RECHERCHES
SUR LA CONNOISSANCE MÉCANIQUE DES CORPS.
PAR M. EULER.

I.

On peut établir une triple connaissance des corps, la géométrique, la mécanique, et la physique. La connaissance géométrique ne regarde que l'étendue et la figure des corps: c'est la partie de la Géométrie, qui est nommée la Stérométrie, qui renferme cette connaissance. La connaissance mécanique considère les corps étant qu'ils sont matière, sans avoir égard aux qualités dont la matière est douée; et il s'agit ici de connoître, non seulement la quantité de matière dont chaque corps est composé, qu'on nomme la masse; mais aussi la manière dont la matière est distribuée par toute l'étendue des corps. Cette connaissance est absolument nécessaire lorsqu'il est question du mouvement des corps; et c'est par cette raison, qu'elle est nommée mécanique. En fin la connaissance physique des corps renferme toutes les autres propriétés et qualités des corps, qui sont le propre objet de la Physique.

II. La connaissance mécanique des corps est le fondement de la Mécanique, puisqu'on ne saurait déterminer le mouvement des corps sans connoître leur masse, et comment la matière est distribuée par toute leur étendue. C'est de là qu'on a tiré l'idée du centre de gravité, dont la connaissance est, comme on sait, de la dernière importance par toute la Mécanique. L'idée du centre d'oscillation y doit aussi être rapportée, au lieu de laquelle on peut substituer celle des moments d'inertie, dont je me suis servi jusqu'ici avec bien du succès dans mes recherches.
recherches mécaniques. Mais je viens de découvrir encore d'autres idées sur cette matière, qui semblent porter notre connaissance mécanique à un beaucoup plus haut degré de perfection: du moins m'ont-elles servi à résoudre des problèmes mécaniques, qui m'avaient paru intraitables sans leur secours. Toutes ces idées jointes ensemble fourniraient un système assez complet de la connaissance mécanique des corps.

III. La première idée que la connaissance mécanique des corps nous présente, est celle de leur maffe, qui est l'assemblage de toute la matière, dont le corps est composé. Or la matière n'entre en considération, qu'entant qu'elle est douée de l'inertie; de sorte que la maffe est la mesure de l'inertie, ou de cette qualité des corps, par laquelle ils s'efforcent de demeurer dans le même état, ou de repos, ou de mouvement uniforme rectiligne. En examinant les phénomènes de la gravité, on a trouvé que le poids de chaque corps est proportionnel à la maffe, du moins dans la même région de la terre; et partant il est permis de regarder le poids de chaque corps comme la mesure de la maffe. S'il est question des corps qui se trouvent loin de la terre, leur maffe sera exprimée par le poids que ces corps auraient, s'ils étoient placés à la surface de la terre, et même dans la région qu'on aura choisie pour y fixer cette mesure. Ou bien, il suffit de connaître le rapport de la maffe d'un tel corps à celle d'un corps sur la terre, dont le poids est connu. On comprend, sans que j'aye besoin d'en avertir, que je parle ici du poids que les corps auraient dans le vide.

IV. Si la matière dont un corps est composé, étoit également distribuée par toute son étendue, la connaissance de la maffe feroit suffisante pour en connoître toutes les relations au mouvement; et la connaissance géométrique de la figure fournirait toutes les autres idées, qui entrent dans la considération du mouvement: de tels corps sont appelés homogenes. Mais, si la matière est inégalement distribuée par l'étendue du corps, il en faut tenir compte dans la Mécanique; et de là résultent plusieurs idées, qui dépendent de la distribution de la matière.
tière par l'étendue du corps, dont la plus connue est celle du centre de gravité. Tout le monde fait, qu'il se trouve dans chaque corps un certain point, autour duquel la pesanteur est quasi également distribuée, & dans lequel on se puisse imaginer, comme si toute la masse du corps y fût réunie. Mais cette idée est trop vague, & demande bien des éclaircissements & des rectifications.

V. D'abord qu'est-ce que cette égale distribution de la matière ou de la pesanteur autour du centre de gravité? S'imagine-t-on que, si l'on coupe un corps par un plan, qui passe par son centre de gravité, les deux parties seront également pesantes? Cela serait bien vrai dans un globe ou dans un cylindre homogène, mais un cone, quoiqu'il soit homogène, détruit cette explication; car le centre de gravité d'un tel cone se trouvant dans son axe, à une distance de la base, qui est le quart de sa hauteur, si l'on coupe le cone par un plan parallèle à la base, & qui passe par son centre de gravité, le cone retranché sera au cone entier comme 27 à 64. donc il sera plus petit que la moitié. Or, si le corps n'est pas homogène, il n'arrive presque jamais, que les sections faites par son centre de gravité le partagent en deux parties égales, ou également pesantes.

VI. Il en est de même de l'autre propriété alléguée du centre de gravité, qui suppose qu'on puisse toujours concevoir la masse ou le poids entier du corps comme réuni dans son centre de gravité. Cela n'est vrai, que lorsqu'il s'agit de l'état d'équilibre, ou d'un mouvement purement progressif des corps, où toutes les parties se meuvent à chaque instant avec des vitesses égales suivant la même direction. Or, dès que le mouvement est gyrotaire, ou se fait autour d'un axe fixe, cette supposition n'a plus lieu: & l'on fait que le mouvement d'un pendule est bien différent de celui qu'il aurait, si toute la masse était réunie dans son centre de gravité. C'est alors à un autre point qu'il faut faire attention, & qu'on nomme le centre d'oscillation du pendule.

VII. De là il est évident qu'il faut mieux fixer l'idée du centre de gravité. Et d'abord, il est constant, qu'il y a dans chaque corps un
certain point, qui tient un certain milieu entre la matière qui compose le corps, dont la connoissance est de la dernière importance dans toute la Mécanique. Quand le corps se trouve à la surface de la terre, ce point est bien le même qu'on nomme son centre de gravité; mais, quand même le corps ne se trouverait dans aucune liaison avec la terre, ou qu'il ne fût pas assujetti à l'action de la gravité, ce point ne lui fût pas moins essentiel, & entrerait également dans la détermination de ses mouvements. Donc, puisque ce point est absolument indépendant de la gravité, & qu'il est déterminé uniquement par la distribution de la matière dont le corps est composé, je le nommerai plutôt le centre de masse, ou le centre d'inertie de chaque corps.

VIII. Il faut aussi considérer, que ce centre d'inertie ne convient avec le centre de gravité du corps, que lorsque les directions de la gravité sur tous les éléments du corps sont parallèles entr'elles, & que le poids de chaque élément est proportionnel à sa masse, comme on peut le supposer, quand le corps se trouve à la surface de la terre, & que son étendue est quasi infiniment petite par rapport à la distance au centre de la terre. Mais, si le corps eût extrêmement grand, de sorte que, ni les directions de la gravité ne furent plus parallèles entr'elles, ni les forces dont les parties du corps sont sollicitées, proportionnelles à leurs masses; l'idée même du centre de gravité n'aurait plus lieu, quoique celle du centre d'inertie lui fut également essentielle.

