DE INTEGRATIONE AEOVATIONUM DIFFERENTIALIVM.

Auctore
L. EVLERO.

1. Considero hic aequationes differentiales primi gradus, quae duas tantum variabiles involuint, quas propter ex hac forma generali \(M \, dx + N \, dy = 0 \), raepresentare licet, si quidem \(M \) et \(N \) denotent functiones quascunque binarum variabilium \(x \) et \(y \). Demonstratum autem est, huiusmodi aequationem femper certam relationem inter variabiles \(x \) et \(y \) exprimere, qua pro quouis valore \(x \)ius certi valores pro altera definiantur. Cum autem per integrationem ifla ratio finita inter ambas variabiles inueniri debeat, aequatio integralis, si quidem ad omnem amplitudinem extendatur, nouam quantitatem constantem recipiet, quae dum penitus ab arbitrio nostrro pender, infinitas quasi aequationes integrales complectitur, quae omnes aequationes differentiales aequae conueniant.

2. Proposita igitur huiusmodi aequatione differentia quacunque \(M \, dx + N \, dy = 0 \), tota vis Analyticos in hoc consistit, ut aequatio finita inter easdem variabiles.
biles x et y. eliciatur, quae eadem inter illas relationem exprimat, atque ipsa differentialis, et quidem latissimo sensu, ita ut constantem quamquam arbitrariam, quae in differentiali non ineunt, continetur. Verum si haec quaedam ita generalissime præputatur, nulla plane adhuc invenita est via ad cius solutionem permeiendi: atque omnes casus, quos adhuc resolucere licuit, ad numerum per quam exiguum reduci possunt, ita ut in hae Analysis parte, perinde ac in reliquis, maxima adhuc incrementa desiderentur; neque ob hanc causam quanta plena omnium huius scientiae arcanorum cognitio expectari queat.

3. Quae quidem adhuc in hoc negotio sunt præflata, ea fere omnia ad hos casus referri possunt; quibus aequatio differentialis $M \, dx + N \, dy = 0$, vel sponte separationem variabilium admissit, vel per idoneas substitutiones ad talem formam reduci potest. Quodsi enim introducendis loco x et y binis nonis variabilibus v et z, aequatio differentialis propositioni in huiusmodi formam $V \, dv + Z \, dz = 0$ transmutari quaeat, in qua V sit functio ipsius v tantum, et Z ipsius z tantum, totum negotium erit concitatum, dum aequatio integralis completa erit:

$$\int V \, dv + \int Z \, dz = \text{const.}$$

quia manifestum illam constantem arbitrariam, per generali integrationem inuentam complectitur. Atque huc fere redunt omnia artificia, quibus Analyticae adhuc in resolucione huiusmodi aequationum sunt vii.

4. Nisi
AEOVATIONUM DIFFERENTIALIUM.

4. Nisi igitur aequatio proposita differentialis sponte separationem variabilium admittat, tum negotiationium hoc consueta est solitu, vt idoneae substitutiones, quae ad separationem viam parent, intelligantur, in quo etiam sequi historiae sapientia, quam Geometrae ad scopum obtinendum aehibuerunt, admirari oportet. Interim tamen cum nulla certa via pateat, huiusmodi substitutiones inelegantem, haece methodus minus ad rei naturam videtur accommodata, ex quo constitutum, aliam methodum non nouam quidem, verum tamen etiam hanc non satis excultam, accuratius perpendere, quae vti substitutionibus non egit, ita etiam naturae aequationum magis consentanea videtur, dum eius ratio indoli differentiale inititur, tum vero etiam priorem methodum, velut partem, in se complectitur.

5. Aequatione differentialis ad hanc formam \(M \, dx + N \, dy = 0 \) perducta, consideretur formula \(M \, dx + N \, dy \) sine respectu habitus, quod ea evanescere debeat, et examinetur, quid ex sit differentiale cuiuspiam functionis ipsarum \(x \) et \(y \), nec ne? Quemadmodum hoc examen sit instituendum, iam patim abunde est explicatum; vtramque scilicet functionem \(M \) et \(N \) differentiales oportet, et cum eorum differentiales huiusmodi formae sint habitura:

\[
dM = p \, dx + q \, dy \text{ et } dN = r \, dx + s \, dy
\]

dispiciatur, utrum sit \(q = r \), nec ne? Quodsi enim fuerit \(q = r \), hoc infallibile est criterium, formulam \(M \, dx + N \, dy \) esse integrabilem; at si non fuerit \(q = r \), seque certum est, ita formula ex nullis finitae functionis ipsarum \(x \) et \(y \) differentiatione esse ortam. Ex A 3.
DE INTEGRATIONE

quo tota quaeat ad duos casus reductur, quorum alter locum habet, si fuerit \(q = r \), alter vero, si hae quantitates \(q \) et \(r \) non fuerint inter se aequales.

6. Ad aequalitatem igitur, vel inaequalitatem, quantitatum \(q \) et \(r \) agnoscentam, ne oppus quidem est, vt functiones \(M \) et \(N \) penitus per differentiationem evoluantur, sed sufficit in functione \(M \), quae cum \(dx \) est coniuncta, quantitatem \(x \) vt constante spectare, eamque tantum eius differentialis partem quaerere, quae ex variabilitate ipsius \(y \) tantum nascitur, si quidem hoc modo membrum \(qdy \) obtinetur, valorem autem ipsius \(q \) sic erutum hoc scriptione \(\left(\frac{dM}{dy} \right) \) denotare soleo. Simili modo altera functione \(N \), quae cum \(dy \) est coniuncta, ita differentiatur, vt \(y \) pro constante tractetur, et ex variabilitate solius \(x \) impetratur differentialis pars \(rdx \), ubi valorem ipsius \(r \) pariter per \(\left(\frac{dN}{dX} \right) \) exprimo. Quodsi ergo formula \(M dx + N dy \) ita fuerit comparata, vt sit \(\left(\frac{dM}{dy} \right) = \left(\frac{dN}{dX} \right) \), ea est integrabilis, eiusque integrale sequenti modo inueniri poterit. Quo facto, si hoc criterium non locum habeat, videamus quomodo sit procedendum.

Problema 1.

7. Si aequatio differentialis \(M dx + N dy = 0 \) ita fuerit comparata, vt sit \(\left(\frac{dM}{dy} \right) = \left(\frac{dN}{dX} \right) \), inuenire eius aequationem integrale.

Solutio.

Si fuerit \(\left(\frac{dM}{dy} \right) = \left(\frac{dN}{dX} \right) \), tunc datur functione finita binarum variabilium \(x \) et \(y \), quae differentiata praebet...
AEQUATIONVM DIFFERENTIALVM. 7

bet Mdx + Ndy. Sit V ista function, et cum fit dV = Mdx + Ndy, erit Mdx differentialque ipius V, si tantum x variabile sumatur, et Ndy eius differentiali, si tantum y variabile capiatur. Hinc ergo vicissim V reperietur, si vel Mdx integretur, spectata y vt constante, vel Ndy integretur, spectata x vt constante; sicque haec operatio reducit ad integrationem formulae differentialis vniam variabilem involuentis, quae in hoc negotio, siue algebraice succedat, siue quadraturas curvarum requirit, concedi postulatur. Cum autem hac ratione quantitas V duplici modo inventatur, et altera integratio vice constantis functionem quamcunque ipius y, altera vero ipius x assumatur, ita est

et V = \int Mdx + Y, et V = \int Ndy + X,

semper has functiones Y ipius y, et X ipius x, ita definire licet, vt fiat \int Mdx + Y = \int Ndy + X, id quod quosquid casu facile praesatur. Quo factio cum quantitas V sit integrale formule Mdx + Ndy, euidens est, aequationis propoetae Mxd + Ndx = o integrale aequationem fore V = Conf. eamque completam, propter quod inuluit constantem quantitatem ab arbitrio nostro pendentem.

Coroll. 1.

8. In hoc problemate flatim continetur casus aequationum separatarum. Si enim fuerit M functione ipius x tantum, et N functione ipius y tantum, erit vtique \(\frac{dM}{dx} = 0 \) et \(\frac{dN}{dy} = 0 \), ideoque \(\frac{dM}{dy} = \frac{dN}{dx} \); quae est ergo casus simplicissimus, quem problema in se complectitur.

Coroll.
3 DE INTEGRATIONE

Coroll. 2.

9. Quodsi autem in aequatione differentiali \(M \, dx + N \, dy = 0 \) fuerit \(M \) functio solius \(x \), et \(N \) solius \(y \), utraque pars seorsim integrabilis existit, atque aequatio integralis erit:

\[
\int M \, dx + \int N \, dy = \text{Const.}
\]

Coroll. 3.

10. Praeterea vero nostrum problema resolutionem infinitarum aliarum aequationum differentialium largitur, quorum omnium character communis in hoc consistit, ut sit \(\left(\frac{dM}{dy} \right) = \left(\frac{dN}{dx} \right) \), earumque resolutio per integrationem formularum, unicam variabilem continentium, expediri potest.

Scholion 1.

11. Quoties ergo in aequatione differentiali \(M \, dx + N \, dy = 0 \) fuerit \(\left(\frac{dM}{dy} \right) = \left(\frac{dN}{dx} \right) \), eius resolutio nulam habet difficultatem, dummodo integratio formularum unicam variabilem involuentium concedatur; quam quidem iure posse liceat. Interim tamen determinatio functionum illarum \(X \) et \(Y \), quae loco constantium introduci debent, molestiam quandam creare videri posset, quae autem singulis causis mox evanescere reperietur. Verum quo magis et haec operatio contrahatur, ne duplici quidem integratione est opus. Postquam enim altera pars \(M \, dx \), spectata \(y \) tanquam constanti, fuerit integrata, quod integrale sit \(= Q \), statuatur \(V = Q - Y \), posito tantisper \(Y \) pro functione inde-
indebita ipsius \(y \), in quam altera variabilis \(x \) profus non ingrediatur. Turn differentietur denuo haec quantitas \(Q - Y \), tractando \(x \) tanquam constantem, et quia differentiale prodire debet \(= N dy \), ex hac conditione functio \(Y \) facilissime definitur, quandoquidem ex rei natura hinc sponte eliminabitur quantitas \(x \). Inventa autem illa functione \(Y \), aequatio integralis erit \(Q - Y = 0 \) Conf. quam operationem sequentibus exemplis illustrari conueniet.

Exemplum i.

12. *Integrare hanc aequationem differentialem*:

\[2axy dx + axxy dy - y^2 dx - 3 xy y dy = 0. \]

Comparata hae aequatione cum forma \(M dx + N dy = 0 \), erit:

\[M = 2axy - y^2 \text{ et } N = axx - 3xyy. \]

Primum igitur dispendium est, utrum hic caus in problemate continetur? quem in finem quæramus valores:

\[\left(\frac{dy}{dx} \right) = 2ax - 3yy, \text{ et } \left(\frac{dx}{dy} \right) = 2ax - 3yy, \]

qui cum sint aequales, operatio praefecta necessario succedet. Reperietur autem, summa \(y \) pro constante:

\[\int M dx = axxy - y^2 x + Y; \]

cuius formae it differentiale sumatur, posita \(x \) constante, probat:

\[axxy - y^2 x dy + dY = N dy, \]

et pro \(N \) valore fuit \(axx - 3 xy y \) restituto, fiat \(dY = 0 \), ex quo nascitur \(Y = 0 \), vel \(Y = \text{const.} \) Quare aequatio integralis quaestita habebitur:

\[axxy - y^2 x = \text{const.} \]

Tom. VIII. Nou. Comm. B Exem-
DE INTEGRATIONE

Exemplum 2.

13. Integrare hanc aequationem differentialem:

\[\frac{y^2 + \frac{z}{2} \frac{d}{dx} x}{(y - x)^2} \frac{d}{dx} x = 0 \]

Comparata hac aequatione cum forma \(M\, dx + N\, dy = 0 \), erit:

\[M = \frac{x}{(y - x)^2} \text{ et } N = \frac{y}{(y - x)^2} \]

Iam vt pateat, num haec aequatio in caelo problematis contineatur, quaerantur valores differentiales:

\[\left(\frac{dM}{dy} \right) = \frac{y}{(y - x)^2} \text{ et } \left(\frac{dN}{dx} \right) = \frac{y}{(y - x)^2} \]

qui cum sint aequales, negotium succedet. Quare secundum regulam colligatur, sumto \(y \) constante, integrale:

\[\int M\, dx - \int \frac{x}{(y - x)^2} \frac{d}{dx} x = -\int \frac{y}{(y - x)^2} \frac{dx}{x} \]

ac reperietur:

\[\int M\, dx = l(y - x) - \frac{x}{2} + Y \]

culius differentiale, sumto \(x \) constante, producere debet alteram aequationis propostae partem \(N\, dy \); vide habeatur:

\[N\, dy = \frac{y}{y - x} \frac{d}{dx} x + \frac{x}{(y - x)^2} \frac{dx}{x} + dY = \frac{y}{(y - x)^2} + dY \]

Cum igitur sit \(N\, dy = \frac{y}{(y - x)^2} \) et \(dY = 0 \), et \(Y = 0 \), confitantem enim in \(Y \) negligere licet, quia iam in aequationem integralem introductur, quippe quac erit:

\[l(y - x) - \frac{x}{2} + Y = \text{Const.} \]

Exemplum 3.

