RECHERCHES
SUR LA DÉCLINAISON DE L'AIGUILLE AIMANTÉE.
PAR M. EULER.

La Carte que feu M. Halley a donnée sur la déclinaison de l'aiguille aimantée est trop connue, pour que j'aye besoin d'en donner une description détaillée. On y voit d'abord deux lignes courbes, qui passent par les endroits de la Terre, où la déclinaison a été nulle au commencement de ce siècle, pour lequel temps cette Carte fut dressée. Ensuite elle contient aussi des lignes tirées par les endroits, où la déclinaison fut alors de 5°, ou de 10°, ou de 15° &c. tant vers l'est que vers l'ouest. Comme cette Carte n'est fondée que sur des observations, elle offre un très important sujet à la Théorie, pour rendre raison de la figure de ces lignes, qui au premier coup d'œil paraissent extrêmement bizarres. Or tous ceux qui ont entrepris cette recherche, furent bientôt obligés de l'abandonner par les difficultés presque insurmontables, qu'ils y ont rencontrées. La principale cause n'était pas tant la figure bizarre des lignes Halleyennes, qui ne semble susceptible d'aucune loi géométrique, que la persuation, où l'on étoit par l'autorité de M. Halley, que les phénomènes de la déclinaison magnétique étoient causés par quatre poles magnétiques, qui se trouvoient dans les entrailles de la Terre, dont il avoit supposé deux fixes & deux mobiles, pour ren-
vendre raison des changemens, qu'on observe avec le temps dans la déclinaison du même endroit.

Si nous étions bien assurés, qu'il y eut effectivement quatre po-
les magnétiques dans la Terre, comme on le croit généralement sur
l'autorité de M. Halley, je conviens qu'une telle entreprise feroit trop
hardie du moins pour l'état présent de nos connaissances, puisque
la force directrice, dont deux ou plusieurs aimants agissent à la fois
sur une aiguille, nous est encore tout à fait inconnue : & il vaudroit
sans doute mieux d'abandonner d'abord cette entreprise, que de la
fonder sur des hypothèses arbitraires. Il y a aussi grande apparence,
que quand même on connoitroit à fond l'action simultanée de deux ai-
mants sur une aiguille, le développement demanderoit des calculs
trop compliqués. Mais, avant que nous renoncions tout à fait à cette
recherche, il faudroit examiner plus soigneusement, si la raison,
pourquoi M. Halley a établi quatre poles dans la Terre, est bien solide:
car, en cas que la Terre n'eut que deux poles magnétiques, le problèmefec réduiroit à la pure Geomètrie. Or la principale & l'unique rai-
son, que M. Halley apporte pour établir quatre poles magnétiques,
se réduit à ce raisonnement :

Si la Terre n'avait que deux poles magnétiques, sous chaque mé-
ridien la bouffole devroit décliner par tout en même sens, ou vers l'est
ou vers l'ouest.

Mais on a observé que sous le méridien, qui passe par la baie de
Hudson & les côtes du Bresil, la déclinaison étoit occidentale dans la
baie de Hudson & orientale sur les côtes du Bresil, & même fort grande
dans l'un & l'autre endroit.

D'où il s'ensuit, que deux poles magnétiques ne sont pas suffisans
pour expliquer les phénomènes de la déclinaison.