Le centre d'inertie. IX. Par ces raisons il convient de séparer tout à fait l'idée du centre d'inertie de l'action de la gravité. Il s'agit donc de donner une juste définition de ce point, que je nomme le centre d'inertie de chaque corps. Si nous regardons à l'origine de cette idée, que fournit la Mécanique, on confondre des forces appliquées à chaque élément du corps, qui soient proportionnelles chacune à l'inertie, ou la masse de l'élément, auquel elles sont appliquées, & que leurs directions soient parallèles entr'elles. Alors on cherche la direction moyenne de toutes ces forces élémentaires; & l'on observe que cette direction moyen-
ne passe toujours par un certain point du corps, quelque direction qu'on donne aux forces élémentaires. C'est donc ce point, que je nomme le centre d'inertie de chaque corps, & qui est le même que son centre de gravité, lorsque le corps se trouve aux environs de la Terre, & qu'il n'est pas trop grand, pour qu'on puisse considérer les forces élémentaires de la gravité comme proportionnelles aux masses des éléments, & leurs directions comme parallèles entre elles.

X. Mais, pour dégager cette définition de la considération des forces, qu'on rapporte le corps à un plan quelconque, en multipliant la masse de chaque élément par sa distance à ce plan; & la somme de tous ces produits sera toujours égale au produit de la masse entière du corps par la distance de son centre d'inertie au même plan. C'est en cela que consiste la nature du centre d'inertie. Mais on a raison de douter si cette définition est possible, puisqu'elle semble plus que déterminée. Car, prenant à volonté trois plans, auxquels on rapporte le corps de la manière prescrite, il est clair que de là le centre d'inertie sera déjà déterminé. Il est donc encore douteux, si ce point aura la même propriété à l'égard de tous les autres plans: au moins n'est-il pas permis de le supposer; mais cela demande une démonstration particulière, sans laquelle la définition donnée serait absurde.

XI. Pour rendre cette définition plus intelligible, je nommerai le moment d'un corps par rapport à un plan donné, la somme de tous les produits, qui résultent en multipliant la masse de chaque élément du corps par sa distance au dit plan. Cela posé, je dis, qu'il se trouve dans chaque corps un certain point de cette nature, que le moment du corps par rapport à un plan quelconque est toujours égal à la masse entière du corps multipliée par la distance du dit point au même plan. Ensuite, ayant démontré l'existence de ce point, la définition n'aura plus de difficulté en disant, que c'est ce point qu'on nomme le centre d'inertie d'un corps. Il faut remarquer ici, que, si le plan coupe le corps, de sorte qu'une partie du corps se trouve d'un côté & l'autre de l'autre côté du plan, le moment d'une partie par rapport au plan
plan doit être pris négativement à l'égard de l'autre; tout comme la nature du calcul exige, où les distances, qui tombent à l'autre côté du plan, doivent être censées négatives.

XII. Voilà donc un Théorème, dont la démonstration doit précéder notre définition. Pour cet effet, je remarque d'abord que, s'il y a un point dans le corps, qui a la propriété décrite par rapport à un certain plan, il aura la même propriété par rapport à tout autre plan parallèle à celui là. Car, soit LMN un corps, dont la masse soit M, et I le point en question, dont la distance au plan proposé soit f. Qu'on considère un élément quelconque du corps en Z, dont la masse soit aM, et la distance au même plan soit x. Le moment du corps par rapport à ce plan sera donc $\int x\,dM$, et par l'hypothèse $\int x\,dM = Mf$. Qu'on prenne maintenant un autre plan parallèle au précédent à la distance e, et puisque l'élément dM en Z se trouve à la distance $e + x$, le moment du corps par rapport à ce plan sera $\int (e + x)\,dM = Me$ $+$ $\int x\,dM = M (e + f)$ à cause de $\int x\,dM = Mf$. Or $e + f$ étant la distance du point I à ce nouveau plan, le moment du corps est égal au produit de la masse M par cette distance du point I à ce plan.

XIII. Rapportons maintenant le corps à trois plans AOB, AOC, & BOC, perpendiculaires entr'eux, les trois droites AO, BO, & CO, se croisant perpendiculairement à ce point O, & l'on pourra marquer le point I dans le corps, qui ait la propriété prescrite par rapport à ces trois plans proposés. Que IH soit perpendiculaire au plan AOB, & HG à la droite OA; & nommant les ligges $OG \equiv g$, & $HI \equiv h$, la droite f sera la distance du point I au plan BOC, g celle au plan AOC, & h celle au plan AOB. Qu'on considère un élément quelconque du corps en Z, dont la masse soit dM, la masse entière étant M, & tirant pareillement la droite ZY perpendiculaire au plan AOB, & YX à la droite OA, soient $OX \equiv x$, $XY \equiv y$ & $YZ \equiv z$. De là le moment du corps par rapport au plan BOC sera $\int x\,dM = Mf$, par rapport au plan
plan AOC = \(\int y \, dM = Mg \), & par rapport au plan AOB = \(\int z \, dM = Mh \); d'où trouvant les trois lignes \(f, g, h \), le lieu du point \(T \) sera déterminé.

XIV. Il y a donc certainement dans chaque corps un point \(I \), qui a la propriété prescrite par rapport aux trois plans perpendiculaires entre'eux; & partant il faut prouver, que la même propriété convient au point \(I \) par rapport à tout autre plan. Or il suffit de le prouver à l'égard d'un plan quelconque, qui passe par le point \(O \). Car, après avoir démontré cette propriété à l'égard de tous les plans qui passent par le point \(O \), puisqu'elle a lieu aussi pour tous les plans qui leur sont parallèles, elle sera vraie pour tous les plans possibles.