14. Integrare hanc aequationem differentialem:

\[\frac{d}{dx} x + \frac{y}{2} \frac{dy}{dx} - \frac{y^2}{2} = 0 \]

Com-
AEQUATIONUM DIFFERENTIALIVM. ix

Comparata hac aequatione cum formâ $M\,dx + N\,dy = 0$, habebimus:

$$M = \frac{x^2 + y^2 - \sqrt{x^2 + y^2}}{x^2} \quad \text{et} \quad N = \frac{-y - \sqrt{x^2 + y^2}}{x^2}$$

unde pro criterio exploring quaeratur:

$$\left(\frac{dM}{dy}\right) = \frac{y}{x^2} + \frac{\sqrt{x^2 + y^2}}{x^2} + \frac{y}{x^2} \sqrt{x^2 + y^2} \quad \text{et} \quad \left(\frac{dN}{dx}\right) = \frac{y}{x^2} - \frac{\sqrt{x^2 + y^2}}{x^2} - \frac{x^2}{x^2 + y^2}$$

qui valores reduciti cum sint aequales, feliciter

$$\left(\frac{dM}{dy}\right) = \left(\frac{dN}{dx}\right) = \frac{y}{x^2} + \frac{x^2}{x^2} \sqrt{x^2 + y^2}$$

resoluto est in potestate. Investitur ergo, sumto y

constante:

$$\int M\,dx = lx - \frac{y}{x^2} - y\int \frac{d}{dx} \sqrt{x^2 + y^2}\,dx$$

At per regulas integrandae, formulam vincam variabili

involuentes, quia hic y

pro constante habetur, reperitur:

$$\int \frac{d}{dx} \sqrt{x^2 + y^2}\,dx = \frac{\sqrt{x^2 + y^2}}{x^2} + \frac{1}{2} \ln(x^2 + y^2) - y$$

ita ut sit:

$$\int M\,dx = lx - \frac{y}{x^2} - \frac{\sqrt{x^2 + y^2}}{x^2} + \frac{1}{2} \ln(x^2 + y^2) - y + Y$$

At huius quantitatis differentialis, assumto x

pro constante, quia praebere debet $N\,dy = \frac{y}{x^2} \frac{dy}{dx} \sqrt{x^2 + y^2}$,

nanciscemur:

$$N\,dy = \frac{y}{x^2} \frac{dy}{dx} \sqrt{x^2 + y^2} - \frac{y^2}{x^2 + y^2} \frac{dy}{dx} - \frac{y}{x^2 + y^2} + dY$$

qua forma cum illa comparata sit:

$$dY = -\frac{d}{dy} \frac{y}{x^2} \frac{dy}{dx} \sqrt{x^2 + y^2} - \frac{y^2}{x^2 + y^2} \frac{dy}{dx} + \frac{y}{x^2 + y^2} + dY$$

vbi termini, quod adhuc continent x, ipso se delinuant,

ita ut sit $dY = \frac{dy}{x^2}$ et $Y = \frac{1}{2} iy$. Quo valore pro Y

inueno, obtinebitur aequatio integralis quaesita:

$$lx - \frac{y}{x^2} - \frac{\sqrt{x^2 + y^2}}{x^2} + \frac{1}{2} \ln(x^2 + y^2) = \text{Cons.}$$

B 2

Scho.
DE INTEGRATIONE

Scholion 2.

15. Ex his exemplis fatis peripicitur, quemadmodum perpetuo operatio praecipita sit inquuida, ita vt hinc nullam amplius difficilis molestiam facies sit, nisi quae ex integratione formularum, quivam variabilem involventium, quandoque relinquatur, dum integratio neque algebraice absolvit, neque ad circuli hyperbolae formularum reduci patitur. Verum tum superiorum graduum simili modo tractari oportet, et si quae difficultates relinquantur, eae non huic methodo sunt assignabundae. Quam ob rem hic assumere licet, quoties aequatio differentialis \(M \, dx + N \, dy = 0 \) ita fuerit comparata, ut in ea sit \(\frac{dM}{dy} = \frac{dN}{dx} \), toties integrationem esse in nostra potestate: quae ad eas aequationes pergo, in quibus hoc criterium non habet locum.

Theorema.

16. Si in aequatione differentiale \(M \, dx + N \, dy = 0 \) non fuerit \(\frac{dM}{dy} = \frac{dN}{dx} \), semper datur multiplicator, per quem formula \(M \, dx + N \, dy \) multiplicata fiat integrabilis.

Demonstratio.

Cum non sit \(\frac{dM}{dy} = \frac{dN}{dx} \), etiam formula \(M \, dx + N \, dy \) non erit integrabilis, seu nulla existit functio ipsorum \(x \) et \(y \), cujus differentiales sit \(M \, dx + N \, dy \). Verum hic non tam formulae \(M \, dx + N \, dy \), quam aequationis \(M \, dx + N \, dy = 0 \), quaeritur integrale; et cum eadem aequatio substituta, si per functionem quam-
AEQVATIONVM DIFFERENTIALVM. 13

quamcunque L ipsarum x et y multiplicetur, ita vt fit LMdx + LNdy = 0, demonstrandum est, semper eiusmodi dari functionem L, vt formula LMdx + LNdy fiat integrabilis. Quo enim hoc eueniat, necesse est, vt fit:

\(\left(\frac{dLM}{dy} \right) = \left(\frac{dLM}{dx} \right) \)

vel si ponatur \(dL = Pdx + Qdy \), cum fit \(\left(\frac{dL}{dy} \right) = Q \), et \(\left(\frac{dL}{dx} \right) = P \), functio L ita debet esse comparata, vt fit:

\(L\left(\frac{dN}{dy} \right) + MQ = L\left(\frac{dN}{dx} \right) + NP \).

Eundem autem est, hanc conditionem sufficere ad definieandam functionem L, per quam si formula Mdx + Ndy multiplicetur, fiat integrabilis.

Coroll. 1.

x7. Inueno ergo tali multiplicatore L, qui reddat formulam Mdx + Ndy integrabilem, equationem Mdx + Ndy = 0, in formam LMdx + LNdy = 0 translata, integrari poterit methodo in problate praece edente exposta.

Coroll. 2.

x8. Quaeratur scilicet, spectata y tanquam constante, integrale \(fLMdx \), ad quod adiciatur talis functionis Y ipius y, vt si aggregatum \(fLMdx + Y \) denue differentietur, spectata iam x vt constante, prodeat LNdy. Quo facto erit equationi integrali \(fLMdx + Y = \text{Cont.} \).
Coroll. 3.

19. Multiplicator igitur L ita debet esse comparatus, ut posito $dL = Pdx + Qdy$, satisfiat huic aequationi:

$$L \left(\frac{dM}{dy} \right) - M \frac{dQ}{dx} = L \left(\frac{dN}{dx} \right) + NP$$

vel huic:

$$\frac{NP - NQ}{L} = \left(\frac{dM}{dy} \right) - \left(\frac{dN}{dx} \right)$$

unde manifestum est, si efficit $\left(\frac{dM}{dy} \right) = \left(\frac{dN}{dx} \right)$, pro L sumi posse unitatem, vel quantitatem constantem quan-
cunque, dum sit $P = 0$, et $Q = 0$.

Scholion.

20. Si ergo hinc in genere multiplicator L inventiri posset, haberetur universalis resolutio omnium aequationum differentialis primi gradus; id quod ne speraret quidem licet. Contentos ergo nos esse oportet, si pro variis casibus, pluribusque aequationum differentia-

tum generibus, huiusmodi factores inuestigare valcamus. Sunt autem duo aequationum genera, pro quibus tales factores commode erunt possint, quorum al-
terum eas comprehendit aequaciones, in quibus altera variabilis nusquam altrix vana dimensionem exfurgit; alterum vero genus est aequationum homogenerarum. Praeter haec vero duo genera plures alii existunt easus, quibus inuentio talis factoris absolui potest, quos diligentiem examinassè, vis non carebit, cum haec sola via patere videatur ad eam Analyticos partem, quae adhuc desideratur, excolendam ac persiciendam. Quam
AEQUATIONVM DIFFERENTIALVM. 15

ob rem hic constituui, plura aequationum genera colligere, quae per huismodi multiplicatorem ad integrabilitatem perduci possunt.

Problema 2.

21. Cognito uno multiplicatore L, qui formulam \(Md\,dx + N\,dy \) integrabilem reddit, innuire infinitos alios multiplicatores, qui idem officium praestent.

Solutio.

Cum formula \(L(M\,dx - N\,dy) \) per hypothecin sit integrabils, sit eius integrale \(= z \), ita vt sit \(dz = L(M\,dx - N\,dy) \), existente \(z \) quapiam functione ipsarum \(x \) et \(y \). Denotet iam \(Z \) functionem quamcunque ipsius \(z \), et quia formula \(Z\,dz \) est etiam integrabilis, ob \(Z\,dz = LZ(M\,dx - N\,dy) \), manifestum est formulam propositam \(Md\,dx - N\,dy \) quoque fieri integrabilem, si per \(LZ \) multiplicetur. Dato ergo uno multiplicatore \(L \), qui formulam \(Md\,dx - N\,dy \) integrabilem reddat, ex eo innumerabiles alii factores \(LZ \) inveniri possint, qui idem sint praestituri, fumendo pro \(Z \) functionem quamcunque integralis \(fL(M\,dx + N\,dy) \).

Coroll. 1.

22. Proposita igitur formula differentiali quamcunque \(Md\,dx - N\,dy \), non solum unum, sed etiam infiniti dantur multiplicatores, qui eam integrabilem reddant. Quorum autem unum invenisse sufficit, cum reliqui omnes per hunc determinetur.
Coroll. 2.

23. Si ergo habeatur aequatio differentialis \(Mdx - Ndy = 0 \), ea infinitis modis ad integrabilitatem perduci potest. Siue autem capiatur multiplicator \(L \), siue alius quicunque \(LZ \), aequatio integralis inuenta eodem redivit; siquidem ille factor \(L \) praebet \(z = Const. \) hic vero \(\int Zdz = Const. \) id quod convenit cum \(\int Zdz \) et sit functio ipsius \(z \).

Exemplum 1.

24. Invenire omnes multiplicatores, qui reddant binc formulam \(a ydx + \beta xdy \) integrabilem.

Unus multiplicator hoc praeclans in promtu est, scilicet \(\frac{1}{y} \). Sin ergo \(L = \frac{1}{y} \), sitque \(dz = \frac{2y dx + \beta x dy}{x y} \)
\(= \frac{2}{x} dx + \frac{\beta}{x y} dy \), vnde integrando prodit \(z = \alpha lx + \beta ly \)
\(= lx^2 y^3 \). Denotet iam \(Z \) functionem quamcunque ipsius \(z = lx^2 y^3 \), hoc est ipsius \(x^2 y^3 \), atque omnes multiplicatores quaevis in hac forma generali \(\frac{x}{y} \) function.
\(x^2 y^3 \) continebuntur.

Simpliciores ergo multiplicatores reperientur, si loco functionis potestas quaecunque ipsius \(x^2 y^3 \) capiatur; sicque formula \(a y dx + \beta x dy \) integrabilis redditur per hunc multiplicatorem latius patentem \(x^n - y^m - z^r \). Si magis compositis deiderentur, plures huiusmodi utquc inter se combinari poterunt, vt habeatur \(x^n - y^m - z^r - Bx^m - y^m - z^r \) etc.
AEQUATIONVM DIFFERENTIALVM. 27

Exemplum 2.

25. Invenire omnes multiplicatores, qui reddant
hanc formulam differentialem $ax^{n-1}y^r\,dx + \beta x^k y^{r-1}\,dy$
i integrabiliem.

Hic iterum statim se offert unus multiplicator $L = \frac{1}{x^n y^r}$, qui praebet $dx = \frac{adx}{x} + \frac{b\,dy}{y}$, unde fit $z = ax - \beta y$
= lx^ny. Posto igitur Z pro funzione quacunque ipsius $x^n y^r$
o omnes multiplicatores continebantur in hac expressione

generali $\frac{Z}{x^n y^r} = \frac{1}{x^n y^r}$ funct. $x^n y^r$. Si loco istius funtionis sumatur potestas
quacunque $x^a y^{\beta n}$, innumeris hinc obtinebantur multiplicatores, unico termino constantis x^{an-k}
y$^{\beta n-r}$, sumendo pro n numeros quoscumque.

Scholion.

26. Fieri igitur potest, ut duae pluresque huiusmodi formulae differentiales
$ax^{n-1}y^r\,dx + \beta x^k y^{r-1}\,dy$
communeum recipiant multiplicantem: quod si sequiat
aequatio differentialis, ex huiusmodi formulis, tanquam
membris, composita, integrabilis reddi poterit, dum multiplicant
iste communis adhibetur. Quem calum iam
olim tractatum enolamus.

Problema 3.

27. Proposita est ista aequatio differentialis:

$\alpha x^r dx + \beta x dy + \gamma x^{n-1} y^r dx + \delta x^k y^{r-1} dy = 0$
cuius integralem inveniri oporteat.

Solutio.

Ad multiplicatorem idoneum inueniendum, quo haec aequatio reddatur integrabilis, consideretur trinque mem- brum seorsim. Ac prius quidem membrum \(ay \, dx + \beta \, x \, dy \) vidimus integrabile reddi hoc multiplicatore \(x^{\alpha \, n - \delta} \), \(y^{\beta \, n - \gamma} \), posterius vero membrum \(\gamma \, x^{\mu - 1} \, y^{\nu} \, dx \) \(+ \, \delta \, x^{\mu \, y - 1} \, dy \) hoc \(x^{\mu \, n - 1} \, y^{\nu \, n - 1} \). Quia nunc pro \(n \) et \(m \) numeros quocunque accipere licet, hic duo fa- tores ad aequalitatem reduci poterunt; unde fit

\[a \, n - \alpha = \gamma \, m - \mu \quad \text{et} \quad \beta \, n - \gamma = \delta \, m - \nu \]

ideoque

\[n = \frac{\mu - \alpha + \beta \, \nu}{\alpha \gamma - \beta \nu} \]

et

\[m = \frac{\mu - \beta \, \alpha + \gamma \nu}{\alpha \gamma - \beta \nu} \]

Hinc valoribus pro \(m \) et \(n \) inuentis, idle multiplicatores communis debet hanc aequationem integrarem:

\[\frac{x^{\alpha \, n \, y^{\beta \, n} - 1}}{m \, x^{\mu \, n \, y^{\nu \, n} - 1}} = \text{Const.} \]

Coroll. 1.

28. Haec ergo aequatio integralis semper est algebraica, quidem pro \(m \) et \(n \) valores veri reperiantur. Illigitur tantum cavis singulares reducione indigent, quibus numeri \(m \) et \(n \) vel in infinitum abeunt, vel eua- nefunt.

Coroll. 2.

29. Infiniti autem eaudem ambo numeri \(m \) et \(n \), si fuerit \(\alpha \, \delta = \beta \, \gamma \). Verum hoc cavi ipse aequatio differentialis in duos factores resoluitur, hancque formam acquirit

\[(ay \, dx + \beta \, x \, dy) \left(1 + \frac{\gamma}{\alpha} \, x^{\mu - 1} \, y^{\nu - 1} \right) = 0 \]

ideoque
ideoque erit vel $\alpha y\,dx + \beta x\,dy = 0$, vel $x + \frac{\gamma}{\alpha} x^\mu = 0$, $y^{\nu-1} = 0$, quorum resolutionum neutra difficultate laborat.