Pour examiner la force de ce raisonnement, je remarque d'abord,
que, si les deux poles magnétiques étoient diamétralement opposés, il
ne
ne saurait arriver, que sous un même méridien la déclinaison fut quelque part orientale, & dans un autre endroit occidentale. Mais, dès que les deux pôles magnétiques ne sont plus diamétralement opposés l’un à l’autre, la première proposition perd toute sa force, & il peut alors fort bien arriver, que sous un même méridien la déclinaison soit quelque part orientale, & en d’autres endroits occidentale. Comme je prouverai cela indubitablement dans la suite, il me sera permis de regarder l’hypothèse de quatre pôles magnétiques comme fort douteuse; & avant qu’on n’ait très évidemment prouvé, que deux pôles magnétiques ne sont pas suffisants pour expliquer les phénomènes de la déclinaison magnétique, ce serait contre les règles d’une bonne Physique si l’on vouloit recourir à quatre pôles. Après cette remarque, voilà un problème bien important, qui est de déterminer la déclinaison de l’aiguille aimantée pour tous les lieux de la terre, lorsque les deux pôles magnétiques ne sont pas diamétralement opposés. Pour mieux épuiser ce problème, qui est, comme on verra, d’une fort grande étendue, & qui renferme des recherches très curieuses, je commencerai par considérer le cas, où les deux pôles magnétiques sont diamétralement opposés; ensuite je les supposerai en deux méridiens opposés, mais non pas également éloignés des pôles de la Terre. En troisième lieu, je les supposerai dans un même méridien; & enfin quatrièmement, en deux méridiens différents, d’où je partagerai mes recherches en quatre Sections. Si la Terre n’a que deux pôles magnétiques, comme j’espère de le prouver, ces quatre cas peuvent devenir également intéressans; car, puisqu’il est certain, que ces pôles changent de place avec le temps, il est possible que chaque cas ait déjà existé, ou qu’il aura un jour lieu.
PREMIERE SECTION.
Les deux Poles magnetiques de la Terre etant diametralement opposes.

I.

Comme cette recherche, de meme que les suivantes, demandent la resolution analytique des triangles sphériques, il sera bon d'en mettre les formules devant les yeux, afin qu'on n'ait pas besoin de les chercher ailleurs. Je commencerai donc par les triangles rectangles; marquant les trois angles par les lettres A, B, C dont C est suppose droit, & les cotes qui leur sont opposes par les lettres a, b, c, dont c sera l'hypotenuse. Les regles pour la resolution sont contenues dans les Lemmes suivans.

LEMME 1.

II. L'hypotenuse c avec un cathete a d'un triangle sphérique ABC étant donnés, trouver l'autre cathete b avec les angles A & B.

RESOLUTION.

I. \(\cos b = \frac{\cos c}{\cos a} \); II. \(\sin A = \frac{\sin a}{\sin c} \); III. \(\cos B = \frac{\tan a}{\tan c} \).

LEMME 2.

III. Les deux cathetes a & b d'un triangle rectangle sphérique étant donnés, trouver l'hypotenuse c avec les angles A & B.

RÉSOLUTION.

I. \(\cos c = \cos a \cos b \); II. \(\tan A = \frac{\tan a}{\sin b} \); III. \(\tan B = \frac{\tan b}{\sin a} \).

LEMME 3.

IV. L'hypotenuse c, avec un des angles A d'un triangle rectangle sphérique, étant donnés, trouver l'autre angle B avec les cathetes a & b.

RESO-
RÉSOLUTION.
I. $\cot B = \cos c \tan A$; II. $\sin a = \sin c \sin A$; III. $\tan b = \tan c \cos A$.

LEMME 4.
V. Un cathète a avec l'angle, qui lui est opposé A, d'un triangle rectangle sphérique, étant donnés, trouver l'hypoténuse c, & l'autre cathète b, avec l'angle, qui lui est opposé B.

RÉSOLUTION.
I. $\sin c = \frac{\sin a}{\sin A}$; II. $\sin b = \frac{\tan a}{\tan A}$; III. $\sin B = \frac{\cos A}{\cos a}$.

LEMME 5.
VI. Un cathète a avec l'angle B, qui lui n'est pas opposé, d'un triangle sphérique rectangle, étant donnés, trouver l'hypoténuse c, & l'autre cathète b avec l'angle A.

RÉSOLUTION.
I. $\tan c = \frac{\tan a}{\cos B}$; II. $\tan b = \sin a \tan B$; III. $\cos A = \cos a \sin B$.

LEMME 6.
VII. Les deux angles A & B d'un triangle rectangle sphérique étant donnés, trouver l'hypoténuse c avec les deux cathètes a & b.

RÉSOLUTION.
I. $\cos c = \cot A \cot B$; II. $\cos a = \frac{\cos A}{\sin B}$; III. $\cos b = \frac{\cos B}{\sin A}$.

VIII. Soit maintenant ABC un triangle sphérique quelconque, dont les angles soient indiqués par les lettres A, B, C, & les côtés étant qu'ils leur sont opposés par les lettres a, b, c. Les résolutions de tous les cas se réduisent aux Lemmes suivants.

LEMME 7.
IX. Dans un triangle sphérique quelconque, les trois côtés a, b, c étant donnés, trouver les angles A, B, C.