XV. Considérons donc un plan quelconque qui passe par le point \(O \), & qui coupe le plan AOB par la droite OS, faisant avec OA l'angle \(\angle AOS = \zeta \), & que ce plan soit incliné au plan AOB vers B de l'angle = \(\eta \). Il s'agit donc de trouver la distance du point \(Z \) à ce nouveau plan. Pour cet effet, ayant tiré \(YP \) à \(OS \), perpendiculaire, on aura \(OP = x \cos \zeta + y \sin \zeta \) & \(YP = y \cos \zeta - x \sin \zeta \). Que ce nouveau plan coupe la droite \(YZ \) au point \(Q \), & \(QP \) étant perpendiculaire à \(OP \), l'angle \(YPQ \) sera la mesure de l'inclinaison, & partant \(YPQ = \eta \). Donc \(YQ = (y \cos \zeta - x \sin \zeta) \tan \eta \), & de là \(QZ = z - (y \cos \zeta - x \sin \zeta) \tan \eta \). Maintenant, tirant \(ZR \) perpendiculaire à \(PQR \), elle sera perpendiculaire au plan proposé; & à cause de l'angle \(ZQR = 90^\circ - \eta \), on aura \(ZR = QZ \).

\[\sin ZQR = z \cos \eta - y \cos \zeta \sin \eta + x \sin \zeta \sin \eta. \]

XVI. Or cette ligne \(ZR \) exprimant la distance du point \(Z \) au plan proposé, le moment du corps par rapport à ce plan, à cause des angles \(\zeta \) & \(\eta \) constants, sera

\[\cos \eta \cdot \int z \, dM - \cos \zeta \sin \eta \int y \, dM + \sin \zeta \sin \eta \int x \, dM \]

& puisque \(\int x \, dM = Mf \), \(\int y \, dM = Mg \), \(\int z \, dM = Mh \), ce moment s'exprimera en forte

\[Mh \cos \eta - Mg \cos \zeta \sin \eta + Mf \sin \zeta \sin \eta. \]

Mém. de l'Acad. Tom. XIV.

S

Mais,
Mais, si nous menons du point I une perpendiculaire au plan proposé \(O P Q \), nous la trouverons par un semblable raisonnement en employant les lettres \(f, g, h \), au lieu de \(x, y, z \), exprimée en sorte

\[
h \cos \eta - g \cos \xi \sin \eta + f \sin \xi \sin \eta
\]

laquelle étant multipliée par la masse du corps \(M \), donne un produit égal au moment du corps par rapport au plan proposé \(O P Q \).

XVII. Voilà donc cette vérité rigoureusement démontrée; qu'il y a dans chaque corps un point de telle nature, que le moment du corps par rapport à un plan quelconque est toujours égal au produit de la masse du corps par la distance dudit point au même plan. Donc, pour trouver un tel moment, on peut toujours considérer toute la masse du corps comme réunie dans le centre d'inertie, puisqu'alors la masse multipliée par la distance de ce point au plan donne le moment du corps par rapport à ce plan. Comme la connoissance de ces moments est d'un très grand usage dans la Mécanique, il est de la dernière importance de connoître ce centre d'inertie de tous les corps, dont on veut rechercher les mouvements; & c'est un article très essentiel qui appartient à la connoissance mécanique des corps.

XVIII. Si le plan auquel on veut rapporter le corps, passe par son centre d'inertie, le moment du corps par rapport à ce plan est \(= 0 \). Ou bien le corps en est partagé en deux parties, dont les moments par rapport à ce plan sont égaux. Donc, si l'on fait passer les trois plans \(AOB, AOC, BOC \), que j'ai employés ci-dessus pour cette recherche, par le centre d'inertie même du corps, de sorte que ce centre se trouve au point \(O \), les trois coordonnées \(OX = x \), \(XY = y \), \(YZ = z \), qui déterminent le lieu de chaque élément du corps \(dM \) supposé en \(Z \), ont cette propriété très remarquable, que

\[
\int x dM = 0; \quad \int y dM = 0, \quad \int z dM = 0.
\]

C'est à dire, la somme de tous les produits de chaque élément du corps par chacune de ses trois coordonnées se réduit à rien; ou bien,
chacune de ces trois sommes contient autant de produits négatifs que d'affirmatifs. D'où l'on voit que le centre d'inertie se trouve au dedans du corps, qu'on peut nommer le milieu mécanique du corps.

XIX. C'est une vérité aussi importante que remarquable, qu'il y a dans chaque corps un tel point, que je nomme son centre d'inertie, & qui est d'ailleurs connu sous le nom de son centre de gravité. Mais, puisqu'il lui est également essentiel, quand même il n'y aurait point de gravité, & qu'il dépend uniquement de son inertie, cette raison étoit suffisante pour en changer le nom. L'idée des moments auxquels le centre d'inertie se rapporte, a aussi quelque chose de singulier; puisqu'en considérant les masses mêmes, il n'est pas possible d'affiigner dans tous les corps un tel point, par lequel tous les plans tirés les partageroient en deux parties égales. Car, quoique trois plans, dont chacun divise le corps en deux parties égales, se croisent dans un point, il ne s'ensuit pas que d'autres plans, qu'on feroit passer par le même point, diviserent aussi le corps en deux parties égales, comme nous avons vu que cela arrive à l'égard des moments.

XX. Tant que le mouvement d'un corps est progressif, ou que tous ses éléments se meuvent à chaque instant avec des vitesses égales d'inertie d'un selon la même direction, il n'y a que le centre d'inertie avec la masse du corps, qui entre dans la détermination de son mouvement, de quelque façon que la matière soit distribuée par l'étendue du corps. Mais, quand le corps se meurt en tournant autour d'un certain axe, il ne suffit pas qu'on sache son centre d'inertie; il y a encore une relation tout à fait particulière dont la détermination du mouvement dépend. C'est ce que je nomme le moment d'inertie du corps, par rapport à l'axe, autour duquel le corps tourne, & qui est la somme de tous les produits qui résultent en multipliant la masse de chaque élément du corps par le quarre de la distance à cet axe, ou bien à une ligne droite quelconque, qu'on regarde comme l'axe autour duquel le corps tourne.
XXI. Puisque chacun de ces produits élémentaires renferme le
quarré d'une ligne, aucun ne saurait jamais devenir négatif ; &
partant le moment d'inertie d'un corps par rapport à une ligne est
toujours positif, & d'autant plus grand que la masse du corps est grande,
& que ses parties sont éloignées de cette ligne. Il est donc
nécessaire de connoître tous les momens d'inertie d'un corps par rapport à
toutes les lignes droites, autour desquelles il pourrait tourner: & partant
on demande une méthode, par laquelle on puisse aisément trouver
tous ces moments. Or, quoique le nombre de ces lignes soit infini,
je serai premièrement voir, qu'il suffit d'avoir trouvé ces moments
d'inertie par rapport aux lignes droites qui passent par le centre d'inertie
du corps; ensuite, je montrerai qu'il suffit de connoître seulement
trois moments d'inertie par rapport à trois certaines lignes qui
passent par son centre d'inertie, & que de ceux-ci il est ensuite fort
aisé de conclure les moments d'inertie par rapport à toutes les lignes
possibles, quelque position qu'elles aient à l'égard du corps.

