithmus hyperbolicus sumi debet. Atque hic per-
rinde est, sine altitude Barometri aequi sine mercurialis in
calculum introductur, quia fractio \(\frac{z}{\rho} \) inde non mutatur.
Cum igitur sit \(l \frac{z}{\rho} = l \alpha - l \dot{p} \), valorès horum logarithmo-
rum hyperbolicorum pro singulis altitudinibus Barometri
mercurialis, quae per digitos indicari solent, in sequenti	
tabula ab altitudine. 36. pollicum, ad quam certe infra
Terram descendeando nunquam peruenietur, diminuendo
per semipollices, exhibeantur.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>36,0</td>
<td>3,583519</td>
<td>26,0</td>
<td>3,258097</td>
<td>16,0</td>
<td>2,772589</td>
</tr>
<tr>
<td>35,5</td>
<td>3,569333</td>
<td>25,5</td>
<td>3,238679</td>
<td>15,5</td>
<td>2,740840</td>
</tr>
<tr>
<td>35,0</td>
<td>3,555348</td>
<td>25,0</td>
<td>3,218876</td>
<td>15,0</td>
<td>2,708050</td>
</tr>
<tr>
<td>34,5</td>
<td>3,540960</td>
<td>24,5</td>
<td>3,198673</td>
<td>14,5</td>
<td>2,674449</td>
</tr>
<tr>
<td>34,0</td>
<td>3,526361</td>
<td>24,0</td>
<td>3,178054</td>
<td>14,0</td>
<td>2,639057</td>
</tr>
<tr>
<td>33,5</td>
<td>3,511545</td>
<td>23,5</td>
<td>3,157001</td>
<td>13,5</td>
<td>2,602690</td>
</tr>
<tr>
<td>33,0</td>
<td>3,496508</td>
<td>23,0</td>
<td>3,135494</td>
<td>13,0</td>
<td>2,564949</td>
</tr>
<tr>
<td>32,5</td>
<td>3,481240</td>
<td>22,5</td>
<td>3,113315</td>
<td>12,5</td>
<td>2,525729</td>
</tr>
<tr>
<td>32,0</td>
<td>3,465736</td>
<td>22,0</td>
<td>3,091042</td>
<td>12,0</td>
<td>2,484907</td>
</tr>
<tr>
<td>31,5</td>
<td>3,449988</td>
<td>21,5</td>
<td>3,068053</td>
<td>11,5</td>
<td>2,442347</td>
</tr>
<tr>
<td>31,0</td>
<td>3,433987</td>
<td>21,0</td>
<td>3,044522</td>
<td>11,0</td>
<td>2,397895</td>
</tr>
<tr>
<td>30,5</td>
<td>3,417727</td>
<td>20,5</td>
<td>3,020425</td>
<td>10,5</td>
<td>2,351375</td>
</tr>
<tr>
<td>30,0</td>
<td>3,401197</td>
<td>20,0</td>
<td>2,995732</td>
<td>10,0</td>
<td>2,302585</td>
</tr>
<tr>
<td>29,5</td>
<td>3,384390</td>
<td>19,5</td>
<td>2,970415</td>
<td>9,5</td>
<td>2,251292</td>
</tr>
<tr>
<td>29,0</td>
<td>3,367296</td>
<td>19,0</td>
<td>2,944339</td>
<td>9,0</td>
<td>2,197225</td>
</tr>
<tr>
<td>28,5</td>
<td>3,349904</td>
<td>18,5</td>
<td>2,917771</td>
<td>8,5</td>
<td>2,140066</td>
</tr>
<tr>
<td>28,0</td>
<td>3,332205</td>
<td>18,0</td>
<td>2,890372</td>
<td>8,0</td>
<td>2,079442</td>
</tr>
<tr>
<td>27,5</td>
<td>3,314186</td>
<td>17,5</td>
<td>2,862201</td>
<td>7,5</td>
<td>2,014903</td>
</tr>
<tr>
<td>27,0</td>
<td>3,295837</td>
<td>17,0</td>
<td>2,833213</td>
<td>7,0</td>
<td>1,945910</td>
</tr>
<tr>
<td>26,5</td>
<td>3,277145</td>
<td>16,5</td>
<td>2,803361</td>
<td>6,5</td>
<td>1,871802</td>
</tr>
</tbody>
</table>

Hic perinde est quamam digitorum mensura vt velimus, quia tantum ratio in computum ingreditur.