Z 2

RESO-
RÉSOLUTION.

I. \[\text{cosec } A = \frac{\text{cosec } a - \text{cosec } b \cdot \text{cosec } c}{\text{sec } c \cdot \text{sec } b} \]

II. \[\text{cosec } B = \frac{\text{cosec } b - \text{cosec } a \cdot \text{cosec } c}{\text{sec } a \cdot \text{sec } c} \]

III. \[\text{cosec } C = \frac{\text{cosec } c - \text{cosec } a \cdot \text{cosec } b}{\text{sec } a \cdot \text{sec } b} \]

Lemme 8.

X. Dans un triangle sphérique quelconque, les trois angles A, B, C étant donnés, trouver les côtés a, b, c.

RÉSOLUTION.

I. \[\text{cosec } a = \frac{\text{cosec } A + \text{cosec } B \cdot \text{cosec } C}{\text{sec } B \cdot \text{sec } C} \]

II. \[\text{cosec } b = \frac{\text{cosec } B + \text{cosec } A \cdot \text{cosec } C}{\text{sec } A \cdot \text{sec } C} \]

III. \[\text{cosec } c = \frac{\text{cosec } C + \text{cosec } A \cdot \text{cosec } b}{\text{sec } A \cdot \text{sec } b} \]

Lemme 9.

XI. Dans un triangle sphérique quelconque, deux côtés a & b avec l'angle C compris entre eux, étant donnés, trouver le troisième côté c avec les deux autres angles A & B.

RÉSOLUTION.

I. \[\text{cosec } c = \text{cosec } a \cdot \text{cosec } b + \text{sec } a \cdot \text{sec } b \cdot \text{cosec } C \]

II. \[\tan A = \frac{\text{sec } a \cdot \text{sec } c}{\text{cosec } a \cdot \text{cosec } b - \text{sec } a \cdot \text{sec } b \cdot \text{cosec } C} \]

III. \[\tan B = \frac{\text{sec } b \cdot \text{sec } C}{\text{cosec } b \cdot \text{cosec } a - \text{sec } b \cdot \text{sec } a \cdot \text{cosec } C} \]
LEMME X

XII. Dans un triangle sphérique quelconque, deux angles A et B avec le côté compris entre eux c étant donnés, trouver le troisième angle C avec les deux autres côtés a et b.

RÉSOLUTION.

I. $\cos C = \cos c \cdot \sin A \cdot \sin B - \cos A \cdot \cos B$

II. $\tan a = \frac{\sin A}{\cos A \cdot \sin B - \sin A \cdot \cos B \cdot \cos c}$

III. $\tan b = \frac{\sin B}{\cos B \cdot \sin A - \sin B \cdot \cos A \cdot \cos c}$

LEMME II.

XIII. Dans un triangle sphérique quelconque, deux côtés a et b avec les angles A et B, qui leur sont opposés, étant donnés trouver le troisième côté c avec le troisième angle C.

Il faut ici remarquer, qu'il suffit, que des quatre éléments a, b, A, B trois soient donnés, puisqu'on a toujours $\sin a : \sin A = \sin b : \sin B$.

RÉSOLUTION.

I. $\tan c = \frac{\sin a \cdot \sin A - \sin b \cdot \sin B}{\cos a \cdot \cos A \cdot \sin B - \cos b \cdot \cos A \cdot \sin B}$

ou $\sin c = \frac{\sin a \cdot \sin A - \sin b \cdot \sin B}{\cos a \cdot \cos A \cdot \sin B - \cos b \cdot \sin A \cdot \cos B}$

II. $\tan C = \frac{\sin a \cdot \cos b \cdot \cos B - \sin a \cdot \cos b \cdot \cos A}{\cos a \cdot \sin b \cdot \cos B - \cos a \cdot \sin b \cdot \cos A}$

ou $\sin C = \frac{\sin a \cdot \sin A - \sin b \cdot \sin B}{-\cos a \cdot \sin b \cdot \cos A + \sin a \cdot \cos b \cdot \cos B}$
PROBLEME I.

XIV. La position des pôles magnétiques A & B à l'égard des pôles de la terre P & p étant donnée, déterminer, pour un lieu quelconque de la terre L, la déclinaison de la bossele.