XXII. Je dis donc premièrement, que connaissant le moment
d'inertie d'un corps par rapport à un axe ID, qui passe par son centre
d'inertie I, il est aisé d'en trouver le moment d'inertie du même corps
par rapport à une autre ligne droite OT, parallèle à l'axe ID. Car,
soit un élément du corps, dont la masse dM en Z, d'où l'on tire
au plan IDOT la perpendiculaire ZY; & de Y la droite YXV,
perpendiculaire aux lignes ID & OT. Qu'on nomme $IX = x$,
$XY = y$ & $YZ = z$, & puisque I est le centre d'inertie du corps,
on aura, par ce que je viens de démontrer, $\int x dM = 0$, $\int y dM = 0$,
& $\int z dM = 0$. Or la droite $XZ = V(yy + zz)$ marquant la
distance de l'élément du corps dM en Z à l'axe ID, le moment
d'inertie du corps par rapport à cet axe sera $\int dM (yy + zz)$,
en étendant cette intégrale par toute la masse du corps. Donc, la
va-

XXIII. Soit maintenant la distance entre les deux lignes parallèles
ID & OD, savoir l'intervalle $IO = XV = \varepsilon$, & on aura la distan-
ce de l'élément du corps dM en Z à la ligne droite OT, qui fera $ZV = V((e+y)^2 + zz)$, à cause de $VY = e+y$. Donc, le moment d'inertie du corps par rapport à la ligne OT devient $\int dM ((e+y)^2 + zz) = \int dM (ee + 2ey + yy + zz) = \int ee dM + 2e\int y dM + \int dM (yy + zz)$. Or, posant la masse entière du corps $= M$, on aura $\int ee dM = Mee$, & à cause de $\int y dM = 0$, le moment d'inertie du corps par rapport à la ligne OT étant $= Mee + \int dM (yy + zz)$, surpassé toujours le moment d'inertie par rapport à l'axe ID; & l'excès est égal au produit de la masse du corps M par le carré ee de la distance entre les lignes ID & OT.

XXIV. De là on voit que si l'on considère les moments d'inertie d'un corps par rapport à une infinité de lignes, qui sont toutes parallèles entr'elles, le plus petit de tous ces moments fera toujours celui, qui répond à la ligne qui passe par le centre d'inertie du corps: ce qui est une propriété bien remarquable de ce point. La recherche des moments d'inertie d'un corps se réduit donc aux seules lignes qui passent par son centre d'inertie, de sorte qu'ayant trouvé tous ces moments d'inertie, on en peut déduire aisément les moments d'inertie par rapport à toutes les lignes possibles. Car, quelque ligne qui puisse être proposée, on n'a qu'à lui tirer une parallèle par le centre d'inertie, dont l'intervalle soit $= e$. Qu'on prenne ensuite le moment d'inertie par rapport à cette ligne tirée par le centre d'inertie, & qu'on y ajoute le produit Mee, pour avoir, le moment d'inertie par rapport à la ligne proposée.

XXV. Mais la recherche des moments d'inertie par rapport à toutes les droites qui passent par le centre d'inertie du corps, demanderait encore un travail infini, s'il n'y avait point quelque rapport entre' eux, de sorte qu'en connaissant quelques uns, on en puisse déterminer les autres. Pour découvrir un tel rapport, considérons la chose en général, & supposons que nous connaissions les moments d'inertie d'un corps par rapport à trois axes IA, IB, IC, qui se croisent perpendiculairement entr'eux au centre d'inertie du corps I. Ensuite, voyons
voyons ce qu'il faudroit connoître au delà pour déterminer le moment
d'inertie du même corps par rapport à tout autre axe IF, qui passe
aussi par le centre l'inertie I. Pour cet effet, soit un élément quelconque
du corps, dont la masse \(\omega M \) en \(Z \), d'où l'on tire au plan
AIB la perpendiculaire ZY, & de Y à l'axe IA la perpendiculaire
YX. Alors, nommant les coordonnées \(IX = x \), \(XY = y \), \(YZ = z \),
je suppose qu'on connoitse à chaque point déterminé par ces coordonnées
l'élément de masse \(\omega M \) qui s'y trouve.

XXVI. De là il est évident, que le moment d'inertie du corps
par rapport à l'axe IA fera \(\int \omega M (yy + zz) \) par rapport à l'axe
IB = \(\int \omega M (xx + zz) \), & par rapport à l'axe IC = \(\int \omega M (xx + yy) \).
Donc, posant les intégrales suivantes étendues par toute la substance du
corps,
\[
\int x x \, dM = A, \quad \int y y \, dM = B, \quad \int z z \, dM = C
\]
les moments d'inertie seront déterminés en sorte :

Mom. d'inertie par rapport à l'axe IA = B + C

Mom. d'inertie par rapport à l'axe IB = A + C

Mom. d'inertie par rapport à l'axe IC = A + B

d'où nous connaissons d'abord cette belle propriété, que chacun de
ces trois moments d'inertie est plus petit que la somme des deux autres,
puisque les quantités A, B, C, sont nécessairement positives.

XXVII. Pour la position d'un autre axe quelconque IF, qui pas-
sse aussi par le centre d'inertie I, qu'on conçoive un plan perpendiculaire
au plan ABC, dans lequel se trouve cet axe IF, l'intersection
avec le plan ABC étant la droite IE, & soient les angles AIE = \(\eta \),
EIF = \(\theta \). Qu'on mène de Y à la droite IE la perpendiculaire YP,
& on aura IP = \(x \cos \eta + y \sin \eta \), & PY = \(y \cos \eta - x \sin \eta \).
Qu'on tire de \(P \) la droite PK parallèle & égale à YZ = \(z \), laquelle
se trouvera dans le plan EIF, & coupera la droite IF quelquepart
en Q, de sorte que

\(PQ \)
\[\begin{align*}
PQ &= IP. \quad \tan \theta = (x \cos \eta + y \sin \eta) \tan \theta \quad \& \\
IQ &= IP: \quad \cos \theta = (x \cos \eta + y \sin \eta) \cos \theta \\
\text{donc} \quad QR &= z - (x \cos \eta - y \sin \eta) \tan \theta. \\
\text{Baissons enfin de } R \text{ sur } IF \text{ la perpendiculaire } RS, \text{ & puisque l'angle } \\
QS &= RS = FIE = \theta, \text{ nous aurons,} \\
RS &= QR \cos \theta = z \cos \theta - (x \cos \eta + y \sin \eta) \sin \theta, \quad \& \\
QS &= QR \sin \theta = z \sin \theta - (x \cos \eta + y \sin \eta) \sin \theta^2: \cos \theta. \\
\text{Ajoutons y } IQ &= (x \cos \eta + y \sin \eta) \cos \theta, \quad \& \text{à cause de} \\
I &= \frac{\sin \theta^2}{\cos \theta} = \cos \theta, \quad \text{nous obtiendrons :} \\
IS &= z \sin \theta + (x \cos \eta - y \sin \eta) \cos \theta. \\
\end{align*} \]