Coroll. 3.

30. At si fiat $n = 0$, seu $\gamma (\nu - 1) = \delta (\mu - 1)$, consideretur numerus n, ut valde paraus, et cum sit per feriem convergentem

\[x^\alpha - 1 + \alpha n x + \frac{1}{2} n^2 + \text{etc.} \]
\[+ y^\beta = 1 + \beta n y + \frac{1}{2} \beta^2 n(y)^2 + \text{etc.} \]

erit

\[\frac{n}{\alpha} x^\alpha y^\beta = \frac{x}{\beta} + \alpha l x + \beta ly = lx^\alpha y^\beta \]

prima parte $\frac{n}{\alpha}$ in constantem involuta. Hoc ergo casu erit aequatio integralis:

\[lx^\alpha y^\beta + \frac{1}{\beta} x^\alpha y^\beta m^{\delta m} = \text{Const.} \]

Coroll. 4.

31. Statuat ergo pro hoc casu $\mu = \gamma k + 1$ et $\nu = \delta k + 1$, ut habeatur ista aequatio differentialis:

\[ay\,dx + \beta x\,dy + \gamma x^\alpha y^\beta k + s x + s x^\gamma k + y^\delta k\,dy = 0 \]

et cum sit $m = \frac{\alpha \delta k - \beta \gamma k}{\beta \gamma} = k$, erit aequatio integralis

\[lx^\alpha y^\beta + \frac{k}{\beta} x^\gamma y^\delta k = \text{Const.} \]

Coroll. 5.

32. Similiter modo si fuerit $m = 0$, seu $\alpha (\nu - 1) = \beta (\mu - 1)$ ob $\frac{n}{\alpha} x^\alpha y^\beta m = lx^\alpha y^\beta$, si ponatur $\mu = \alpha k + 1$ et $\nu = \beta k + 1$, unde sit $n = \frac{\gamma \beta k - \delta \alpha k}{\alpha \beta - \beta \gamma} = -k$; erit hujus aequationis

\[ay\,dx + \beta x\,dy + \gamma x^\alpha y^\beta k + s x + \delta x^\alpha k + y^\delta k\,dy = 0 \]

C 2 inter-
DE INTEGRATIONE

Integralis
\[-\frac{1}{4} x^{-a} y^{-b} + l x y^5 = \text{Const.}\]

Scholion.

33. Neque vero huiusmodi resoluto in membra, quae per eundem multiplicatorem reddantur integrabilia, ad omnis generis aequationes patet. Etenim enim vitium potest, ut tota aequatio per quompiam quantitatem multiplicata integrabilia evadat, cum tamen nulla eius pars inde scorsim integrabilis existat, ex quo hic tractationi, qua hic fum vius, non nimis tribui oportet.

Problema 4°

34. Si propsecta sit aequatio differentialis

\[P dx + Q dy + R dy = 0\]

vbi \(P, Q\) et \(R\) denotant functiones quascunque \(f\) plus \(x\) y, ita vt altera variabilis \(y\) plus \(n\) dimensione non habeat, inuenire multiplicatorem, qui cum reddat integrabilem.

Solutio.

Comparata hae aequatione cum forma \(M dx + N dy = 0\) erit \(M = P + Q y\) et \(N = R\), unde vict

\(\frac{dM}{dy} = Q\) et \(\frac{dN}{dx} = R\)

Statuatur iam \(L\) pro multiplicatore quaedam, sitque

\[dL = P dx + Q dy,\]

atque huic aequationi satisfieri oportet:

\[\frac{R \cdot Q - M \cdot P}{L} = Q - \frac{R}{dx} = \frac{P + Q \cdot y - R}{L}\]

Civis
AEQUATIONUM DIFFERENTIALUM. 21

Cum iam sit \(Q - \frac{dR}{dx} \) functio ipsius \(x \) tantum, pro \(L \) quoque functio ipsius \(x \) tantum accipi poterit, ita vt sit \(q = 0 \), et \(dL = p \, dx \); vnde erit:

\[Q - \frac{dR}{dx} = \frac{R \, p}{L}, \text{ seu } Q \, dx - dR = \frac{R \, dx}{L} \]

ideoque \(\frac{dL}{L} = \frac{Q \, dx}{R} - \frac{dR}{R} \). Quare integrando habebitur \(IL = \int \frac{Q \, dx}{R} - lR, \) et sumto \(e \) pro numero, cuius logarithmus hyperbolicus est uitas, profit

\[L = \frac{1}{R} \int \frac{Q \, dx}{R} \]

Inueni autem hoc multiplicatore erit aequatio integralis:

\[\int \frac{p \, dx}{R} e^{\int \frac{Q \, dx}{R}} + y e^{\int \frac{Q \, dx}{R}} = \text{Const.} \]

Coroll. 1.

35. Si aequatio habeat formam propositam, \(ea^x \), antequam hoc modo tractetur, dividit poterit per \(R \), vt hanc formam indut \(P \, dx + Q \, y \, dx + dy = 0 \), et sitiam assumere licet \(R = x \), quo facto multiplicatore erit \(e^{Q \, dx} \), et aequatio integralis \(\int e^{Q \, dx} P \, dx + e^{Q \, dx} y = \text{Const.} \)

Coroll. 2.

36. Si ponatur hoc integrale \(\int e^{Q \, dx} P \, dx + e^{Q \, dx} y = z \), ita quod \(z \) sit functio quaequeam ambarum variabilium, tum vero \(Z \) denotet functionem quacunque ipsius \(x \); omnes multiplicatores, qui formulam \(P \, dx + Q \, y \, dx + dy \) reddunt integrabilem, in hac forma generali \(e^{Q \, dx} Z \) continetur.
DE INTEGRATIONE

Problema 5.

37. Si propoita sit aequatio differentialis:
\[P y^n \, dx + Q y \, dx + R \, dy = 0 \]
Vbi \(P, Q \) et \(R \) denotent functiones quascunque ipsius \(x \), inveniire multiplicatorem, qui eam reddat integrabilem.

Solutio.

Erit ergo \(M = P y^n + Q y \) et \(N = R \), hincque
\[\frac{dM}{dx} = n P y^{n-1} + Q, \quad \frac{dN}{dx} = \frac{dR}{dx} \]
Quare positio multiplicator quae sit \(L \) et \(dL = P \, dy + q \, dy \), erit ex ante innentis:
\[\frac{R \, \dot{y} - P y^n q - Q y q}{L} = n P y^{n-1} + Q \frac{dR}{dx} \]
Fingatur \(L = S y^m \), existente \(S \) functione ipsius \(x \) tuntum, erit \(\dot{p} = \frac{y^m dS}{dx} \), et \(q = m S y^{m-1} \), quibus valoribus substitutis, prodit:
\[\frac{R \, dS}{dx} = m P y^{n-1} - m Q = n P y^{n-1} + Q \frac{dR}{dx} \]
Quae aequatio vt substitvere posuit, sumi debet \(m = -n \), ac fit:
\[\frac{R \, dS}{dx} = (1 - n) Q \frac{dR}{dx}, \quad \text{et} \quad \frac{dS}{S} = \frac{(1 - n) Q \, dx}{R} - \frac{dR}{R} \]
Vnde cum integrando proveniat \(S = \frac{1}{R} e^{(1 - n) \frac{Q \, dx}{R}} \), erit, ob \(m = -n \), multiplicator quaestus:
\[L = \frac{y^{-n}}{R} e^{(1 - n) \frac{Q \, dx}{R}} \]
et aequatio integralis erit:
\[\frac{y^{1-n}}{1-n} e^{(1-n) \frac{Q \, dx}{R}} = \int \frac{R \, dx}{Q} e^{(1-n) \frac{Q \, dx}{R}} = \text{Constat.} \]

Coroll. 1.
AEQVATIONVM DIFFERENTIALVM. 23

Coroll. 1.

38. Si \(n = 0 \), habemus casum antetractatum aequationis \(Pdx + Qydx + Rdy = 0 \), quae per multiplicatorem \(\frac{e^{\int \frac{Q}{R} dx}}{e^{\int \frac{P}{R} dx}} \) integrabilis redditur; et cuius aequatio integralis est:

\[ye^{\int \frac{Q}{R} dx} + ye^{\int \frac{P}{R} dx} = \text{Conf.} \]

Coroll. 2.

39. At sit \(n = 1 \), vt aequatio differentialis sit:

\[Pydx + Qydx + Rdy = 0 \]

multiplicator, ob \(r - n = 0 \), erit \(\frac{x}{y} \); quo aequatio reductur ad hanc formam \(\frac{pdx + Qdx}{Rd} + \frac{dy}{y} = 0 \), cuius integralis manifesto est \(\int \left(\frac{P}{R} + \frac{Q}{R} \right) dx + ly = \text{Conf.} \).

Scholion.

40. Caeterum hoc problema ex antecedente facile deductur. Dividatur enim aequatio differentialis propita per \(y^n \), et habebimur:

\[Pdx + Qy^{1-n}dx + R y^{-n}dy = 0 \]

Posuitur \(y^{1-n} = z \), erit \((1-n)y^{-n}dy = dz \), sicque aequatio transit in hanc:

\[Pdx + Qzdx + \frac{x}{r-n} Rdz = 0 \]

quaer cum aequatione problematis precedentis conformis. Cum igitur haec duas aequationes referantur sint ad casum, quo altera variabilis usquam ultro nusquam dimensionem ascendit, hunc methodo haec per multiplicatores.
De Integratione

res expediemus. Pergo itaque ad alterum genus aequationum differentialium homogenearum, quas etiam hac methodo tractari posse constat. Ad hoc autem lemma, quo natura functionum homogenearum continentur, praemitti necesse est, si quidem operationem ex primis principiis petere velimus.

Lemma.

41. Si \(V \) sit sit functio homogenea, in qua binac variabiles \(x \) et \(y \) vbique \(n \) dimensiones constituent, eius differentiale \(dV = Pdx + Qdy \) ita erit comparatum, vt sit \(Px + Qy = nV \).

Demonstratio.

Ponatur \(y = xz \), et functio \(V \) induet huiusmodi formam \(x^nZ \), existente \(Z \) quapiam functione ipsius \(z \) tantum. Hinc ergo erit \(dV = nx^{n-1}Zdx + x^n dZ \). Ad hae duas variabiles \(x \) et \(z \) etiam differentiale propositum \(dV = Pdx + Qdy \) reducatur, et cum sit \(dy = zdx + xdz \), erit

\[
dV = (P + Qz)dx + Qxdz
\]

necesse igitur est, vt sit \(nx^{n-1}Z = P + Qz \), et per \(x \) utrinque multiplicando: \(n x^nZ = nV = x + Qx = Px + Qy \; \) ita vt sit \(R + Qy = nV \).

Coroll. 1.

42. Quia ergo habemus duas aequationes:
\[
dV = Pdx + Qdy, \ \text{et} \ \ nV = Px + Qy
\]
hinc
AEQUATIONUM DIFFERENTIALIUM. 23

hinc ambae functiones P et Q definiri poterunt; reperietur enim:

\[P = \frac{\frac{dy}{dx} - \frac{dx}{dy}}{\frac{dy}{dx}} \quad \text{et} \quad Q = \frac{\frac{dx}{dy} - \frac{dy}{dx}}{\frac{dy}{dx}}. \]

Coroll. 2.

43. Quoties ergo V et functio homogenea \(n \) dimensionum, toties ob \(P = \left(\frac{dy}{dx} \right) \) et \(Q = \left(\frac{dy}{dx} \right) \) est

\[\left(\frac{dy}{dx} \right) = \frac{\frac{dy}{dx} - \frac{dx}{dy}}{\frac{dy}{dx}} \quad \text{et} \quad \left(\frac{dy}{dx} \right) = \frac{\frac{dx}{dy} - \frac{dy}{dx}}{\frac{dy}{dx}} \]

vbi notandum est, in his fractionibus differentialis se mutuo tollere, seu triumque numeratorem tore per
\[y \frac{dx}{dy} - x \frac{dy}{dx} \] dividibilem.

Problema 6.

44. Proposita aequatione differentiali \(M \frac{dx}{dy} - N \frac{dy}{dx} = 0 \), in qua \(M \) et \(N \) sint functiones homogeneae ipsorum \(x \) et \(y \) eiusdem ambae dimensionum numeri, inuenire multiplicatores, qui cam aequationem reddat integrabilem.

Solutio.

Sit \(n \) numerus dimensionum, utrique functioni \(M \) et \(N \) conveniens, eritque per §. praec.

\[\left(\frac{dM}{dy} \right) = \frac{\frac{dy}{dx} - \frac{dx}{dy}}{\frac{dy}{dx}} \quad \text{et} \quad \left(\frac{dM}{dx} \right) = \frac{\frac{dx}{dy} - \frac{dy}{dx}}{\frac{dy}{dx}} \]

ideoque

\[\left(\frac{dM}{dy} \right) - \left(\frac{dN}{dx} \right) = \frac{\frac{dy}{dx} - \frac{dx}{dy}}{\frac{dy}{dx}} \frac{\frac{dx}{dy} - \frac{dy}{dx}}{\frac{dy}{dx}} \]

iam facile colligere licet, dari multiplicatores, qui ctiam sit functio homogenea ipsorum \(x \) et \(y \). Sit ergo \(L \) nalis

Nov. Comm. Tom. VIII. D functio
functio homogena m dimensionum. Quare si in §. 19 ponatur $dL = P \, dx + Q \, dy$, erit (42.)

$$P = \frac{\gamma \, dL}{\gamma \, dx} = \frac{m \, L \, dx}{x \, c \, y}, \quad et \quad Q = \frac{m \, dL}{m \, dx} = \frac{2 \, dP}{x \, c \, y}$$

hicque, cum esse oporteat per §. 19.

$$\frac{dL}{L} = \frac{m \, Q}{L} - \left(\frac{dM}{x \, c \, y} \right)$$

obtinendum vtricunque per $dx - x \, dy$, multiplicando:

$$\frac{dL}{L} = \frac{m \, L \, dx + m \, M \, dx + x \, dy}{L} = n(M \, dx + N \, dy) - 2 \, y \, M \, dy$$

unde elicitur:

$$\frac{dL}{L} = \frac{(m + n) \, (M \, dx + N \, dy) - x \, dy}{M \, x + N \, y}$$

quae formula manifeste fit integrabilis. Posto $m + n = \gamma$, quod factum est. $dL = (M \, x + N \, y)$, Quam ob rectum multiplicator quaestus, habebitur $L = \frac{x \, M - y \, N}{x \, M + y \, N}$.