SOLUTION.

Soit P le pôle arctique, & p l'antarctique de la terre : que le pôle magnétique boreal se trouve en A, & le méridional qui lui est diamétralement opposé en B. Qu'on tire un méridien P A p, qui étant continuë passe par les deux pôles magnétiques ; & j'envisagerai ici comme le premier méridien, celui P A p, qui passe par le pôle magnétique boreal. Puisqu'on suppose donnée la position de ces pôles, & que les arcs A P & B P sont égaux, je pose A P = B P = a. Soit maintenant un lieu quelconque de la terre L, par lequel faisant passer le méridien L P p, soit sa longitude exprimée par l'angle A L P = q, & sa distance au pôle arctique ou l'arc L P = p. Qu'on tire aussi par L & les pôles magnétiques A & B le grand cercle A L B, & il est clair que l'aiguille aimantée en L doit suivre la direction de ce grand cercle ; de sorte que l'angle P L A en marque la déclinaison, qui selon la figure sera orientale, en supposant l'orient vers E & l'occident vers F : où il faut remarquer que je compterai toujours la longitude ou l'angle A L P vers l'ouest. On aura donc dans le triangle sphérique A L P les deux côtés A P = a ; P L = p, avec l'angle compris A P L = q, ; d'où l'on trouvera l'angle P L A, ou la déclinaison magnétique. Donc, si nous posons cette déclinaison = δ entant qu'elle est supposée orientale, on aura

\[\tan \delta = \frac{\sin a \sin q}{\cos a \sin p - \sin a \cos p \cos q} \]

d'où l'on connoîtra pour tous les lieux de la terre la déclinaison magnétique.
COROLL. I.

XV. Tant que la valeur de cette formule est positive, la déclinaison sera orientale: mais, si elle devient négative, l'angle δ devenant aussi négatif, marquera une déclinaison occidentale.

COROLL. 2.

XVI. Or l'angle δ ne saurait devenir négatif, à moins qu'on ne prenne l'angle γ plus grand que de 180°; car, tant que $\sin \gamma$, est positif, la déclinaison est partout tournée vers l'Est, comme l'on voit par la figure. Car, quoique le dénominateur devienne négatif, cette négation se rapporte au cosinus de l'angle δ, qui surpassera alors 90°.

COROLL. 3.

XVII. Dans le premier méridien PEP, où $\gamma = 0$, il y aura partout $\tan \delta = 0$, donc ou $\delta = 0$ ou $\delta = 180°$. Or il est évident, que partout l'arc AP la déclinaison sera nulle: mais dans l'intervalle AP, où le bout méridional de l'aiguille est tourné vers P, la déclinaison doit être censée de 180°.

COROLL. 4.

XVIII. Il en est de même du méridien opposé PFp, qui passe par l'autre pôle magnétique B, où par toute l'étendue de l'arc PFB la déclinaison est $= 0$, & par l'intervalle BP de 180°. Partout ailleurs, où $\sin \gamma$ n'est pas $= 0$, la déclinaison ne saurait évanouir.

COROLL. 5.

XIX. Dans cette hypothèse donc, la ligne où il n'y a point de déclinaison, est composée des méridiens PEP & PFp, si nous y comprenons aussi les endroits où la déclinaison est de 180°: que le calcul représente conjointement.

COROLL. 6.

XX. Pour calculer plus promptement la déclinaison, on n'a qu'à chercher un angle t, en sorte que $\tan \gamma = \tan t \cos \gamma$, & alors on aura $\tan \delta = \frac{\tan \gamma \sin t}{\sin (p - t)}$.
1. REMARQUE.

XXI. Il semble douteux dans les cas, où l'expression trouvée pour \(\tan \delta \) devient négative, s'il faut alors prendre l'angle \(\delta \) négatif, ou plus grand que de 90°, puisque deux angles \(-\Phi \) & 180° \(-\Phi \), ont la même tangente négative. Mais toute équivoque évanouira d'abord, si l'on procède par degrés en cherchant la déclinaison : car alors, quand la valeur de \(\tan \delta \) devient négative après avoir passé par 0, l'angle \(\delta \) est certainement négatif : mais si \(\tan \delta \) de positif devient négatif en passant par l'infini, où l'on a \(\delta = 90° \), alors on est bien assuré, que l'angle \(\delta \) est obtus.