XXVIII. Maintenant ces trois lignes
\[\begin{align*}
IS &= z \sin \theta + (x \cos \eta + y \sin \eta) \cos \theta \\
SR &= z \cos \theta - (x \cos \eta + y \sin \eta) \sin \theta \\
RZ &= PY = y \cos \eta - x \sin \eta \\
\end{align*} \]

étant perpendiculaires entr'elles, & parallèles à des directions fixes, dont l'une est le nouvel axe IF, une autre perpendiculaire à IE dans le plan A1B, & la troisième perpendiculaire aux deux autres, & par tant aussi donnée; on les peut regarder comme trois autres coordonnées parallèles à trois autres axes perpendiculaires entr'eux. De là la droite ZS exprimant la distance du point Z à l'axe IF, le moment d'inertie du corps par rapport à cet axe sera
\[f dM(RZ^2 + SR^2) = f dM((y \cos \eta - x \sin \eta)^2 + (z \cos \theta - (x \sin \theta + y \sin \eta) \sin \theta)^2) \]

qui se réduit à cette forme
\[\left(+ xx \sin^2 \eta + yy \cos^2 \eta + zz \cos^2 \theta - 2xy \sin \eta \cos \eta - 2xz \cos \eta \cos \theta - 2yz \sin \eta \sin \theta \cos \theta \right) \]

XXIX.
XXIX. Ayant supposé \(f(xdM = A, f(ydM = B, f(zdM = C, \)

si nous supposons de plus les intégrales suivantes prises par toute l'étendue du corps: \(f(\alpha dM = D, f(x\beta dM = E, f(xydM = F, \)

le moment d'inertie du corps par rapport à l'axe IF sera

\[
A(\sin^2+\cos^2+\sin^2\theta^2)+B(\cos^2+\sin^2\sin^2\theta^2)-Cc\cos^2-2D\sin\sin\cos^2-2E\sin\sin\cos^2-2F\sin\cos^2
\]

Donc, si nous savions, outre les moments d'inertie par rapport aux axes IA, IB, IC, encore les valeurs des intégrales D, E, F, nous ferions en état d'assigner le moment d'inertie du corps par rapport à tout autre axe IF tiré par le centre d'inertie, & partant aussi par rapport à toutes les lignes droites.

XXX. Mais, pour rendre cette méthode encore plus simple, & pour éclaircir mieux la théorie des moments d'inertie, il est bon de considérer plus en détail les moments d'inertie par rapport à tous les axes tirés par le centre d'inertie. Et d'abord, je remarque, puisqu'aucun de ces moments ne saurait devenir infini, ni évanouir, qu'il doit y avoir parmi eux tant un plus grand qu'un plus petit; & il est important de connoître parmi cette infinité d'axes celui auquel répond le moment le plus grand, de même que le plus petit. Ensuite, en réfléchissant sur l'usage dans la Mécanique, on fait que le corps ne saurait tourner librement, qu'autour d'un tel axe, par rapport auquel toutes les forces centrifuges des éléments du corps se détruisent mutuellement. Or l'une & l'autre de ces deux conditions reviennent au même; ce qui est encore une très remarquable propriété dans la théorie des moments d'inertie.

XXXI. Pour prouver cette belle harmonie, cherchons premièrement quelle position doit avoir l'axe IF, afin que le moment d'inertie qui lui répond soit, ou le plus grand, ou le plus petit. Pour cet effet, on n'a qu'à différentier la formule trouvée pour le moment d'inertie par rapport à l'axe IF, en supposant les angles \(\eta \) & \(\theta \) variables, & à égaler les différentiels à zero: Or la variabilité de l'angle \(\eta \) nous fournit cette équation:
\[2 A (\sin \eta \cos \eta - \sin \eta \cos \eta \sin \theta^2) + 2B (\sin \eta \cos \eta \sin \theta^2 - \sin \eta \cos \eta) = 0\]
\[-2 \cos \eta \sin \theta + 2 \sin \eta \cos \theta - 2 F (\cos \eta^2 - \sin \eta^2) \cos \theta^2 = 0\]
qui se réduit à cette forme:
\[A \sin \eta \cos \eta \sin \theta^2 - B \sin \eta \cos \eta \sin \theta^2 - C \sin \eta \cos \eta \sin \theta + E \sin \eta \cos \eta \sin \theta - F (\cos \eta^2 - \sin \eta^2) \sin \theta^2 = 0\]
Mais la variabilité de l’angle \(\theta\) donne cette équation
\[2 A \cos \eta^2 \sin \theta \cos \theta + 2 B \sin \eta^2 \sin \theta \cos \theta - 2 C \sin \theta \cos \theta - 2 D \sin \eta \cos \theta^2 - \sin \theta^2) - 2 E \cos \eta \left(\cos \theta^2 - \sin \theta^2\right) + 4 F \sin \eta \cos \eta \sin \theta \cos \theta = 0\]
ou bien celle-ci:
\[A \cos \eta^2 \sin \theta \cos \theta + B \sin \eta^2 \sin \theta \cos \theta - C \sin \theta \cos \theta - D \sin \eta \cos \theta^2 - \sin \theta^2) - E \cos \eta \left(\cos \theta^2 - \sin \theta^2\right) + 2 F \sin \eta \cos \eta \sin \theta \cos \theta = 0\]
De ces deux équations on déterminera les deux angles \(\eta\) & \(\theta\), & partant la position de l’axe \(IF\), par rapport auquel le moment d’inertie est, ou le plus grand, ou le plus petit.

XXXII. Voyons maintenant, aussi quelle doit être la position de l’axe \(It\), afin que le corps puisse tourner librement autour de lui, ou que les forces centrifuges des éléments du corps se détruisent mutuellement. On sait que la force centrifuge de l’élément \(dM\) en \(Z\) est proportionnelle au produit de la masse \(dM\) par la distance \(ZS\) de l’axe \(IF\), ou bien à \(ZS \cdot dM\), & qu’elle agit selon la direction \(SZ\). Décomposons cette force selon les directions \(SR\), & \(RZ\), & nous aurons la force selon \(SR = SR \cdot dM\), & selon \(RZ = RZ \cdot dM\). Ces deux forces étant en deux plans fixes, il faut que les unes & les autres se détruisent séparément, & non seulement les forces mêmes, mais aussi leurs moments. Or, puisque \(SR = x \cos \theta - (x \cos \eta \sin \eta) \sin \theta\) & \(RZ = PY = y \cos \eta - x \sin \eta\), il est évident qu’il y aura, tant \(\int SR \cdot dM = 0\), que \(\int RZ \cdot dM = 0\) puisque nous avons déjà, par la condition du centre d’inertie \(I\), \(\int x dM = 0\), \(\int y dM = 0\), \(\int z dM = 0\).
XXXIII. Il reste donc que les momens aussi de ces doubles forces se détruisent mutuellement. Rapportons ces momens au point fixe I, ou multiplions les forces trouvées & appliquées au point S par la distance IS = \(z \sin \theta + (x \cos \eta + y \sin \eta) \cos \theta \), & il faudra qu'il provienne tant \(\int SR. IS. dM = 0 \) que \(\int RZ. IS. dM = 0 \). Voilà donc deux équations pour la détermination de l'axe IF, qui, en substituant les valeurs assignées, seront