§ 47. Quod si tam calor quam humiditas per totam altitudinem z constans assumatur, vt sit $v = h$ et $\Phi = \lambda$, aequatio nostra integrabilis erit $\frac{z}{(1 - \lambda)^2} = l \frac{a}{p}$, vnde pro quais altitudine barometrica altitude $AZ = z$ innotescit,
tetcit, cum sit \(z = (x - \lambda) \frac{a}{b} \). Vicissim vero pro altitudo \(A \). \(Z \) data, posito

\[
\epsilon \left(\frac{z}{(1 - \lambda)} \right) = y, \text{ erit } y = \frac{z}{\rho}, \text{ ideoque } \rho = \frac{z}{y}.
\]

Quia autem haec fraction \(\frac{z}{(1 - \lambda)} \) est plerumque quam minima, erit proxime

\[
\lambda = x - \frac{z}{(1 - \lambda)} \beta + \frac{z}{(1 - \lambda)^2} \beta^2 - etc.
\]

ideoque

\[
\rho = a \left(x - \frac{z}{(1 - \lambda)} \beta + \frac{z}{(1 - \lambda)^2} \beta^2 - \frac{z}{(1 - \lambda)^3} \beta^3 + etc. \right).
\]

\§ 48. Hic autem casus vix vsquam locum habebit: certum enim est, per Atmosphaeram ascendent, gradum caloris continuo diminui. Etsi autem ratio diminutionis maxime latet, tamen non multum a veritate aberrabit, si valorem ipsius \(v \) hoc modo representemus:

\[
v = b \frac{f}{x + \frac{z}{f}}, \text{ ita vt in altitudo } z = f \text{ valor ipsius } v \text{ ad dimidium redigatur; tum enim, cognita hac altitudo } f, \text{ ita formula vix a veritate aberrare poterit. Hanc ob rem sumamus } w = \frac{bf}{f + z}, \text{ humiditatem vero per totam altitudinem invariabem spectamus, vt sit } \Phi = \lambda, \text{ quia plane non conflat, quomodo variatio humiditatis in calculum introducit poesin, cuius etiam effectus vix sensibilis esse potest, quia maximus valor ipsius } \lambda \text{ nunquam } \frac{i}{e} \text{ superare posse videtur.}
\]

\§ 49. His igitur valoribus substitutis aequatio nostra erit

\[
\frac{1}{b (1 - \lambda)^2} \int_{\frac{f}{z}}^{(f + z)} \frac{d z}{f} = \int \frac{z}{\rho}.
\]

\textit{Atta Acad. Imp. Sc. Tom. III. P. I.} A a \text{ vnde}
unde integratione instituta erit
\[
\frac{1}{c - \lambda b} \left(z + \frac{z_{\text{f}}}{z_{\text{f}}} \right) = \frac{a}{\bar{p}},
\]
ex qua equatione, si modo conflet altitude \(f \), vbi mensura caloris \(v \) ad dimidium redigitur, ad quamuis altitudinem \(z \) assignari poterit altitude barometrica \(p \).

§. 50. Hic autem occurrit quaeatidio maximi momenti, quomodo pro quanis altitudine Barometri, supra Terram ascendendo observata, inde ipsa elevatio loci, sine altdudo \(A Z = z \) definiuisse posset. Evidens autem est, talem conclusionem ex sola altitudine Barometri neuntiquam deriuari posse, nisi simul innotescat quantitas illa \(f \). Quod si autem infuper in \(Z \) observetur altitude Thermometri, ex ea valor ipsius \(v \) concludi poterit, quandoquidem hic assumere licet, pro quolibet gradu Thermometri innotescere celeritatem motus gyratorii \(c \), sine nostro casu \(a \), unde fuit \(v = \frac{u}{g} \). Inuento igitur vero valore ipsius \(v \), ob \(v = \frac{b}{c + z} \), erit viciissim \(f = \frac{u}{b - v} \), qui valor in nostra positione equatione substitutus dabit hanc: \(\frac{(b + u)z}{z(c - \lambda b)v} = \frac{a}{\bar{p}} \); consequenter habebimus \(z = \frac{z(c - \lambda b) b v}{b - a} \).

§. 51. Ope igitur huius formulae per solas observationes barometricas et thermometricas elevatio cuiusque loci super horizonatem assignari poterit, quae, cum sit \(b = \frac{v}{g} \) et \(v = \frac{u}{g} \), ita se habebit: \(z = \frac{z(c - \lambda b) b u}{c + u} \); unde si Thermometrum iam sit instarum, vit supra mo- nuimus, quaeuis altitude satia facile assignari poterit ope observationem barometricarum et thermometricarum. Ac si pro \(z \) prodeat valor negativus, quod evertit quando \(\bar{p} > a \), inde profunditas infra superificiem Terrae patet est.

§. 52.
§. 52. Quia autem celeritatem e et u valores ad-huc quandam incertitudinem inoluint, propterea quod observationes multo accuratiores requirunt, quam quidem instituere licet, optandum est, ut nostra formula primum ad causas tales, ubi elevatio loci aliunde iam est cognita, applicetur; hinc enim facile accuratiores determinatores litterarum e et u concludi poterunt; hocque pacto simul constructione Thermometrorum ad maiorem perfectionis gradum perducetur. Quia autem indolem nostrarum formularum omni studio perpendere dignabitur, longe plura ad scientiam naturalem promouendam inde derivare poterit.