Coroll. 1.

45. Proposita igitur aequatione: differentiali homogena $M \, dx + N \, dy = 0$, ea facile ad integrabilitatem redactur, propria quae quod formula $\frac{M \, dx + N \, dy}{M \, x + N \, y}$ est integrabilis, cuius integrale, per methodum supra traditam inuentum, dabit aequationem integralem quaestitam.

Coroll. 2.

46. Eo cun tum incommode, quinuit, ubi $M \, x + N \, y = 0$, veluti euent in aequatione. $y \, dx - x \, dy = 0$, quae dividi deberet per $x \, y - x \, y = 0 \, x \, y$. Sed quia huius divorsi, multiplex quodunque aequo satisfacit, divi for $x \, y$ negotium conficiet, quemadmodum per le eos perniciamum.

Scholion.
AEQUATIONVM DIFFERENTIALIVM. 27

Scholion.

47. Nota prima est methodus, quia facilest usus
fam. Bernoullius eodem omnibus aequationes differentiales
homogeneae ad separabilitatem variabilium perducere
docuit. Proposita scilicet huiusmodi aequatione \(M dx + N dy = 0 \), in qua \(M \) et \(N \) sint functiones homogenae \(n \) dimensione, ponere igitur \(y = ux \), quod facta functiones \(M \) et \(N \) huiusmodi formas induent, vt sit \(M = x^n U \), et \(N = x^n V \), existentibus \(U \) et \(V \)
functionibus ipsius \(u \) tantum. Aequatio ergo proponea
per \(x^n \) divisa abibit in hanc: \(U dx + V dy = 0 \). Cum
anteut sit \(dy = u dx + x du \), habebimus \(U dx + V u dx + V x du = 0 \), quae per \(x(U + V u) \) divisa fit separabilis, seu habe forma

\[
\frac{(U + V u) dx + V x du}{x(U + V u)}\]

integrabilis.

\(\Delta \) est \((U + V u) dx + V x du = \frac{1}{x^n} (M dx + N dy) \)

et \(x^n (U + V u) = M + N u \). Integrabilis ergo est habe
formula:

\[
\frac{M dx + N dy}{x^n (M + N u)} = \frac{M dx + N dy}{M x + N y} \] ob \(u x = y \).

Expositiis aitur his duobus aequationum generibus
qua per idoneos multiplicatores integrabiles rediti pos-
sunt, videamus, ad quaeam alia genera eadem methodos extendi posit; ac primo quidem obseruo, omnes
aequationes differentiales, quae alis methodis integrari
possunt, etiam hac modo per idoneum multiplicato-
rem tractari possit, id quod in sequente problemate
clarius explicabitur.

D 2 Proble-
Problema 7.

48. Proposita aequatione differentiali $Mdx + Ndy = 0$, si inuenta fuerit eius integralis aequatio completa, assignare omnes multiplicationes, qui aequatorem differentialem reddant integrabilem.

Solutio.

Cum aequatio integralis completa involvat quantitatem constantem arbitrarium C, quae in aequatione differentiali non ineft, tamen eae sit implicata, quæratur eius valor per resolutionem aequationis, qui sit $C = V$, quæ functio ipsarum x et y, quae insuper constantes aequationis differentialis in se completetur. Tum sit aequatio $C = V$ differentietur, sicque prohibit $0 = dV$. Ac iam necessè est, ut dV dimitorem habeat ipsum formulam differentialem proposita. Sit igitur $dV = L(Mdx + Ndy)$, critque L multiplicator idoneus, qui aequationem differentialem propositam reddat integrabilem. Deinde cum, denotante Z functionem quacunque ipsius V, sit etiam formula $ZdV = LZ(Mdx + Ndy)$ integrabilis, expressio LZ omnes multiplicatores includet, quibus aequatio differentialis proposita $Mdx + Ndy = 0$ fit integrabilis.

Coroll. 1.

49. Quoties ergo aequationis differentialis $Mdx + Ndy = 0$ integrale completum assignari potest, tories non solum unus, sed planta omnes multiplicatores definire licet, quibus ea aequatio integrabilis reddatur.
Coroll. 2.

59. Cum ergo aliis methodis plurium aequationum differentialium integralia completa sint inuenta, hinc methodus haec tenuus tradita, quae ad duo tantum aequationum genera adhuc est applicata, non mediocriter amplificari poterit.

Scholion.

51. Interim tamen, nisi ad specialissima exempla descendere velimus, aequationes differentiales, quarum integralia completa assignare licet, ad exiguum numerum reducantur. Ac primo quidem occurrunt aequationes differentiales primi gradus in hac forma contentae

\[dx(\alpha + \beta x + \gamma y) + dy(\delta + \epsilon x + \zeta y) = 0 \]

quia quae facile ad homogeneas reuocantur, etiam hac methodo per multiplicatores tractari poterunt. Deinde memoratu digna est hac forma \(dy + Py dx + Q y dx = Rd x \), quae si constet eius valor singularis satisfaciens, ex eo integrale completum elici potest, ex quo his casibus multiplicatores idoneos assignare licebit. Tertio etiam perpendi merentur caussae huius aequationis \(dy + Py dx = ax^n dx \), ab inventore Riccatiano dictae, quibus ea ad separabilatem reduci potest. Denique existit casus huius aequationis \(y dy + Py dx = Q dx \), qui cum sint integrabiles, ad multiplicatorum investigatio-nem sunt accommodati. Hinc nova potest via ex data multiplicatorum forma eas aequationes inueniendi, quae per eos sint integrabiles, unde forasse haud ipse-nenda analyticae incrementa haerere licebit.
DE INTEGRATIONE

Problema 8:

52. Proposita aeuatione differentiali prumi gradus:

\[(x + \beta x + \gamma y)dx + (\delta + \epsilon x + \zeta y)dy = 0\]

inuenire multiplicatore, qui eam reddant integrabilem.

Solutio.

Reducatur haec aequatio ad homogeneitatem ponendo:

\[x = t + f \quad et \quad y = u + g, \quad vt \quad prodeat\]

\[(\alpha + \beta f + \gamma g + \beta t + \gamma u)dt + (\delta + \epsilon f + \zeta g + \epsilon t + \zeta u)du = 0\]

quae posito \(\alpha + \beta f + \gamma g = 0 \quad et \quad \delta + \epsilon f + \zeta g = 0\),

vnde quantitates \(f\) et \(g\) determinantur, vtique fit homogenea, scilicet

\[(\beta t + \gamma u)dt + (\epsilon t + \zeta u)du = 0;\]

ideoque per multiplicatorem \(\beta t + (\gamma + \epsilon)u + \frac{\gamma u}{\beta}u\) integrabilis redditur. Hinc inuentis litteris \(f\) et \(g\) aequatio proposita integrabilis evadet, si dividatur per

\[\beta(x-f)^{2} + (\gamma + \epsilon)(x-f)(y-g) + \zeta(y-g)^{2},\]

feu per

\[\beta xx + (\gamma + \epsilon)xy + \zeta yy - (2\beta f + \gamma g + \epsilon g) x - (2\zeta g + \gamma f + \epsilon f) y - \beta ff + (\gamma + \epsilon)fg + \zeta gg\]

Cum autem fit \(f = \frac{\alpha^{2} - \gamma^{2}}{\gamma f - \beta^{2}}\) et \(g = \frac{\beta f - \epsilon g}{\gamma f - \beta^{2}}\),

prohibit divisor quaecius:

\[\beta xx + (\gamma + \epsilon)xy + \zeta yy + \frac{a\gamma d - a\beta^2 + a\beta \epsilon - \beta \zeta}{\gamma \epsilon - \beta}\]

\[= \frac{\alpha \beta \epsilon + \beta \gamma \delta - \beta \delta \epsilon + \alpha \gamma \epsilon + \alpha \epsilon}{\gamma \epsilon - \beta}\]

\[= \frac{\alpha \beta \epsilon + \beta \gamma \delta - \beta \delta \epsilon + \alpha \gamma \epsilon + \alpha \epsilon}{\gamma \epsilon - \beta} x\]

\[= \frac{\alpha \beta \epsilon + \beta \gamma \delta - \beta \delta \epsilon + \alpha \gamma \epsilon + \alpha \epsilon}{\gamma \epsilon - \beta}\]

\[= \frac{\alpha \beta \epsilon + \beta \gamma \delta - \beta \delta \epsilon + \alpha \gamma \epsilon + \alpha \epsilon}{\gamma \epsilon - \beta} y.\]
AEQUATIONUM DIFFERENTIALIUM. 3

Invenio autem quo divisor, seu multiplicator, ex eo reperiatur, facile omnes possibles.

Coroll. 1.

53. Forma ergo divisoris, per quam aequatio differentialis

\[(a + \beta x + \gamma y)dx + (\delta + \varepsilon x + \zeta y)dy = 0\]

reeditur integrabilis, est.

\[\beta x + (\gamma + \varepsilon)y + \zeta x y + A x + B y + C\]

ubi constantes \(A, B, C\) supra sunt; definitae.

Coroll. 2.

54. Cum divisor invenitur etiam satisfaciens, si per \(\gamma \varepsilon - \beta \zeta\) multiplicetur, patet, casum, quo \(\beta \zeta = \gamma \varepsilon\), divisor fore:

\[(a \varepsilon \zeta - \beta \delta \zeta - \alpha \beta \zeta) x + (\gamma \varepsilon \zeta - \alpha \beta \zeta) y + \alpha \varepsilon \zeta - \beta \delta \beta \zeta + \alpha \beta \zeta - \beta \varepsilon \zeta\]

qui posito \(\beta = n f; \gamma = n f; \varepsilon = m g; \zeta = n g\), abit in:

\[m (a g - \delta f) (m g - n f) x + m (a g - \delta f) (m g - n f) y\]

\[= (m g - n f) (\delta m - a n)\]

Coroll. 3.

55. Quare si aequatio propita fierit huiusmodi:

\[(a + f (m x + n y))dx + (\delta + g (m x + n y))dy = 0\]

reeditur integrabilis, si dividatur per:

\[(m g - n f) (m x + n y) + \delta m - a n\]

fine: per \(m x + n y + \frac{\delta m - a n}{m g - n f}\). At si fuerit \(m g - n f = 0\), aequatio propita iam ipse est integrabilis.

Prob.
Problemata 9.

56. Proposita hac aequatione differentiali:

\[dy + Py dx + Qyy dx + R dx = 0 \]

vbi \(P, Q \) et \(R \) sint functiones ipsius \(x \) tantum, si

confert, huic aequationi satisfacere \(y = v \), existente \(v \) functione ipsius \(x \), innitire multiplicatores, qui illam

aequationem reddant integrabilem.

Solutio.

Cum aequationi satisfaciat valor \(y = v \), erit

\[dv + P \cdot v dx + Q \cdot v dx + R dx = 0 \]

si ergo ponatur \(y = v + \frac{a}{x} \), habebitur

\[\frac{dx}{v^2} + \frac{P dx}{x} + \frac{Q dx}{y} + \frac{R dx}{xz} = 0 \]

finc:

\[dx - (P + 2 Q v) z dx - Q dx = 0 \]

qua integrabilis redditur per multiplicatorem

\[e^{-\int(P + 2 Q v) dx} \]

Hic ergo multiplicator per \(x \) multiplicatus conveniet

aequationi propostae. Cum ergo sit \(z = \frac{1}{y - v} \), multi-

plicator aequationem propositam integrabilem reddens

erit:

\[\frac{1}{(y - v)^2} e^{-\int(P + 2 Q v) dx} \]

Sit breuitatis gratia \(e^{-\int(P + 2 Q v) dx} = S \). Quid aequationis

\[dx - (P + 2 Q v) z dx - Q dx = 0 \]

inte\-grale est

\[S x - fQ S dx = \text{Cost.} \]

ornes multiplicatores quae\-efti continebuntur in hac forma:

\[\frac{S}{(y - v)^2} \text{unct: } (\frac{S}{y - v} - fQ S dx) \]

vbi
AEQVATIONUM DIFFERENTIALIUM.

ubi per hypothetin ψ est functio cognita ipsius x, ideo-que etiam $S = e^{-(P + xQ)dx}$

Coroll. 1.

57. Multiplicator ergo, qui primum sc obtulit, est $\frac{s(y-v)}{(y-v)^2}$, tum vero etiam multiplicator erit $\frac{s(y-v)}{(y-v)^2} fQ.SdS$ qui esti continet formulam integralem $\int QS dx$, facce numero illo simplicior emadere potest.

Coroll. 2.

58. Si enim S est quantitas exponentialis, fieri potest, et $\int QS dx$ huismodi formam ST induat, existente T functione algebraica, quo caus multiplicator erit

$$\frac{y-v-(y-v)^2T}{(y-v)^2}$$

ideoque algebraicus, quod in priori forma fieri nequit.

Coroll. 3.

59. Cum his duobus causibus multiplicator sit fraction, in cuibus folum denominatorem variabilis y ingreditur, ibique ultra quadratum non ascendat, innumerales alii huismodi multiplicatores exhiberi possunt: Sit enim $\int QS dx = V$, et fractionis $\frac{s}{(y-v)^2}$ denominatorem multiplicare licebit per $A + B(y-v) + C(y-v)^2$, sicque erit generalior multiplicatoris forma:

$$A(y-v)^2 + BS(y-v) - BV(y-v)^2 + CSS + CSV(y-v) + CVV(y-v)$$

$$\frac{s}{(A-BV+CVV)(y-v)^2 - BS(y-v) + CSV + CVV + A + B - BS + BV + CSS + SV + CV}$$

Nou. Comm. Tom. VIII.

Coroll. 4.
Coroll. 4.