\[
\left\{ \begin{align*}
3z\sin \theta c\theta - xx\sin^2 \theta \sin \theta c\theta - yz\sin \theta c\theta & + xx\sin \theta c\theta - 2xyz\sin \theta c\theta - xz\sin \theta c\theta - yz\sin \theta c\theta \\
& - xx\sin \theta c\theta - yz\sin \theta c\theta - xz\sin \theta c\theta - yz\sin \theta c\theta - xz\sin \theta c\theta - yz\sin \theta c\theta
\end{align*} \right\} = 0
\]

\[
\left\{ \begin{align*} -xx\sin \theta c\theta + yz\sin \theta c\theta - xx\sin \theta c\theta + yz\sin \theta c\theta + xz\sin \theta c\theta & = 0 \\
& -xx\sin \theta c\theta + yz\sin \theta c\theta + xz\sin \theta c\theta - yz\sin \theta c\theta
\end{align*} \right\} = 0
\]

Il faut étendre ces deux intégrales par toute la substance du corps pour avoir deux équations finies, d'où l'on puisse déterminer les deux angles \(\eta \& \theta \).

XXXIV. Puisque les angles \(\eta \& \theta \) sont constans, nous n'avons qu'à mettre pour les formules intégrales \(\int xx \, dM \), \(\int yy \, dM \), &c. les valeurs supposées, & nous obtiendrons ces deux équations finies:

\[
\begin{align*}
-A \cos \eta^2 \sin \theta \cos \theta & - B \sin \eta^2 \sin \theta \cos \theta + C \sin \theta \cos \theta \\
+ \sin \eta (\cos \theta^2 - \sin \theta^2) & + \cos \eta (\cos \theta^2 - \sin \theta^2) - 2F \sin \eta \cos \eta \sin \theta \cos \theta = 0 \\
-A \sin \eta \cos \eta & + B \sin \eta \cos \eta + D \sin \eta - E \sin \eta \sin \eta + F (\cos \theta^2 - \sin \eta^2) \cos \theta = 0
\end{align*}
\]

lesquelles conviennent parfaitement avec les deux équations trouvées ci-dessus. Donc les axes, autour desquels un corps peut tourner librement, ont en même temps cette belle propriété que, par rapport à eux, le moment d'inertie du corps est, ou un plus grand, ou un plus petit. Il est donc de la dernière importance de connaître ces axes dans chaque corps; & je les distinguerai des autres par le titre d'axes principaux du corps.
XXXV. Les axes principaux d'un corps sont donc de certaines lignes droites, qui passent par le centre d'inertie du corps, autour desquelles le corps peut tourner librement, de sorte que les forces centrifuges des éléments du corps se détruisent mutuellement; & qui ont encore en même temps cette belle propriété, que les moments d'inertie par rapport à ces axes sont, ou un maximum, ou un minimum. Par cette dernière propriété on comprend qu'il y a dans chaque corps au moins deux axes principaux; car, puisque de tous les moments d'inertie rapportés à des axes qui passent par le centre d'inertie, aucun ne fauroit devenir, ni infini, ni évanoissant; il faut bien, que parmi eux il y en ait un, qui soit le plus grand, & un qui soit le plus petit. Mais on verra dans la suite, qu'il y a effectivement dans chaque corps trois axes principaux, qui se croisent au centre d'inertie à angles droits; ce qui est une propriété aussi remarquable, que celle que nous venons d'observer.

XXXVI. Donc, pour trouver les axes principaux d'un corps, nous n'avons qu'à résoudre les deux équations, auxquelles nous avons été conduits par l'une & l'autre considération, & à en déterminer les deux angles $AIE = \eta$ & $EIF = \theta$, en regardant les six intégrales comme connues:

$$fxxdM = A; fyydM = B, fzdM = C; fyxdM = D, fxydM = E, fxydM = G$$

Or nous deux équations à résoudre sont:

I. $(A-B) \sin \eta \cos \eta \cos \theta - (D \cos \eta - E \sin \eta) \sin \theta - F(\cos \eta^2 - \sin \eta^2) \cos \theta = 0$

II. $(A \sin \eta^2 + B \sin \eta^2) \sin \eta \cos \theta - C \sin \eta \cos \theta - (D \sin \eta + E \cos \eta) (\cos \theta^2 - \sin \theta^2) + 2F \sin \eta \cos \eta \sin \cos \theta = 0$

dont celle-ci, à cause de $\sin \theta \cos \theta = \frac{1}{2} \sin 2 \theta$ & $\cos \theta^2 - \sin \theta^2 = \cos 2 \theta$, se réduit à cette forme:

II. $(A \cos \eta^2 + B \sin \eta^2) \sin \theta - C \sin \theta - 2(D \sin + E \cos \eta) \cos \theta + 2F \sin \eta \cos \eta \sin \theta = 0$

La première donne d'abord la tangente de l'angle θ

$$\tan \theta = \frac{(A-B) \sin \eta \cos \eta - F(\cos \eta^2 - \sin \eta^2)}{D \cos \eta - E \sin \eta}$$
et la seconde la tangente du double angle:

\[
\tan 2 \theta = \frac{2 \frac{D}{A} \sin \eta + 2 \frac{E}{C} \cos \eta}{A \cos \eta^2 + B \sin \eta^2 - C + 2 \frac{F}{E} \sin \eta \cos \eta}
\]

XXXVII. Or, puisque \(\tan \theta = \cot \theta + 2 \cot 2 \theta = 0 \), nous en tirons cette équation:

\[
\frac{(A-B) \sin \eta \cos \eta - (F \cos \eta^2 - \sin \eta^2)}{D \cos \eta - E \sin \eta} - \frac{D \cos \eta + E \sin \eta}{(A-B) \sin \eta \cos \eta - (F \cos \eta^2 - \sin \eta^2)} + \frac{A \cos \eta^2 + B \sin \eta^2 - C + 2 \frac{F}{E} \sin \eta \cos \eta}{D \sin \eta + \cos \eta} = 0
\]

& joignant le premier & dernier membre ensemble, on trouve

\[
\frac{(AD-CD-DE-FF) \sin \eta + (DF-DE+CE) \cos \eta}{(D \cos \eta - E \sin \eta)(D \sin \eta + E \cos \eta)} - \frac{D \cos \eta + E \sin \eta}{(A-B) \sin \eta \cos \eta - (F \cos \eta^2 + \sin \eta^2)} = 0
\]

& posant \(\tan \eta = t \) il en résulte cette équation cubique:

\[
t^3(DFF-DEE+(C-B)EF) - t(E^3 - 2DDE + EFF + (B+C-2A)DF + (A-B)(B-C)E)
- t(D^3 - 2DEE + DFF + (A+C-2B)EF + (A-B)(C-A)D) + EFF - DDE + (A-B)(B-C)E) = 0
\]

dont la racine donne la tangente de l'angle \(\eta \). De là on trouvera aussi l'angle \(\theta \), & partant la position de l'axe 1F sera déterminée.