2. REMARQUE.

XXII. Sous un même méridien, les quantités \(q \) & \(t \) demeurant les mêmes, la déclinaison magnétique \(\delta \) est fort variable. Car si \(p = t \), on aura \(\delta = 90° \), & où \(p < t \), la déclinaison est encore plus grande. Or si \(p > t \), la déclinaison décroit jusqu'à ce qu'il devienne \(p - t = 90° \) où elle doit être la plus petite, & augmentera de nouveau dès qu'on prend \(p - t > 90° \). Cet endroit où la déclinaison est la plus petite sous le même méridien, mérite une recherche particulière, à laquelle le problème suivant est destiné. D'ailleurs il est bien clair, que dans cette hypothèse il est impossible, que sous un même méridien la déclinaison soit orientale & occidentale à la fois, comme M. Hulley l'a observée sous le méridien de la baie de Hudson : & si la même impossibilité avait lieu en général pour deux pôles magnétiques, de quelque manière qu'ils fussent situés, nous serions bien obligés d'embrasser le sentiment de 4 pôles magnétiques. Mais le contraire fera mis hors de doute dans la suite.

3. REMARQUE.

XXIII. Il est ici fort important d'ajouter une remarque sur le principe, d'où la solution du problème a été tirée. J'ai supposé du consentement de tous les Physiciens, que la direction de l'aiguille suit le grand cercle, qui passe par le lieu proposé aux pôles magnétiques.
Quelqu’évident que paraîsse ce principe par rapport au cas présent, il s’en faut beaucoup qu’il soit si général, qu’on pourrait penser. Car, dès que les deux pôles magnétiques ne sont plus diamétralement opposés, on pourrait bien tirer d’un lieu proposé quelconque un arc de grand cercle à chaque pole magnétique; mais ces deux arcs feroient un angle ensemble, & il n’y auront point de raison, pourquoi l’un plutôt que l’autre marqué la direction magnétique. D’où je conclus que dans le cas présent aussi, où les deux pôles magnétiques sont diamétralement opposés, le grand cercle ALB ne marque pas la direction magnétique, parce que ce cercle est le plus court chemin du point L à chaque pole magnétique : mais que la raison doit être cherchée dans un autre principe. Ce principe ne dépend pas sans doute de la surface de la terre : car, quand même la terre feroit couverte d’une croûte quelconque non magnétique, la direction magnétique demeurerait la même. Il faut donc qu’elle dépende uniquement des pôles magnétiques, & il est évident qu’elle feroit toujours dans un même plan avec les pôles magnétiques. C’est aussi la raison, pourquoi dans notre cas le grand cercle tiré par les pôles magnétiques & le lieu proposé marque la juste direction, puisqu’il représente le plan qui passe par les pôles magnétiques. Donc, en quelque endroit, soit hors de la terre, soit au dedans, qu’on veuille déterminer la direction magnétique, elle se trouvera toujours dans le plan tiré par cet endroit proposé & les pôles magnétiques.

PROBLEME II.

XXIV. Sous chaque méridien de la terre PLp déterminer le lieu L, où la déclinaison magnétique est la plus petite, les deux pôles magnétiques étant diamétralement opposés.

SOLUTION.

Ayant posé les distances AP = B = α, & pour un lieu quelconque L l’angle APL = q, & l’arc PL = p, la déclinaison en L, bui soit = δ tournant vers l’orient, nous avons trouvé

Mém. de l’Acad. Tom. XIII.

Aa tang
\[\tan \theta = \frac{\sin a \sin q}{\cos a \sin p - \sin a \cos p \cos q}, \]

où il s'agit de déterminer l'arc \(p \) en sorte, que cette expression devienne la plus petite. Or on trouvera

\[\cos a \cos p + \sin a \sin p \cos q = 0, \quad \text{ou} \quad \tan p = \frac{1}{\tan a \cos q}. \]

Pour connoître mieux cette expression, tirons aussi du triangle sphérique \(APL \) le côté \(AL \), qu'on trouve

\[\cos AL = \cos a \cos p + \sin a \sin p \cos q, \]

d'où l'on voit que la déclinaison sous le méridien \(PLp \) est la plus petite là, où \(\cos AL = 0 \), c'est à dire, où l'arc \(AL \) est de \(90^\circ \).