60. Quod si ergo haec formula \[\frac{dy + Pydx + Qyydx + Rdx}{Ly + My + N} \]
fiuerit integrabilis, denominator ita debet esse comparatus, ut sit

\[SL = A - BV + CVV, \quad SM = S(B - 2CV) - 2v(A - BV + CVV) \]
et
\[SN = CSS - Sv(B - 2CV) + v(A - BV + CVV) \]
existentem \[dv + Puvdx + Qvvdx + Rdv = 0, \quad S = e^{(v + Qv)dx} \]
et \[V = fQsdx. \]

Problema 10.

61. Proposita equations differentiæ praecedente:

\[dy + Pydx + Qyydx + Rdx = 0 \]
imenire functiones \(L, M \) et \(N \) ipsius \(x \), ut ea per formulam \(Lyy + My + N \) divisa fiat integrabilis.

Solutio.

Cum igitur integrabilis esse debat haec formula:

\[\frac{\frac{dy + dx(Py + Qyy + R)}{Ly + My + N}} \]
per proprietatem generalis esse opportunit, postquam per

\[(Lyy + My + N)^{n} \]
multiplicauerimus:

\[- \frac{yydx}{dx} - \frac{ddy}{dx} - \frac{dN}{dx} = -QMyy - 2RLy + NP \]

Vnde pro determinatione functionum \(L, M \) et \(N \) has consequimus aequationes:

I. \(dL = PLdx - QMdx \)
II. \(dM = 2RLdx - 2QNdx \)
III. \(dN = RMdx - PNdx \),
AEQUATIONUM DIFFERENTIALIUM. 35

ex quorum prima deducimus:
\[M = \frac{pL}{Q} - \frac{dM}{Qdx} \]
et ex secunda: \[N = \frac{RL}{Q} - \frac{dM}{Qdx} \]
quae valores pro \(M \) et \(N \) in tertia substituti, dant:
\[dN = \frac{pM}{Q} - \frac{R}{Q} \]
Cum autem fit, summo differentiali \(dx \) constante,
\[dM = \frac{pLdP + LdPQ - pLdQQ}{Q} - \frac{dM}{Qdx} + \frac{dM}{Qdx} \]
\[N = \frac{RL}{Q} - \frac{pLdP}{Q} + \frac{LdP}{Q} \]
et \(dN = \frac{pLdP}{Q} - \frac{pLdP}{Q} \]
quod ergo illius differentiali debet aequari. Vnde fit:
\[\frac{1}{Q} = QQd^3L - 3 QdQdL - PPQQdLdx \]
\[+ 3 Q^3dL + 2 PQdQdLdx - QdLdQ + 4 Q^3RdLdx \]
\[= PQQLdPdxdx + PPQQLdQdxdx - QQLdxdP \]
\[\equiv PQLdxdxdQ \]
\[+ 3 QLdPdQdx - 3 PLdQ^2dx + 2 Q^2LdRx \]
\[- 2 Q^2RLdQdx \]

Hacc autem aequatio si per \(\frac{Q}{Q} \) multiplicetur, integrari poterit, eritque eius integralis
\[\text{Const.} = \frac{LdLdP}{Q} - \frac{LdLdQ}{Q^3} - \frac{dL^2}{Q} + \frac{pPLLdQ^2}{Q} \]
\[= \frac{PLLdQ^2}{Q^2} + \frac{PLLdLdx}{Q} \]

quae in hanc formam abit:
\[2 E Q^3d^2x = 2 QLdLdL - 2 LdLdQdQ - PQQLdLdx \]
\[- 2 QLLdPdxdx + 2 PLLdQdxdx + 4 QQRLLdxdx \]

Quodsi ponatur \(L = z \), aequatio induet hanc formam:
\[\frac{z^2EQ^3d^2x}{z^2} = 4 Qdxdz - 4 dQdz - z(PPQdx^2 + 2 QdPdx \]
\[- 2 PdQdx - 4 QQRdx^2) \]

\[E 2 \]

Coroll. 1.
Coroll. 1.

62. Quoties ergo per problema praecedens, valor ipsius \(L \) assignari potest, toties aequatio differentialis terti ordinis hic inuenta, et ex secundi ordinis, ad quam illam reduxi, generaliter resolvi poterit: quae resolutio, cum alias foret difficillima, proba est notanda.

Coroll. 2.

63. Seilicet si \(u \) fuerit eiusmodi functio ipsius \(x \), quae loco \(y \) posita, satisfaciat aequationi \(dy + Pydx + Qy^2dx - Rx = 0 \), capiatur \(S = e^{-f(p + Qy)dx} \), fiatque \(V = \int QSdx \), quo facto erit pro nostra aequatione differentialis terti ordinis \(L = \frac{A - Bv + Cv^2}{S} \), qui valor cum tres constantes arbitrarias complectatur. adeo erit eius aequationis differentiale completum.

Coroll. 3.

63. Si fit \(P = 0 \), \(Q = x \) et \(R \) functio quae- cunque ipsius \(x \), aequatio differentialis terti gradus hanc accipiet formam:

\[
o = d^2 L + 4 R d L d x + 2 L d R d x^2
\]

pro cuius ergo differentialis completo inueniendo, quersatur primo functio ipsius \(x \), quae fit \(= v \), quae satisfaciat huic aequationi \(dv + v v d x + R d x = 0 \); tum ponatur \(V = \int e^{-f(v)dx} \), et quæque \(L = (A - B) \frac{A - Bv}{S} + Cv V \) e\(\frac{A - Bv}{S} \).

Coroll. 4.
AEQVATIONVM DIFFERENTIALIUM. 37

Coroll. 4.

64. Idem ergo integrale satisfaciet huic aequationi differenti ali secundus gradus:

$$E d x' = x \frac{d}{dL} dL - dL' + 4 R L L d x'$$

et, post l $= z$, etiam huic:

$$\frac{z d x}{e^z} = d\ln\frac{z}{e^z} + R z d x'$$

pro qua itaque est $z = e^{\int_0^\infty d x'} \gamma (A - B V + C V V)$.

Scholion.

65. Omnino animaduerti meretur haec integratio, quippe quae ex aliis principiis vix quidem praestari potest. Hinc autem adipiscimus integrationem completam sequentis aequationis differentiis differentialis satissimae:

$$d\ln\frac{z}{e^z} + S d x d z + T z d x' = \frac{z d x}{e^z} e^{\int_0^\infty d x'}$$

Primo nempe quaeratur valor ipsius γ ex hac aequatione differentiiali primi gradus:

$$d\psi + \psi v d x + S v d x' + T d x = 0$$

quo inuenitur potest. ergo $\psi = \int e^{\int_0^\infty d x'} f d x d x'$.

eritque:

$$z = e^{\int_0^\infty d x'} \gamma (A + B V + C V V)$$

et modo constantes arbitrariae A, B, C ita accipientur, ut fit $A C = 0$, $B B = E$, sicque adhuc duas constantes arbitrio nostrro relinquuntur, uti natura integrationsis completae postulat.

E 3 Exem.
Exemplum 1.

66. Proposita fit haec aequatio differentialis

\[dy - y \, dx + y \, dx - \frac{dx}{x} = 0, \]

cuius multiplicatores, quia eam reddant integrabilem, investigari oporteat.

Erit ergo, Problema 9, huc transferendo, \(P = x \), \(Q = 1 \) et \(R = -\frac{1}{z} \), et quia aequationi satisfacit valor \(y = \frac{1}{z} \), erit \(u = \frac{1}{z} \). Quare siet \(S = e^{-\int \left(1 + \frac{1}{z} \right) dx}, e^{u} \)
et multiplicator, quia primum se offert, habebitur \(e^{-\frac{x}{x(y-1)}} \).

Hunc autem porro multiplicare licet per functionem quamcunque huius formae \(\frac{e^{-x}}{x(xy-1)} \).

vero haec forma integrari nequeat, ali multiplicatores idonei assignari nequeunt. Ob primum ergo integrabilis est haec forma:

\[e^{-\frac{x}{x(y-1)}} \left(dy - y \, dx + y \, dx - \frac{dx}{x} \right) \]
cuius, si \(x \) capitur conflans, integrale est.

\[-\frac{e^{-x}}{x(xy-1)} + X \]
quae differentiata, posito \(y \) constante, praebet

\[\frac{e^{-x}}{x(xy-1)} + dX \]
quod aequari debet alteri membro \(e^{-x} \left(y \, dx + y \, dx - \frac{dx}{x} \right) \)

unde fit \(dX = \frac{e^{-x} \, dx}{x(x(y-1))} \left(x^2yy - 2xxy + x \right) e^{-\frac{x}{x}} \).

sicque
AEQUATIONUM DIFFERENTIALVM. 39

ficque integrale completum nostrae aequationis est
\[-e^{-x} \frac{y}{x(x^2-1)} + \int e^{-x} \frac{y}{x^2} = C. \]

Exemplum 2.

\[\sigma \gamma. \] Inuenire multiplicatores idoneos, qui reddant hanc aequationem integrabilem:
\[dy - y dy dx - \frac{\gamma dx}{(a + bx + \gamma xx)^2} = 0. \]
Causus singularis huic aequationi satisfaciens est
\[y = \frac{k + \gamma x}{a + bx + \gamma xx} \]
existentem \[k = \frac{1}{2} \beta + \sqrt{\beta^2 - 2a \gamma + a}. \]
Cum nunc sit \(P = 0 \), et \(Q = 1 \), erit
\[S = e^{-\int \frac{k dx}{a + bx + \gamma xx}} \]
vel potito breuitatis gratia \(\pm \sqrt{\beta^2 - 2a \gamma + a} = m \)
erit
\[S = e^{-\int \frac{x dx}{a + bx + \gamma xx}} \]
\[\int S dx = -\frac{1}{a} e^{-\int \frac{\gamma dx}{a + bx + \gamma xx}} \]
Multiplicator ergo primum inventus est
\[e^{-\int \frac{x dx}{a + bx + \gamma xx}} \frac{a + bx + \gamma xx}{(a + bx + \gamma xx)^2} \]
qui porro duci potest in functionem quamcunque huius quantitatis
\[e^{-\int \frac{n dx}{a + bx + \gamma xx}} \frac{1}{(a + bx + \gamma xx)^2} \frac{1}{(a + bx + \gamma xx)^2 - k} \]
Ducatur ergo in
\[e^{-\int \frac{n dx}{a + bx + \gamma xx}} \frac{(a + bx + \gamma xx)^2 - k}{(a + bx + \gamma xx)^2 - k} \]

ac
DE INTEGRATIONE

ac prohibit multiplicator algebraicus:

\[\frac{a + \beta x + \gamma x^2 + \delta x^3}{(a + \beta x + \gamma x^2)y - k - \gamma x^2)}(a + \beta x + \gamma x^2)y - n - k - \gamma x^2) \]

qui reducitur ad hanc formam:

\[q \]

\[(a + \beta x + \gamma x^2)y - n - k - \gamma x^2) \]

Aequationis autem integrale completum est

\[e^{-\int_{x_0}^{x} \frac{1}{a + \beta x + \gamma x^2}} \frac{y - n - k - \gamma x^2}{x - n - k - \gamma x^2} = \text{Conf.} \]

ex quod aequatio integralis completa erit

\[e^{-\int_{x_0}^{x} \frac{1}{a + \beta x + \gamma x^2}} \frac{y - n - k - \gamma x^2}{x - n - k - \gamma x^2} = \text{Conf.} \]

cuius indoles est manifesta, dummodo \(n = V(\beta - a) \gamma + 4a \) et \(k = \beta + n \).

Ex quo aequatio integralis completa erit

\[e^{-\int_{x_0}^{x} \frac{1}{a + \beta x + \gamma x^2}} \frac{y - n - k - \gamma x^2}{x - n - k - \gamma x^2} = \text{Conf.} \]

Quod autem valor ipsius \(n \) sit imaginarius, puta \(n = mV - i \), ob \(e^{i\gamma - V} = \text{cof.} + V - i \text{fin.}p \), aequatio integralis ita ad realitatem reducta potest. Sit

\[-m \int_{x_0}^{x} \frac{1}{a + \beta x + \gamma x^2} = p, \text{et a}(a + \beta x + \gamma x^2)y - \beta - \gamma x^2 = q, \]

eritque ea:

\[(\text{cof.} p + V - i \text{fin.}p). \frac{q + m}{q - m} \frac{d}{d - i} = \text{Conf.} = A + BV - x \]

hinc fit:

\[q \text{cof.} p = m \text{fin.}p + (m \text{cof.} p - q \text{fin.}p) V - i = A q + B m \]

aequantur et reducto membra realia et imaginaria:

\[q \text{cof.} p - m \text{fin.}p = A q + B m ; m \text{cof.} p + q \text{fin.}p = B q - A m \]

quaer duae aequationes congruent, si capitur \(A q + B m \).

Sit
AEQUATIONVM DIFFERENTIALIUM. 41

Sit itaque confians arbitraria \(A = \cos \theta \), \(B = \sin \theta \) et eam, quo \(V (\beta \beta - 4 \alpha \gamma + 4 \alpha) = m V - r \), aequatio realis erit
\[
q \cos p - m \sin p = q \cos \theta - m \sin \theta \quad \text{feu} \quad q = \frac{m (\sin p - \sin \theta)}{\cos \beta - \cos \alpha} = m \cot \beta - \frac{2}{x}
\]
Quare aequationis differentialis
\[
dy + y y d x + \left(m \frac{\beta - \alpha x \gamma}{x (x + \beta x + \gamma x)^2} \right) d x = 0
\]
posito \(p = \int \frac{1}{x + \beta x + \gamma x} \), aequatio integralis completa est
\[
2 (\alpha + \beta x + \gamma x x) y = \beta - 2 \gamma y + m \cot \beta - \frac{2}{x}
\]
feu \(y = \frac{\beta + \gamma x + \frac{1}{2} m \cot \beta - \frac{2}{x}}{\alpha + \beta x + \gamma x x} \)

Vel fit \(\theta = 180^\circ - \zeta \), et habebitur \(y = \frac{\beta + \gamma x + \frac{1}{2} m \tan \zeta + \frac{2}{x}}{\alpha + \beta x + \gamma x x} \)

Hoc autem casu notandum est, integrale speciale, ex quo haec omnia deduximus, fieri imaginarium, quo tamen non obstante inde integrale completum in forma reali exhibere licuit.

Exemplum 3.
68. Proposita aequatione Riccatiana \(dy + y y d x - a x^m d x = 0 \), pro casibus exponetis \(m \), quibus eam separare licet, imenire multiplicatores idoneos.