XXXVIII. Puisque cette équation cubique:

\[
+ (DFF - DEE + (C-B)EF) t^3
- (EFF + E^3 - 2DDE + (B+C-2A)DF + (B-A)(C-B)E) t t
- (DFF + D^3 - 2DEE + (A+C-2B)EF + (A-B)(C-A)D) t
+ EFF - DDE + (C-A)DF = 0
\]
a certainement une racine réelle, on en trouve un axe principal: pour les deux autres racines, il ne paroit pas de l'équation, si elles sont réelles, ou imaginaires. Mais, puisque nous savons déjà qu'il doit y avoir au moins deux axes principaux, cette équation aura nécessairement
ment plus qu'une racine réelle. D'où il est certain que toutes les racines sont réelles ; & puisque chacune indique un axe principal, il s'en suit, qu'il se trouve dans tout corps trois axes principaux.

XXXIX. Mais, ayant trouvé un axe principal par la méthode précédente, il sera fort aisé de trouver les deux autres par la méthode suivante. Soit IA cet axe principal, qu'on aura déjà trouvé, & qu'on en prenne à volonté deux autres IB & IC, qui soient tant entre eux qu'au premier IA perpendiculaires, pour y rapporter les éléments du corps par les troîs coordonnées IX = x, XY = y, & YZ = z. Soit encore \(f(x,y,dM) = A, f(y,z,dM) = B \) & \(f(z,x,dM) = C \), où il ne faut pas confondre ces lettres avec celles, que nous avons employées dans la recherche précédente. Maintenant, puisque IA est un axe principal, & que les forces centrifuges se détruisent mutuellement, lorsque le corps tourne autour de cet axe, il faut que les intégrales \(f(y,z,dM) & f(x,z,dM) \) évanouissent. Donc, dans les intégrations précédentes, nous aurons \(E = 0 \) & \(F = 0 \); mais la formule \(f(y,z,dM = D) \) pourra encore avoir une valeur finie.

XI. Supposant donc que IA est un axe principal du corps, soit IF un autre axe principal; & posant, pour en trouver la position, les angles \(AIE = \eta \) & \(EIF = \theta \), nous aurons par le même calcul dont nous nous sommes servis ci-dessus, à cause de \(E = 0 \) & \(F = 0 \), ces équations :

I. \((A - B) \sin \eta \cos \eta \cos \theta - D \cos \eta \sin \theta = 0 \)

II. \((A \cos \eta^2 + B \sin \eta^2) \sin \theta \cos \theta - C \sin \theta \cos \theta - D \sin \eta (\cos \theta^2 - \sin \theta^2) = 0 \)

dont la première donne, ou \(\cos \eta = 0 \) ou \(\tan \theta = \frac{A - B}{D} \).

Or cette dernière valeur étant substituée dans l'autre équation, en produit une, qui étant divisible par \(D \sin \eta \) donne \((A - B)(A - C) - DD = 0 \) qui ne détermine rien. Il faut donc qu'il soit, ou \(\sin \eta = 0 \) ou \(\cos \eta = 0 \). Mais la valeur \(\sin \eta = 0 \) donne aussi \(\tan \theta = 0 \);
ce qui conduit au même axe IA déjà connu. Il ne reste donc que la valeur cos η = 0, d'où l'angle A1E devient droit.

XLII. Il est donc clair que, pour que l'axe IF soit aussi principal, l'angle A1E doit être droit, ou η = 90°; ce qui montre, que l'autre axe principal IF est perpendiculaire à l'axe connu IA. Or, posant η = 90°, l'autre équation qui devient (B − C)sin θ cos θ − D(cos θ − sin θ^2) = 0 donne
\[
\tan 2 \theta = \frac{2D}{B−C}.
\]
Cette équation fournit une double valeur pour l'angle θ; car, si l'une est θ = θ, l'autre sera θ = θ + 90°: de sorte que voilà en tout trois axes principaux qui sont perpendiculaires entre eux. C'est bien un paradoxe, puisque la condition du plus grand & plus petit semble ne devoir donner que deux axes principaux, à l'un desquels réponde le plus grand, & à l'autre le plus petit moment d'inertie. Mais on fait que la méthode des plus grands & plus petits donne souvent aussi des cas, qui ne sont, ni l'un, ni l'autre; pourvu que les changements élémentaires y évanouissent; & c'est ici précisément le cas.

XLIII. Voilà donc une vérité bien importante, qui est, que dans chaque corps il y a trois axes principaux, qui se croisent à angles droits dans le centre d'inertie. Ces axes principaux ont une double propriété fort remarquable; l'une, que le corps peut tourner librement autour de chacun d'eux; l'autre, que des moments d'inertie par rapport à ces trois axes, un est le plus grand, un autre le plus petit de tous les possibles, & le troisième tient un tel milieu entre les deux autres, que, quoi qu'on change l'axe infiniment peu, le changement qui en résulte dans le moment d'inertie évanouisse. Cependant il peut arriver que deux axes deviennent indefinis, auquel cas tous les axes situés dans leur plan peuvent être également censés principaux; comme il dans la formule
\[
\tan 2 \theta = \frac{2D}{B−C},
\]
devenait & D = 0 & B = C. Car alors l'angle θ pourroit être pris à volonté. Il peut même aussi arriver que toutes les lignes tirées par le centre d'inertie acquier-
acquierrent la propriété des axes principaux, comme dans un globe homogène.