Ayant trouvé ce point \(L \), où \(\cos a \cos p + \sin a \sin p \cos q = 0 \), on aura pour la plus petite déclinaison

\[\tan \delta = \frac{\sin a \sin p \sin q}{\cos a} = \tan a \sin p \sin q. \]

Mais sachant à présent, que dans le triangle sphérique \(APL \) le côté \(AL \) est un quart de cercle, on en tirera cette proportion

\[1 : \sin q = \sin a : \sin \delta \quad \text{donc} \quad \sin \delta = \sin a \sin q, \]

d'où l'on voit que parmi les plus petites déclinaisons de tous les méridiens la déclinaison fera la plus grande dans celui qui est perpendiculaire au méridien \(PEp \), où \(q = 90^\circ \), ou l'on aura \(\delta = a \) & \(p = 90^\circ \).

Coroll. 1.

XXV. Donc si nous tirons un grand cercle \(COD \) perpendiculaire à l'axe magnétique \(AB \), qui représentera l'équateur magnétique, ce grand cercle coupera tous les méridiens aux points \(O \), où la déclinaison magnétique est la plus petite pour chacun.

Coroll. 2.

XXVI. Puisque l'arc \(AC = BC = 90^\circ \), on aura l'arc \(PAC = a + 90^\circ \), & l'angle \(ACO \) étant droit, la résolution du
triangle PCO donnera : $\tfrac{\tang OC}{\cof a \tang q}$, & comme nous avons déjà trouvé $\tfrac{\tang PO}{\tang a \cof q} = \tfrac{1}{\tang a \cof q}$.

Coroll. 3.

XXVII. Que a marque la plus petite déclinaison sous le méridien POP, de sorte que $\sin a = \sin a \sin q$, & posant $PO = m$, de sorte que $\cot m = - \tang a \cof q$. Pour un autre lieu quelconque L du même méridien, où $PL = p$, on trouvera la déclinaison δ en sorte

$$\tang \delta = \frac{\sin a \sin m}{\cof a \cof (m-p)} = \frac{\tang a}{\cof (m-p)}.$$

Coroll. 4.

XXVIII. Cela devient plus évident si nous tirons les arcs OA & LA, où ayant dans le triangle AOL les côtés $AO = 90^\circ$, $OL = m-p$ avec l'angle $POA = a$, on trouve l'angle $PLA = \delta$, en sorte que $\tang \delta = \frac{\tang a}{\cof OL}$: d'où l'on voit que de part & d'autre du point O, à égales distances $OL = OL$, la déclinaison sera la même.

Coroll. 5.

XXIX. Si l'on prend $CZ = 90^\circ$, ou que Z soit le pôle du grand cercle $PAPB$, la déclinaison magnétique y est $= a$, qui est la plus grande dans tout l'équateur magnétique COD. Car en C & D la déclinaison événouit, & si nous posons l'arc $CO = r$, la déclinaison en O étant $= a$, on trouve $\tang a = \tang a \sin r$.

Remarque.

XXX. Puisque la plus petite déclinaison sous le méridien POP en O est $= a$, en sorte que $\sin a = \sin a \sin APO$, par tout ailleurs la déclinaison sera plus grande. Donc si nous cherchons selon l'idée de M. Halley des lignes, qui passent par tous les endroits, où la déclinaison est donnée & moindre que a, ces lignes ne sauroient couper nulle part le méridien POP. Et puisque la déclinaison en Z est $= a$, toutes
tes les lignes Halleyennes qui marquent une moindre déclinaison que
\(a \), n’atteindront nulle part au méridien qui passe par le point \(Z \). Or
les lignes Halleyennes, qui marquent une plus grande déclinaison que \(a \),
doivent passer par tous les méridiens, comme nous verrons dans le
problème suivant, où nous examinerons la figure des lignes Halleyennes.

PROBLEME III.

XXXI. Les pôles magnétiques étant diamétralement opposés, dé-
terminer les lignes Halleyennes qui passent par tous les endroits, où la
déclinaison de la boussole est d’une quantité donnée.

SOLUTION.