Sit \(y = 0 \) valor aequationi satisfaciens, et cum fit \(P = 0 \), \(Q = 1 \), et \(R = -a x^m \), erit primus multiplicator, aequationem integrabilem reddens,
\[
e = \int \frac{1}{(y - a)^2} d x
\]
Tom. VIII. Nou. Comm. F per
per quam si aequatio multiplicetur, cum integrale completum sit

$$e^{\int_{0}^{\infty} x^{2} \over \overline{y - \sigma}} - \int e^{\int_{0}^{\infty} x^{2} \over \overline{\sigma}} \overline{d} = \text{Const.}$$

Quare si Z denotet functionem quamcunque huiusquantitatis, omnes multiplicatores continebuntur in hac forma:

$$e^{\int_{0}^{\infty} x^{2} \over \overline{\sigma}} = \overline{Z}$$

Hinc si ponatur $f e^{\int_{0}^{\infty} x^{2} \over \overline{\sigma}} \overline{d} = \overline{V}$, omnes multiplicatores in hac forma contenti obtinebuntur.

Si capiatur:

$$L = e^{\int_{0}^{\infty} x^{2} \over \overline{\sigma}} (A - BV + CVV)$$
$$M = B - 2CV - 2 \overline{\sigma} e^{\int_{0}^{\infty} x^{2} \over \overline{\sigma}} (A - BV + CVV)$$
$$N = C e^{\int_{0}^{\infty} x^{2} \over \overline{\sigma}} - \overline{\sigma} (B - 2CV) + \overline{\sigma} e^{\int_{0}^{\infty} x^{2} \over \overline{\sigma}} (A - BV + CVV)$$

Verum hic valor ipsum L simul est integrale completum huius aequationis differentialis tertii gradus:

$$0 = d^{3}L - 4ax^{m}dLdx^{2} - 2maLx^{m} - 1dx^{3}$$

hincque etiam huius secundi gradus:

$$E dx^{3} = 2LdL-dL^{2} - 4aLLx^{m}dx^{2}$$

existente $E = 4AC - BB$.

Scho~l~io~n.

69. Re attentius perpen~sa aequationem differenti~alem tertii ordinis etiam methodo directa resolvi, eiusque integrale completum idem, quod hic est assignatum, elici posse deprehendi. Sit enim proposita haec aequatio:

$$d^{3}L + 4RdLdx^{2} + 2LdRdx^{2} = 0$$

vbi
AEQUATIONVM DIFFERENTIALVM. 43

ubi R sit functio quaecunque ipsius x, sumto differenti
ti dx constante. Iam quero functionem ipsius x, per
quam isla aequatio multiplicata evadat integrabilis.
Sit S isla functio, et aequationis

\[S d^2 L - 4 S R dL dx^2 - 2 S L dR dx^2 = 0 \]

integrale erit

\[S dL - dS dL + L (ddS + 4 S R dx^2) = 2 C dx^2 \]

dummodo sit

\[\dot{u}^2 S + 2 S dR dx^2 + 4 R dS dx^2 = 0. \]

Sufficit scilicet quemuis valorem particulariter satisfacien-
tem summisse. At haec aequatio, per S multiplicata, ne-
glecta constante, dat integrale:

\[S dS - \frac{1}{2} dS^2 + 2 S S R dx^2 = 0. \]

Ponatur \(S = e^{\int_0^x v dx} \), et\[u \]

\[2 dv + 2 v v dx + 2 R dx = 0 \]

vnde negotium huc redit, ut pro v sulum valor par-
ticularis inuestigetur, qui satisfaciat huic aequationi dif-
ferentiali primi gradus: \(dv + v v dx + R dx = 0 \), quem
igitur tanquam concessum assumo. Hinc nostra aequat-
io femel integrata erit, ob \(S = e^{\int_0^x v dx} \),

\[dL - 2 v v dx dL + L (2 dv dx + 4 v v dx^2 + 4 R dx^2) = 2 C e^{-\int_0^x v dx} dx^2 \]

Cum igitur, ob \(R dx = -dv - v v dx \), habemus

\[dL - 2 v v dx dL - 2 L dx dv = 2 C e^{-\int_0^x v dx} dx^2 \]

ingre integrale manifesto est:

\[dL - 2 L v v dx = B dx + 2 C dx/ e^{-\int_0^x v dx} \]

et per \(e^{-\int_0^x v dx} \), denno multiplicando integrale, prohibit

\[e^{-\int_0^x v dx} L = A + B \int e^{-\int_0^x v dx} dx + 2 C \int e^{-\int_0^x v dx} dx \]

F 2

Quare
DE INTEGRATIONE

Quare si brevitatis gratia ponatur \(fe^{-2/st} d\xi dx = V \), habebimus
\[L = e^{st} (A + BV + CVV) \]
prosum vi ante inuenimus.

Problema 2.

70. Proposita aequatione Riccatiana \(dy + yy dx = ax^m dx \), inuenire eius integralia particularia, casibus, quibus ea separabilis exiflit.

Solutio.

Ponendo \(a = cc \), et \(m = -4n \), tribuatur aequationi ista forma:
\[dy + yy dx = cxx^{-n} dx = 0. \]
Cum enim quaestio circa integralia particularia veretur, nihil interest, quin ea sint realia, nec ne. Quo autem facilius, et vna quae operatione, hos casus, quibus \(y \) per functionem ipfius \(x \) exprimere licet, eliciamus: statuamus \(y = cxx^{-n} + \frac{dz}{n} \), et sumto \(dx \) constante, nancifemur hanc equationem differentiale secundum gradus:
\[
\begin{align*}
-2ncx^{-n} dx + &\frac{dz}{zx} + \frac{2cx^{-n} dx}{z} = 0, \text{ seu} \\
\frac{ddz}{dx} + &\frac{2e dx}{x^n dx} + \frac{2nc z}{x^{n+1}} = 0.
\end{align*}
\]
Culius valor fingitur:
\[z = Ax^r + Bx^{-r} + Cx^{n-r} + Dx^{-n-r} + Ex^{-4} + \text{etc.} \]
quo
AEQUATIONVM DIFFERENTIALVM.

quo debeo substituto obtinebimus:
\[0 = n(n-1)Ax^{n-1} = (3n-1)(3n-2)Bx^{n-2} + (5n-2)(5n-3)Cx^{n-3} + \text{etc.} \]
\[+ 2ncAx^{n-1} + 2(n-1)eB + 2(5n-2)eC + 2(7n-3)eD \]
\[- 2ncA - 2ncB - 2ncC - 2ncD \]

vnde coefficientes fiant ita determinantur:
\[2(4n-3)eB + n(n-1)A = 0; \quad B = -\frac{n(n-1)}{(2n-1)e} \]
\[2(4n-2)eC + (3n-1)(3n-2)B = 0; \quad C = -\frac{(3n-1)(3n-2)}{4(2n-1)e} \]
\[2(5n-3)eD + (5n-2)(5n-3)C = 0; \quad D = -\frac{(5n-2)(5n-3)}{6(2n-1)e} \]

Statim igitur atque unus coefficientis evanescit, sequentes simul omnes evanescunt, id quod cures hitis casibus:
\[n = 0; \quad n = \frac{1}{2}; \quad n = \frac{1}{3}; \quad n = \frac{1}{4}; \quad \text{etc.} \]
\[n = 1; \quad n = \frac{3}{2}; \quad n = \frac{5}{4}; \quad n = \frac{7}{6}; \quad \text{etc.} \]

Denotante igitur \(i \) numerum integrum quicumque, quoties fuerit \[n = \frac{i}{i+1} \], toties resolutio aequationis exhiberi potest. Erit enim \[y = cx^{-n} + \frac{\frac{d}{dx}a}{n} \], existente
\[z = Ax^n + Bx^{n-1} + Cx^{n-2} + Dx^{n-3} + Ex^{n-4} + \text{etc.} \]

Prouent ergo hic valor particularis ipsius \(y \):
\[y = cx^{-n} + \frac{nA}{x^{n-1}} + (3n-1)Bx^{n-2} + (5n-2)Cx^{n-3} + Ax^{n-1} + Bx^{n-2} + Cx^{n-3} + \text{etc.} \]

Coroll. \(i. \)

\[7x. \quad \text{Quodsi ergo fit valor particularis ipsius } y \]
\[\text{vocetur } = v, \quad \text{erit aequationis propositae multiplicator idonus } = e^{-\int \frac{a}{x}dx} = e^{-\int b u d\alpha}. \]
\[\text{Ac si ponatur } f x = \frac{s}{(y-x)}, \quad \text{ac } f = \frac{3}{V_2} \]
\[F_3 \]
\[= V_2. \]
DE INTEGRATIONE

\[= V, \text{ sumtis } A = 0, \text{ et } C = 0, \text{ erit alius factor sim-} \]
\[\text{plior} \]
\[\frac{1}{e^{\int \varphi dx} y \left(1 + 2 \varphi e^{\int \varphi dx} V \right) y + V + \psi e^{\int \varphi dx} V.} \]

Coroll. 2.

72. At est \(\int \varphi dx = \frac{-c}{(2n-1)x^{2n-1}} + l(Ax^n + Bx^{2n}) \]
\[+ C x^{2n} + \text{ etc.} \]
\[\text{unde fit } e^{-\int \varphi dx} = \frac{\frac{2c}{e^{(2n-1)x^{2n-1}}} + \frac{1}{(A x^n + B x^{2n} + C x^{2n} + \text{ etc.})}}{x} \]
\[\text{ex quo porro invenit potest valor ipsius } V = \int e^{-\int \varphi dx} dx. \]
\[\text{qui si fuerit huiusmodi } e^{-\int \varphi dx} T, \text{ existente } T \text{ functione algebraica, erit superior multiplicator algebraicus.} \]

Coroll. 3.

73. Inuenio valore \(v \), seu integrali particulari aequationis propositae, inde statim habebitur integrale completum eiusmodem, quippe quod erit:
\[\frac{e^{-\int \varphi dx}}{y - \psi} - \int e^{-\int \varphi dx} dx = \text{Const.} \]

Casus 1. quo \(n = 0 \).

74. Pro hac ergo aequatione \(dy + y dx = c edx \),
\[\text{ob } B = 0, C = 0 \text{ etc. erit valor particularis } y = c; \]
Quare
AEQUATIONVM DIFFERENTIALVM. 47

Quare posito \(v = c \), erit \(e^{-v} \int_0^v d \xi = e^{-vc} \) et \(V = \int e^{-v} d \xi \).

\[d x = - \frac{1}{z} c e^{z \xi} \quad \text{vnde integrale completum est} \]

\[\frac{e^{-z \xi}}{y - c} + \frac{y}{az} e^{-z \xi} = \text{Const.} \]

feur \(e^{-z \xi}(y + c) \quad \text{Const.} \)

Porro, ob \(e^{\int_0^v d \xi} \int V = - \frac{y}{az} \) \(v \text{ et } v = c \), erit mulplicator algebraicus:

\[\frac{y}{y - c + \frac{1}{z} c} \]

qui reducitur ad \(\frac{y}{y - c} \) \(v \) \(v \) per se est perspicuum.

Casus 2. quo \(n = 1 \).

75. Pro hac ergo aequatione \(dy + yd x = e^{\int_0^v d \xi} \)

ob \(B = 0 \), \(C = 0 \) etc. erit: valor particularis \(y = \frac{c}{x} + \frac{x}{z} \).

Quare posito \(v = \frac{c}{x} + \frac{x}{z} \), erit \(e^{-v} \int_0^v d \xi = e^{\int_0^v d \xi} \) et \(V = - \frac{y}{az} \).

\(e^{\int_0^v d \xi} \). Hinc integrale completum est

\[\frac{e^{\int_0^v d \xi}}{x \xi y - x - c} + \frac{\xi}{az} \quad \text{Const.} \]

feur \(e^{\int_0^v d \xi} \int x \xi y - x - c \quad \text{Const.} \)

Porro, ob \(e^{\int_0^v d \xi} \int V = - \frac{\xi}{az} \) \(v \text{ et } v = \frac{c}{x} \), habebitur multi
tiplicator algebraicus:

\[\frac{y}{x \xi y - 2 \xi y + 1 - \frac{c}{x} \xi} \quad \text{fiue} \]
4.8 DE INTEGRATIONE

fine aequatio proposta \(dy + yydx - \frac{ccx}{x^3} \frac{dx}{xx} = 0 \) fit integrabilis, si dividatur per \((x^2 - 1) \) - \(\frac{ccx}{x^3}

Casus 3. quo \(n = \frac{1}{3} \).

76. Pro hac ergo aequatione \(dy + yydx - ccx \frac{dx}{x^3} = 0 \) est \(B = -\frac{A}{c} \), \(C = 0 \), etc. unde integrale particolare

\[
y = ccx^{-\frac{1}{3}} + \frac{ccx^\frac{2}{3}}{3ccx^\frac{1}{3}-1} = \frac{3ccx^\frac{1}{3}-1}{3ccx^\frac{1}{3}-1} = v
\]

et \(e^{-\int 0dx} = e^{-ccx^\frac{1}{3}} \frac{1}{(x^\frac{2}{3} - 1)^2} \frac{1}{(3ccx^\frac{1}{3} - 1)} \) hincque \(V = \int e^{-ccx^\frac{1}{3}} \frac{dx}{(3ccx^\frac{1}{3} - 1)^2} = -e^{-ccx^\frac{1}{3}} \frac{3ccx^\frac{2}{3} + 1}{18c^2(3ccx^\frac{1}{3} - 1)} \)

Quare integrale completum est

\[
\frac{e^{-ccx^\frac{1}{3}}}{(3ccx^\frac{1}{3} - 1)^2} - \frac{e^{-ccx^\frac{1}{3}}(3ccx^\frac{2}{3} + 1)}{18c^2(3ccx^\frac{1}{3} - 1)} = \text{Const.}
\]

fine \(e^{-ccx^\frac{1}{3}} \frac{y(1+3ccx^\frac{2}{3}) + 3ccx^{-\frac{1}{3}}}{y(1-3cc^3) + 3ccx^\frac{2}{3}} = \text{Const.} \)

Tum, ob \(e^{\int 0dx}V = x - 9ccx^\frac{2}{3} \), proibit diuifor aequationem integrabilem reddens:

\((y + 3ccx^{-\frac{1}{3}})^3 - 9ccx^\frac{2}{3}yy = \) Casus
AEQVATIONVM DIFFERENTIALVM. 49

Cafus 4. quo \(n = \frac{2}{3} \).