XLIII. Ayant expliqué la méthode de déterminer les trois axes principaux de chaque corps, on les peut regarder comme connus dans la Mécanique, de même que les moments d'inertie par rapport à ces axes, que je nommerai *les trois moments principaux d'un corps*. Et alors on fera en état d'entreprendre les plus profondes recherches, dont on ne saurait surmonter les obstacles sans ce secours. Puisque les trois axes principaux sont perpendiculaires entre eux, il sera bon de les employer au lieu des trois directrices, auxquelles on rapporte les éléments du corps par le moyen de trois coordonnées qui leur sont parallèles. Soient donc pour un corps quelconque les droites IA, IB & IC, les trois axes principaux, auxquels soient parallèles les coordonnées \(IX = x \), \(XY = y \) & \(YZ = z \), qui déterminent la position de l'élément \(dM \) situé en Z; & on pourra regarder cet élément comme connu à l'égard des trois coordonnées \(x \), \(y \), \(z \), auxquelles il est rapporté.

XLIV. Puisque les lignes IA, IB, IC, sont les axes principaux du corps, les intégrales \(\int y z dM \), \(\int x z dM \), \(\int x y dM \) évanouissent, ou l'on aura dans les formules supérieures \(D = 0 \), \(E = 0 \), \(F = 0 \), de sorte que les trois autres \(\int x x dM = A \), \(\int y y dM = B \), & \(\int z z dM = C \) demeurent seulement dans le calcul. Or, posant la masse du corps \(= M \), soient les moments d'inertie principaux par rapport à l'axe \(IA = Maa \), à l'axe \(IB = Mbb \), & à l'axe \(IC = Mcc \); & on aura par les intégrales

\[
Maa = B + C; \quad Mbb = A + C; \quad Mcc = A - B
\]

& partant réciproquement :
\[
A = \frac{1}{4} M(bb + cc - aa), \quad B = \frac{1}{4} M(aa + cc - bb); \quad C = \frac{1}{4} M(aa + bb - cc)
\]
De là le moment d'inertie par rapport à un axe quelconque IF détermi-
né par les angles \(\alpha = \eta \) & \(\varphi = \theta \) sera par le §. 29.
\[
\frac{1}{2} M(bb + cc - aa)(\sin \eta^2 + \cos \eta \sin \theta^2) + \frac{1}{2} M(aa + cc - bb)(\cos \eta^2 + \sin \eta \sin \theta^2) \\
+ \frac{1}{2} M(aa + bb - cc) \cos \theta^2
\]
qui se réduit à cette forme plus simple,

\[
Maa \cos \eta^2 \cos \theta^2 + Mbb \sin \eta^2 \cos \theta^2 + Mcc \sin \theta^2
\]

XLV. Ayant donc trouvé les trois moments d'inertie principaux
\(Maa \), \(Mbb \), & \(Mcc \), d'un corps, il est fort aisé d'en déterminer le
moment d'inertie par rapport à tout autre axe quelconque IF, tiré par
le centre d'inertie. Et pour rendre cette détermination plus évidente,

\[\text{j'observe que } \cos \eta \cos \theta \text{ exprime le cosinus de l'angle, que fait l'axe IF avec le principal IA. De même } \sin \eta \cos \theta \text{ exprime le sinu} \\
\text{sinus de l'angle, que fait l'axe IF avec le principal IB; } & \sin \theta \text{ le cosinus de l'angle que fait IF avec le principal IC. Donc, si nous posons}
\]

les angles \(\alpha = \eta \); \(\beta = \theta \); \(\gamma = \eta \), que fait l'axe IF avec
les trois axes principaux IA, IB, IC par rapport auxquels les mo-
ments d'inertie sont supposés \(Maa \), \(Mbb \), \(Mcc \), le moment d'inertie
par rapport à l'axe IF est \(= Maa \cos \alpha^2 + Mbb \cos \beta^2 + Mcc \cos \gamma^2 \).

Où il faut remarquer que \(\cos \alpha^2 + \cos \beta^2 + \cos \gamma^2 = 1 \), puisque
\(\cos \alpha = \cos \eta \cos \theta \), \(\cos \beta = \sin \eta \cos \theta \) & \(\cos \gamma = \sin \theta \). Donc,

si \(Maa \) est le plus grand, \(Mcc \) le plus petit, & \(Mbb \) le moyen mo-
ment principal; le moment d'inertie par rapport à l'axe IF sera \(=
Maa - M(aa - bb) \cos \theta^2 - M(aa - cc) \cos \gamma^2 \), & partant moindre
que \(Maa \), ou \(= Mcc + M(aa - cc) \cos \alpha^2 + M(aa - bb) \cos \beta^2 \), &
partant plus grand que \(Mcc \).

XLVI. Ensuite, on peut aussi voir combien il s'en faut, qu'un
axe quelconque IF n'ait la propriété d'un axe principal. Car,
pour qu'il fût tel, il faudrait qu'il fût tant \(fSR \). IS. \(dM = 0 \),
que \(fRZ \). IS. \(dM = 0 \). Or, à cause de \(D = 0 \). E = 0. F = 0,

nous avons par le §. XXXIV.

\(\frac{1}{fSR} \)
SR. IS. \(dM = (C - A \cos \eta^2 - B \sin \eta^2) \sin \theta \cos \theta \) &
SR. IS. \(dM = (B - A) \sin \eta \cos \eta \cos \theta \),
& substituant pour A, B, C, les valeurs des moments principaux,

\[
\int RZ. IS. dM = M (aa \cos \eta^2 + bb \sin \eta^2 - cc) \sin \theta \cos \theta = M ((aa - cc) \cos \alpha^2 + (bb - cc) \cos \beta^2) \frac{\cos \gamma}{\sin \gamma}
\]

D'où l'on voit, que, si les trois moments principaux sont égaux entre eux, ou \(aa = bb = cc \), toutes les lignes IF auront la propriété des axes principaux. Mais, s'ils sont inégaux entre eux, il n'y a que les trois axes principaux IA, IB & IC.

XLVII. Si deux moments principaux sont égaux entre eux, il y a \(M \ bb = M \ aa \), l'axe IF aura la propriété d'un axe principal, pourvu qu'il y ait \(\cos \gamma = 0 \) ou \(\theta = 0 \). Dans le cas donc que les moments d'inertie des deux axes principaux IA & IB sont égaux entre eux, toute ligne IE tirée du centre d'inertie I dans le plan AIB aura la propriété d'un axe principal; & à cause de \(\cos \gamma = 0 \) & \(\cos \alpha^2 + \cos \beta^2 = 1 \), le moment d'inertie par rapport à toutes les lignes IE sera \(= M \ aa = M \ bb \). Il en est de même si deux autres moments d'inertie principaux sont égaux entre eux; & toute autre ligne tirée de I dans le plan de ces deux axes principaux aura le même moment d'inertie, & la propriété d'un axe principal. Il y a donc dans ces cas une infinité d'axes principaux. Or, dans le cas où tous les trois moments d'inertie principaux sont égaux entre eux, toutes les lignes tirées du centre d'inertie feront des axes principaux.