Si l’on cherche la ligne, où il n’y a aucune déclinaison, à cause
de \(\tan \delta = 0 \) on aura \(\sin q = 0 \), d’où l’on voit que cette ligne
comprend les deux méridiens opposés \(PA \) et \(PB \); tous lesquels
la déclinaison magnétique évanouit comme j’ai déjà remarqué.

Mais que la déclinaison proposée \(\delta \) ait une valeur quelconque, &
prenant l’angle \(q \) à plaisir, on trouvera la distance \(PL = p \) par cette
equation : \(\cot a \sin p = \sin a \cos p \cos q = \sin a \sin q \cot \delta \)
dont la construction la plus commode se tire du §. 27. Qu’on cher-
che un arc \(m \) tel que \(\cot m = - \tan a \cos q \), & ayant
\[\tan \delta = \frac{\tan a \sin q \sin m}{\cot (m - p)} \]
ont aura \(\cos (m - p) = \frac{\tan a \sin q \sin m}{\tan \delta} \).

Ou bien, après avoir trouvé l’angle \(m \), qu’on cherche un autre \(n \) en
forte que \(\cos n = \frac{\tan n \sin q \sin m}{\tan \delta} \); & de là on tirera deux valeurs
pour l’arc \(PL = p \), savoir ou \(p = m + n \) ou \(p = m - n \).

Puisque \(\tan a = - \frac{\cot m}{\cot q} \), on pourra aussi déterminer l’arc \(n \) par

Cette équation : \(\cos n = \frac{\tan q \cos m}{\tan \delta} \).
COROLL. 1.

XXXII. La solution deviendra impossible, ou la ligne Halleyenne cherchée ne passera point par le méridien PLP, lorsque \(\tan \delta < \tan q \cos m \), ou bien lorsque \(\tan \delta^2 < \frac{\sin a^2 \sin q^2}{\cos a^2 + \sin a^2 \cos q^2} \) à cause de \(\cot m = \tan a \cos q \). C'est à dire lorsque \(1 + \tan \delta^2 > \frac{1}{\cos a^2 + \sin a^2 \cos q^2} \), ou lorsque \(\sin \delta < \sin a \sin q \) ou bien \(\sin q > \frac{\sin \delta}{\sin a} \), comme nous l'avons déjà remarqué §. XXX.

COROLL. 2.

XXXIII. Si l'on prend \(q \) négatif, l'arc \(m \) demeure le même, & si l'on prend outre cela \(\delta \) négatif, l'arc \(n \) ne changera pas non plus : d'où l'on entend que dans l'autre hémisphère les lignes Halleyennes sont les mêmes, en se rapportant à une déclinaison égale & contraire \(- \delta \).

COROLL. 3.

XXXIV. Si la déclinaison \(\delta \) doit être \(= a \), on aura \(\cos n = \sin q \sin m \), ce qui est toujours possible : & prenant outre cela \(q = 90^\circ \), à cause de \(m = 90^\circ \), on aura \(n = 0 \), & les deux valeurs de \(p \) se réunissent dans une seule \(p = 90^\circ \) ou bien cette ligne aura en \(Z \) un point double.

COROLL. 4.

XXXV. Si l'on pose \(q = 0 \), on aura \(\cos m = - \tan r \), ou \(90^\circ - m = - a \), & partant \(m = 90^\circ + a \). Ensuite \(\cos n = 0 \), donc \(n = 90^\circ \), les deux valeurs de \(p \) seront donc \(p = a \) & \(p = 180^\circ - a \). D'où nous voyons que toutes les lignes Halleyennes passent par les deux pôles magnétiques A & B.

COROLL. 5.

XXXVI. Toutes ces lignes passent aussi par les deux pôles P & P: car faisant \(p = 0 \), on a: \(- \sin a \cos q = \sin a \sin q \cot \delta \)

\[\Lambda a \equiv 3 \]

ou
ou bien \(\tan g \theta = \tan g \delta \): ce qui donne \(g = 180^\circ - \delta \), laquelle valeur est toujours possible. De même faisant \(p = 180^\circ \), on aura \(\tan g q = \tan g \delta \) ou \(q = \delta \), qui est aussi toujours possible.