77. Pro hac ergo aequatione \(dy + yydx - ccx^{-\frac{2}{3}}dx = 0 \) erit \(B = -\frac{A}{3c} \), \(C = 0 \) etc. vtnde integrale particule:

\[
y = c x^{-\frac{4}{3}} + 2 ccx^{-\frac{2}{3}}x - 3 ccx^{-\frac{2}{3}} + 3 ccx^{-\frac{2}{3}}x^{-1} = 0
\]

et \(e^{-ydx} = e^{ccx^{-\frac{2}{3}}}x^{-1} \) ex quo porro elicitur:

\[
V = e^{ccx^{-\frac{2}{3}}}dx = \frac{e^{ccx^{-\frac{2}{3}}}(3cx^{-\frac{2}{3}}x)}{(3cx^{-\frac{2}{3}}x + x)^{\frac{3}{2}}} \cdot 18c \cdot (3cx^{-\frac{2}{3}}x + x)
\]

Quare integrale completum erit:

\[
e^{ccx^{-\frac{2}{3}}}(x - 3cx^{\frac{3}{2}})y - x + 3 ccx^{-\frac{2}{3}} - 3 ccx^{-\frac{2}{3}} = \text{Const.}
\]

Tum ob \(e^{\int ydx} = \frac{xx - 9 ccx^{\frac{3}{2}}}{18c} \) prodit diuinor algebraicus aequationem propositam integrabilem reddens:

\[
((x + 3cx^{\frac{3}{2}}y - x - 3 ccx^{-\frac{2}{3}} - 3 ccx^{-\frac{2}{3}})((x - 3 cx^{\frac{3}{2}}y - x + 3 ccx^{-\frac{2}{3}} - 3 ccx^{-\frac{2}{3}})).
\]

Cafus 5. quo \(n = \frac{2}{5} \).

78. Pro hac ergo aequatione \(dy + yydx - ccx^{\frac{2}{3}}dx = 0 \) erit \(B = -\frac{4A}{5c} \); \(C = -\frac{6A}{5cc} + \frac{3A}{25cc} \); \(D = 0 \) etc. idee-

Tom. VIII. Nou. Comm. G que
DE INTEGRATIONE

quae integrale particulae est:

\[y = cx^{\frac{3}{2}} + \frac{1}{3}x + \frac{1}{3}cx^{\frac{3}{2}} = cx^{\frac{3}{2}} + 10cex^{\frac{3}{2}} - 3cx^{\frac{5}{2}} \]

\[\frac{25cex^{\frac{3}{2}} - 15cx^{\frac{5}{2}} + 3}{x^{\frac{5}{2}} + x^2 + 3cex^{\frac{3}{2}}} \]

\[\text{seu } y = \frac{25cex^{\frac{3}{2}} - 5cex^{\frac{5}{2}}}{25cex^{\frac{3}{2}} - 15cx^{\frac{5}{2}} + 3} = v \cdot \text{ Vnde integrale completa oritur.} \]

\[e^{\frac{1}{2} \int x^2 (3 + 15cx^2 - 25cex^2) - 15cex^2 - 25cx^2 x^\frac{5}{2}} \]

\[(3 - 3cx^2 + 25cex^2) y - 5cx^2 - 2cex^2 x^\frac{5}{2} = \text{Const.} \]

Et si hujus fractionis ponatur.

numerator \((3 + 15cx^2 - 25cex^2) y - 15cex^2 - 25cx^2 x^\frac{5}{2} = P, \) et

denominator \((3 - 3cx^2 + 25cex^2) y + 5cx^2 - 2cex^2 x^\frac{5}{2} = Q. \)

erit divisor aequationem propositam integrabilem reddens.

\[\text{Clausulis quo } \frac{x}{5} \]

79. Prohac ergo aequatione \(dy + ydx + cex x^\frac{1}{2} dx = 0, \)

erit \(B = \frac{A}{5} \) et \(C = \frac{B}{5} = \frac{A}{25} ; \) \(D = 0, \) etc. hiocque integrale particulae prodict:

\[y = cx^{\frac{3}{2}} + \frac{1}{3}x + \frac{1}{3}cx^{\frac{3}{2}} - 12cx^{\frac{3}{2}} - 3 \]

\[25cex^{\frac{3}{2}} + 15cx^2 - 3x^\frac{5}{2} \]

\[y = \frac{25cex^{\frac{3}{2}} + 3cex^{\frac{3}{2}} - 15cx^2 - 3x^\frac{5}{2}}{25cex^{\frac{3}{2}} + 15cx^2 - 3x^\frac{5}{2}} = v \cdot \text{ Vnde} \]
AEQUATIONUM DIFFERENTIALIUM.

Vnde integrale completum obtinetur:

\[\frac{e^{xyz}}{(3x-15ex^x+25ex^y)^2}y - 3 + 3x - 15ex^x - 30ex^y - 25e^x - \frac{25}{2}e^{2x} = \text{Const.} \]

Ac neglecto factori exponentiali, \(e^{10x - \frac{z}{2}} \), productum ex numeratore et denominator praebet diuiorem, per quem aequatio proposta diuius eaudit integrabilis.

Problema 12.

80. Denotante \(i \) numerum quemcunque integrum, exhibere resolutionem huius aequationis:

\[dy + y dy = c = \frac{e^t}{c} dx = 0. \]

Solutio.

Cum igitur sit \(n = \frac{t}{z+i} \), reperietur

\[B = -\frac{(i + z)}{n^2(z + i)^2} A \]
\[C = \frac{i + z}{n^2(z + i)^2} A \]
\[D = -\frac{(i + z)(i + z)(i - z)(i - z)}{n^2(z + i)^2} A \]
\[E = \frac{(i + z)(i + z)(i + z)(i - z)(i - z)(i - z)}{n^2(z + i)^2} A \]

etc.

tum vero integrale particulari et

\[y = \frac{e^{x^2+i}}{z+i} + \frac{i}{z+i} \frac{e^{x+i}}{z+i} + \frac{e^{x+i}}{z+i} \frac{e^{x+i}}{z+i} \frac{e^{x+i}}{z+i} \]
\[+ \frac{e^{x+i}}{z+i} \frac{e^{x+i}}{z+i} \frac{e^{x+i}}{z+i} \frac{e^{x+i}}{z+i} \frac{e^{x+i}}{z+i} \]
\[+ \frac{e^{x+i}}{z+i} \frac{e^{x+i}}{z+i} \frac{e^{x+i}}{z+i} \frac{e^{x+i}}{z+i} \frac{e^{x+i}}{z+i} \]
\[+ \frac{e^{x+i}}{z+i} \frac{e^{x+i}}{z+i} \frac{e^{x+i}}{z+i} \frac{e^{x+i}}{z+i} \frac{e^{x+i}}{z+i} \]

\[\text{quod} \]
DE INTEGRATIONE

quod vt ad eundem denominatorem reducatur, fiat unus.

\[\mathcal{U} = cA \]

\[\mathcal{V} = -\frac{f\left(\frac{1}{2}\right)}{z^{(1/2)}} A \]

\[\mathcal{C} = +\frac{(i+1)f\left(\frac{1}{2}\right)}{z^{(1/2)}(1/2)} A \]

\[\mathcal{D} = -\frac{(i+1)(i+2)f\left(\frac{1}{2}\right)}{z^{(1/2)}(1/2)} A \]

etc.

unde fieri

\[y = \frac{\mathcal{U}x^{1/2} + \mathcal{V}x^{1/2} + \mathcal{C}x^{1/2} + \mathcal{D}x^{1/2}}{\mathcal{A}x^{1/2} + \mathcal{B}x^{1/2} + \mathcal{C}x^{1/2} + \mathcal{D}x^{1/2}} \]

Ponamus porro breuitatis gratia:

\[A x^{1/2} + B x^{1/2} + C x^{1/2} + D x^{1/2} = P \]

\[A x^{1/2} - B x^{1/2} - C x^{1/2} - D x^{1/2} = Q \]

\[A x^{1/2} + B x^{1/2} + C x^{1/2} + D x^{1/2} + etc. = \mathcal{U} \]

\[A x^{1/2} - B x^{1/2} - C x^{1/2} - D x^{1/2} - etc. = \mathcal{V} \]

atque integrale completum erit:

\[e^{-2(2i+1)ecx^{1/2}} \left(\frac{Qy - \mathcal{U}}{Py - \mathcal{V}} \right) = \text{Const.} \]

Tum vero diximus, aequationem propositam reddens integrabilem, erit \((Py - \mathcal{U})(Qy - \mathcal{V}) \).

Coroll. i.

§1. Quodsi ergo in aequatione \(dy + y dy + ax^{1/2} \)

\(dx = 0 \) coefficiens \(a \) fuerit quantitas negativa, vt posto \(a = \)
AEQUATIONVM DIFFERENTIALVM. 53

\[\alpha = -cc, \] st \(c \) quantitas realis, integrale completum
hic inuenatum formam habet realem, et quousi casu facile exhiberi potest, pariter ac divisor, qui aequationem integrabilem reddit.

Coroll. 2.

82. At si \(\alpha \) fuerit quantitas positiva, puta \(\alpha = a^2 \),
\[\text{et habeatur haec aequatio: } dy + yydx + a\alpha x^{2+1}\,dx = 0, \]
erit \(c = a\sqrt{-1} \), et coefficientes \(B, D, F \) etc. et
\(\Psi, \Theta, \zeta \) etc. sint imaginarii; ynde valores particularis \(y = \frac{u}{x} \) et \(y = \frac{v}{x} \) prodibunt imaginarii.

Coroll. 3.

83. Hoc tamen casu, quo \(c = a\sqrt{-1} \) et \(cc = -a^2 \),
sint \(P+Q \) et \(P-Q \) quantitates reales, at \(P-Q \)
et \(P+Q \) imaginariae. Quodsi ergo ponatur
\[P+Q = 2R; \quad P-Q = 2SV-1; \quad P+Q = 2\Psi \]
et \(P-Q = 2\Theta V-1 \)
erunt \(R, S, \Psi \) et \(\Theta \) quantitates reales, et ob
\[P = R + SV - 1; \quad Q = R - SV - 1; \quad \Psi = \Psi + SV - 1; \]
et \(Q = \Psi - SV - 1 \)
siet divisor, reddens aequationem integrabilem,
\[(RR + SS)yy - 2(R\Psi + S\Theta)y + R\Psi + S\Theta \]
ideoque realis.

G 3 Coroll. 4.
Coroll. 4.

84. At codem fall. \(e = aV - x \), ob \(e^{-2V^{-1}} = \cos \phi \)

\[-V - x \sin \phi \]

\[= -2(2i + x)ax^{2i + 1} \]

\[= \cos 2(2i + x)ax^{2i + 1} \]

\[-V - x, \sin 2(2i + 1)ax^{2i + 1}; \] unde posito brevitas gratia \(2(2i + x)ax^{2i + 1} = \phi \), erit integrale comple-
tum:

\[(\cos \phi V - x \sin \phi). \]

\[\frac{k}{m + sV^{-1}} = \frac{k}{m + sV^{-1}} \]

Constit. quae forma est imaginaria.

Coroll. 5.

85. Tribuatur autem constanti tali forma: \(a - \beta \)

\[V - x \], et aequatione integráli evoluta, erit:

\[(Ry - N) \cos \phi - (Ry - M) \sin \phi \]

\[V - x - (Sy - \Theta) \]

\[\cos \phi V - x - (Sy - \Theta) \sin \phi \]

\[= (Ry - N) \cos \phi - (Ry - M) \sin \phi \]

\[\beta \]

\[V - x + (Sy - \Theta) \alpha V - x + (Sy - \Theta) \beta. \]

Iam aequatur teorhmin partes reales et imaginariae:

\[(Ry - N) \cos \phi - (Sy - \Theta) \sin \phi \]

\[a(Ry - N) + \beta(Sy - \Theta) \]

\[(Ry - N) \sin \phi + (Sy - \Theta) \cos \phi - \beta(Ry - N) - \alpha(Sy - \Theta) \]

quae duae aequationes conueniunt, si modo sit \(a \alpha + \beta \beta \)

\[= x. \] Sit ergo \(a = \cos \phi \), et \(\beta = \sin \phi \), producitque ex

\[RY - N = \sin \phi + \sin \phi \]

\[SY - \Theta = \cos \phi - \cos \phi \]

\[\cot \frac{\phi}{2}. \]

Coroll. 6.
Coroll. 6.

86. Sumto ergo pro z' angulo quocunque, si fit
\(z = ax - x \), erit integratae complementi aequationis pro-
positae

\[
\frac{Ry - Ax}{Sy - \overline{S}} = \cot \frac{z - p}{2}
\]

\[\text{sen} y = \frac{R \sin \frac{z - p}{2} - \overline{S} \cos \frac{z - p}{2}}{R \sin \frac{z - p}{2} - \overline{S} \cos \frac{z - p}{2}}.
\]

Existente \(p = 2(a + 1)x \).

Problema 13:

87. Denotante \(i \) numerum quocunque integrum,
exhibere resolvenem huius aequationis:

\[
dy + yy dx - c_{\alpha} x^{i - i} dx = 0.
\]

Solutio:

Quia est \(n = i \), haec resolutio derivari poterit ex solutione praeecedentis problematis, ponendo \(-i\) loco \(i \). Quare tribuantur litteris \(B, C, D, \) etc. sequentes valores:

\[
B = \frac{i(i - 1)}{2} A,
\]

\[
C = \frac{(i + 2)!}{2} \frac{(i - 1)! (i - 2)!}{2} A
\]

\[
D = \frac{(i + 2)! (i - 1)! (i - 2)! (i - 3)!}{2!} A
\]

etc.

Turn.
DE INTEGRATIONE

Tum vero alterarum litterarum A, B, C, D etc. determinatio ita se habeit:

\[A = cA \]
\[B = - \frac{(l + \frac{1}{2})^2}{2(s^2 - r^2)} A \]
\[C = - \frac{(l + \frac{1}{2})(l + \frac{3}{2})}{2, 4, 6} \frac{(l - \frac{1}{2})}{l^2 - r^2} A \]
\[D = - \frac{(l + \frac{1}{2})(l + \frac{3}{2})}{2, 4, 6} \frac{(l - \frac{1}{2})(l - \frac{3}{2})}{l^2 - r^2} A \]
\[\text{etc.} \]

Quibus valoribus constitutis, ponatur breuitatis gratia:

\[A \frac{x^{2+\frac{1}{2}}}{\frac{1}{2}} + Bx^{\frac{2+\frac{1}{2}}{2}} - Cx^{\frac{2+\frac{1}{2}}{2}} + Dx^{\frac{2+\frac{1}{2}}{2}} + \text{etc.} = P \]
\[A \frac{x^{2-\frac{1}{2}}}{\frac{1}{2}} - Bx^{\frac{2-\frac{1}{2}}{2}} + Cx^{\frac{2+\frac{1}{2}}{2}} + Dx^{\frac{2+\frac{1}{2}}{2}} + \text{etc.} = Q \]
\[A \frac{x^{2+\frac{1}{2}}}{\frac{1}{2}} + Bx^{\frac{2+\frac{1}{2}}{2}} - Cx^{\frac{2+\frac{1}{2}}{2}} + Dx^{\frac{2+\frac{1}{2}}{2}} + \text{etc.} = \Psi \]
\[- A \frac{x^{2-\frac{1}{2}}}{\frac{1}{2}} + Bx^{\frac{2-\frac{1}{2}}{2}} - Cx^{\frac{2-\frac{1}{2}}{2}} + Dx^{\frac{2-\frac{1}{2}}{2}} - \text{etc.} = \Omega \]

atque hinc flatim habentur duae integrationes particulares:

I. $y = \frac{\Psi}{P}$, et II. $y = \frac{\Omega}{Q}$.

Tum vero equationi integralis completa erit:

\[e^{2(2i-x)} \frac{Qy - \Omega}{Py - \Psi} = \text{Cons.} \]

et diuifor equationem propositam integrabilem reddens, fiet \((Py - \Psi)(Qy - \Omega)\).

Coroll.
\textit{AEQUATIONUM DIFFERENTIALIUM. 57.}

Coroll. 1.

88. Quod autem aequatio proposita fuerit hu-

\[dy + y^2 dx + aax^{2i-1} dx = 0 \]

vit sit \(c = -aa \), et \(c = aV - 1 \), integrationes parti-
culares exhibitae sint imaginariae, ob B, D, F, etc.
item \(A, C, E \) etc. imaginarias, dum reliquarum lit-
terarum valores sint reales.

Coroll. 2.

89. At si ponatur:

\[P + Q = 2R; \quad P - Q = 2S V - 1; \quad P + Q = 2A \]

et \(P - Q = 2\mathbb{G} V - 1 \)
quantitates \(R, S, A \) et \(\mathbb{G} \) nihilo minus sint, vt ante,
reales, et duis for aequationem reddens integrabilem
erit:

\[(RR + SS)yy - 2(RA + S\mathbb{G})y + RA + S\mathbb{G}. \]

Coroll. 3.

90. Tum vero, si ponatur brevitas causa 2(2i-1):

\[aax^{2i-1} = p, \] aequatio integralis completa erit:

\[\frac{Ry - A}{S - \mathbb{G}} = \cot \frac{x + p}{2} \]

vnde elicetur:

\[y = \frac{A \tan \frac{x + p}{2} - S \cot \frac{x + p}{2}}{R \tan \frac{x + p}{2} - S \cot \frac{x + p}{2}} \]

vbi angulus \(\frac{x + p}{2} \) vicem gerit constantis arbitrariae.

DE INTEGRATIONE

Scholion.

91. Solutiones horum duorum postremorum problematum non tam per accuratam analysin sunt evolutae, quam per inductionem ex casibus particularibus supra expeditis deriuateae, quandoquidem progressio ab his casibus ad sequentes fatis erat manifesta. Fundamentum autem harum solutionum in hoc potissimum est fluxum, quod solutione particularis, unde omnia sunt deducita, re vera est gemenata, cum quantitas e, cuius quadratum tantum in aequatione differentiale occurrat, aequae negative, ac positae, accipi posita. Quoties autem huiusmodi aequationum binae solutiones particularis sunt cognitae, ex his multo facilius solutionem generalis, indeque multiplicatores, eas integrabiles reddentes, erit posita, id quod operae pretium eit clarius expoluitse.

Problema 14.

92. Datis duabus solutionibus particularibus huiusmodi aequationis:
\[dy + P y dx + Qyy dx + Rdx = 0 \]
invenire eius solutionem generalem, et multiplicatorem, qui eam integrabilem reddat.

Solutio.

Sint M et N huiusmodi functiones ipsius x, quae loco y substitutae, ambae aequationi propositae satisfaciunt, ita ut sit:
\[dM + PM dx + QM^2 dx + Rdx = 0 \]
\[dN + PN dx + QN^2 dx + Rdx = 0. \]

Postea
AEQUATIONUM DIFFERENTIALVM. 59

Ponatur \(\frac{y-M}{y-N} = z \), seu \(\frac{y}{z} = \frac{M}{N} \), erit:

\[
dy = \frac{dM - zdN + Ndz - zdN + z^2 dN}{dN - zdN - zdN + z^2 dN}
\]
quibus valoribus in aequatione proposita substitutis, et tota aequatione per \((1-z)^2 \) multiplicata, probuit:

\[
(1-z)dM - z(1-z)dN + (M-N)dz + P(1-z)MdN - P(1-z)NdM + dQN_{Mzdx} + R(1-z)^3dx = 0.
\]

Iam pro \(dM \) et \(dN \) substituantur valores ex binis superioribus aequationibus differentiabilibus oriundis:

\[
-P(1-z)Mdx - Q(1-z)M^2dx - R(1-z)^3dx
+Pz(1-z)Ndx + Qz(1-z)N^2dx + Rz(1-z)^3dx + (M-N)dz = 0
\]

\[
+P(1-z)Mdx + QM^2dx + R(1-z)^3dx
=Pz(1-z)Ndx - 2QMNzdx
+QN^2zdx
\]

qua aequatione in ordinem redacta, orietur:

\[
QzM^2dx + QzN^2dx - zQMNzdx + (M-N)dz = 0
\]

seu \(Q(M-N)dz + d\frac{z}{x} = 0 \), ita ut sit:

\[
z = C e^{-\int Q(M-N)dx}
\]

unde aequatio integrata generalis erit:

\[
e^{-\int Q(M-N)dx} \frac{y-M}{y-N} = \text{Const.}
\]

Pro multiplicatore autem inueniendo, notetur, aequationem propositam, facta substitutione primum per \((1-z)^2 \), esse multiplicatam, tum vero divisam per \(z(M-N) \), eussifec integrabilim. Statim ergo per \(\frac{(1-z)^3}{(M-N)z} \) multiplicantam fier integrabilis: ex quo factor erit \(\frac{(1-z)^3}{(M-N)z} \), qui ob \(z = \frac{y-M}{y-N} \) hanc induet formam:

\[
\frac{M-N}{(y-M)(y-N)}.
\]

H 2 Proble.
DE INTEGRATIONE

Problema 15.
93. Proposita aequatione \(y \, dy + Py \, dx + Q_1 \, dx = 0 \), invenire conditiones functionum \(P \) et \(Q \), ut hainmodi multiplicator \((y + M)^n\) cum reddat integrabilem.

Solutio.
Ex natura ergo differentialium esse oportet:
\[\frac{1}{y} \, d \cdot y(y + M)^n = \frac{1}{x} \, d(Py + Q)(y + M)^n \]
undea cum \(M \) sit functio ipsius \(x \) tantum, etit
\[\eta y(y + M)^n \cdot \frac{d M}{dx} = P(y + M)^n + \eta(Py + Q)(y + M)^n \]
quae diuisa per \((y + M)^n\) abit in hanc:
\[\frac{\eta}{d M} = (n + 1)Py + PM + \eta Q \]
undea necesse est sit:
\[P = \frac{n \, d \, M}{(n + 1) \, dx} \quad \text{et} \quad Q = \frac{-\, P \, M}{n} = -\frac{M \, d \, M}{(n + 1) \, dx} \]
His igitur valoribus substitutis aequatio
\[y \, dy + \frac{n \, d \, M}{n + 1} - \frac{M \, d \, M}{n + 1} = 0 \]
fit integrabilis, si multiplicetur per \((y + M)^n\).

Coroll. 1.
94. Quia hinc aequatio est homogenea, ea quaque fit integrabilis, si diuidatur per \((n + 1)yy + nyM\)
\[-M, M = (y + M)(n + 1)y - M)\]. Neque ergo hinc nouae aequationes methodo hanc tractabiles obtinuimus.

Coroll. 2.
95. Quoniam autem habemus duos multiplicatores \((y + M)^n\) et \(\frac{1}{y + M, (n + 1)}\): si alter per alterum
AEQUATIONUM DIFFERENTIALVM. 61

rum dividatur, quoties constanti arbitrariae aequatur
dabit integrale completum. Quare aequatio \(y \, dy + \frac{ny^m}{n+1} \)
\(- \frac{M^m}{n+1} = o \) generaliter integrata praebet:
\[(y + M)^{n+1}((n+1)y - M) = \text{Const.} \]

Problema 16.

96. Proposita aequatione \(y \, dy + P \, dy + Q \, dx = 0 \),
invenire conditiones functionum \(P \) et \(Q \), vt huiusmodi
multiplicator \((yy + My + N)^n \) cam reddat integrabili-
lem.

Solutio.

Ex natura differentialium fit necessit esse:
\[\frac{x}{d} dy = (yy + M y + N)^n = \frac{d}{d} \, (P + Q) (yy + My + N)^n \]
Cum igitur \(M, N, P \) et \(Q \) sint per hypothese
functiones ipsius \(x \), erit, facta evolucione:
\[ny (yy + My + N)^n = (y \frac{dM}{dx} + \frac{dN}{dx}) = P (yy + My + N)^n \]
\(+ n (P + Q) (2y + M (yy + My + N)^n \)
et post divisionem per \((yy + My + N)^{n-1} \)
\[ny \frac{dM}{dx} - \frac{dN}{dx} = (2n+1) P (y y + (n+1) P M y + P N \]
\[- 2n Q y \]

Hinc fiere oportet:

I. \[n dM = (2n+1) P d \]
II. \[n dN = (n+1) P M d + 2n Q d \]
III. \[0 = P N + n Q M \]

Prima dat \(P = \frac{n dM}{(2n+1) d \} \), et ultima \(Q = \frac{P N}{n M} \),

\[\textbf{H} \quad \text{feu} \]
$n \frac{dN}{dx} = \frac{n(n+1)M^2}{z(n+1)} - \frac{2nM}{z(n+1)} \neu \frac{2n+2}{2(n+2)} \frac{dM}{dx} \neu \frac{2}{z(n+2)} \neu \frac{2}{z(n+2)}$

quae multiplicata per $M^{\frac{2n+2}{z(n+2)}}$ et integrata praebet:

$\int \frac{2n+2}{z(n+2)} \frac{dM}{dx} \neu \frac{2}{z(n+2)} \neu \frac{2}{z(n+2)}$

$\neu \frac{2}{z(n+2)} \neu \frac{2}{z(n+2)}$

vnde fit $N = a \frac{m^{\frac{2n-1}{z(n+1)} - \frac{1}{4} M^2}}{2}$.

Cum ergo fit

$P \frac{dx}{dx} = \frac{n \frac{dM}{dx}}{z(n+1)} \neu \frac{2nM}{z(n+1)} \neu \frac{2n+2}{z(n+2)} \frac{dM}{dx} \neu \frac{2}{z(n+2)} \neu \frac{2}{z(n+2)}$

ista aequatio differentialis:

$y \frac{dy}{dz} = \frac{2nM}{z(n+1)} - \frac{M \frac{dM}{dx}}{z(n+1)} \neu \frac{2n+2}{z(n+2)} \frac{dM}{dx} \neu \frac{2}{z(n+2)} \neu \frac{2}{z(n+2)}$

integrabilis redditur, si multiplicetur per

$(zy - M \frac{dM}{dx}) + a \frac{m^{\frac{2n-1}{z(n+1)} - \frac{1}{4} M^2}}{2}$.

Coroll. 1.

Si fuerit $-\frac{2n-1}{z(n+1)} = i$, seu $n = -i$; aequatio differentialis est homogenea, et si $-\frac{2n+2}{z(n+2)} = 0$

seu $n = -\frac{1}{2}$, primi gradus. Utroque autem canda nulla est difficultas, cum aequatio facile tractari possit.

Coroll.
AEQUATIONUM DIFFERENTIALUM. 68

Coroll. 2.

98. Magis ergo abstrusi erunt causae, quibus exponens $\frac{3}{2n+1}$ neque est 0, neque 1. Sit ergo $\frac{2n-3}{2n+1}=m$, unde fit $z_n=\frac{m-\frac{1}{2}}{m+\frac{1}{2}}$ et aequatio differentialis

$\frac{d}{dM}y+\frac{1}{2}y dy + \frac{1}{2}y (m+3) y dM + \frac{1}{2} (m+1) M dM + \frac{1}{2} (m+1) M^m dM = 0$

integrae reddetur per multiplicatorem

$(yy+My+\frac{1}{2} MM + \frac{1}{2} M^{m+1})^\frac{m-\frac{1}{2}}{m+\frac{1}{2}}$

Coroll. 3.

99. Quod si iam pro M functiones quaecunque ipsius x substituantur, aequationes tam complicatæ formari poterunt, quas quomodo aliis methodis tractari oporteat, vix liquet, cum tamen hac methodo earum resolutio sit in promptu.

Scholion.

100. Si quis haec vestigia vestigii prosequi voluerit, dubium est nullum, quin haec methodus magnae multa majora sit acceptura incrementa, quibus vniuerae Analysis non mediocriter promoneatur. Specimina etiam hic evoluta ita sunt comparata, ut viam ad investigationes profundiores parare videantur, praecipue si infiner alia aequationum differentialis genera simili modo pertractentur. Verum haec, quae haec est protuli, sufficer eidentur, animis Geometrarum ad ampliorum huius methodi enucleationem incitantis, quem scopum mihi equidem potissimum posse proferam.

SOLVITIO