I. REMARQUE.

XXXVII. Mais posant \(q = 180^\circ - \delta \), outre la valeur \(p = 0 \) on trouve encore une autre
\[
\frac{\cos a}{\sin a \cos \delta} = \frac{1 - \cos p}{\sin p} = \tan \frac{1}{2} p
\]
& posant \(q = \delta \), la première équation donne
\[
\frac{\cos a \sin p}{\sin a \cos p} = \sin a \cos \delta = \sin a \cos \delta
\]
donc
\[
\frac{\cos a}{\sin a \cos \delta} = \frac{1 + \cos p}{\sin p} = \cos \frac{1}{2} p
\] ou bien
\[
\tan \frac{1}{2} p = \tan a \cos \delta.
\]

Au reste il ne faut pas être surpris, que toutes les lignes Halleyennes passent tant par les pôles magnétiques que par les pôles naturels de la terre: car dans les pôles magnétiques toute déclinaison doit être censée y avoir lieu, & dans les pôles naturels de la Terre il en est de même, puisque tous les méridiens s'y confondent.

2. REMARQUE.

XXXVIII. Il ne sera pas hors de propos d’enseigner ici en général la résolution d’une telle équation:
\[
A \sin p + B \cos p = C
\]
n’sans extraction de la racine carrée. On n’a qu’à chercher un angle \(m \) de sorte \(\tan m = \frac{A}{B} \), & puisque
\[
B \tan m \sin p + B \cos p = C \]
or
\[
B \cos (m - p) = C \cos m \] on aura
\[
\cos (m - p) = \frac{C \cos m}{B} = \frac{C \sin m}{A} = \cos n
\]
d’où à cause de \(\cos n = \cos -n \) on tire deux valeurs savoir \(p = m \pm n \).

PRO.
PROBLEME IV.

XXXIX. Déterminer plus exactement la figure des lignes Halleyennes, lorsque la déclinaison magnétique δ est plus petite que la distance des pôles magnétiques aux pôles de la terre $AP = Bp = a$.

SOLUTION.

Une telle ligne passera d'un pôle magnétique A au pôle opposé p de la Terre. Soit donc $AYFp$ une telle ligne, & pour en connoitre mieux le cours, qu'on prenne un arc $AX = x$ pour abscisse & l'arc $XY = y$, pour appliquée qui y soit perpendiculaire. Donc, puisque $PX = a + x$, à cause de $APY = q$ & $PY = p$, on aura $\cos p = \cos(a + x) \cos y$; $\tan q = \frac{\sin y}{\sin p}$ & $\cot q = \frac{\tan(a + x)}{p}$; substituons ces valeurs dans l'équation $\tan \delta (\cos a \sin p - \sin a \cos p \cot q) = \sin a \sin q$ pour avoir

$$\tan \delta \left(\cos a \sin p - \frac{\sin a \cos p^2 \tan (a + x)}{\sin p} \right) = \frac{\sin a \sin y}{\sin p}$$

qui se réduit en substituant pour p la valeur à celle-ci

$$\tan \delta (\cos a - \cos x \cos (a + x) \cos y^2) = \sin a \sin y$$

D'où l'on voit que l'appliquée y évanouit en prenant tant $x = 0$, que $x = 180 - a$; ensuite si $x = -a$, & $\sin x = 180^\circ$, de sorte que l'appliquée y évanouit dans les quatre points A, p, P & B. Ensuite la valeur de y demeure la même quand on écrit au lieu de x tant $180 - a - x$; que $-a - x & 180 + x$; d'où l'on connoit que la courbe fort par des branches semblables des quatre pôles A, p, P & B, de sorte que la courbe AFp ayant deux branches semblables AF & pF, il y a de l'autre côté pour la même déclinaison δ une courbe semblable qui passe de P à B. La courbe AFp aura donc un point F, qui répond à l'abscisse $x = AE = 90 - \frac{x}{2} a$, où l'appliquée EF sera la plus grande. Pour la trouver, posons $x = 90^\circ - \frac{x}{2} a$, & puisque $\cos x \cos (a + x) = -\sin \frac{1}{2} a \sin \frac{1}{2} a = -\frac{1}{4} + \frac{1}{4} \cos$ notre équation sera

$$\tan \delta$$
tang $\delta \left(\cos a + \frac{1}{2} \cos y^2 - \frac{1}{2} \cos a \cos y^2 \right) = \sin a \sin y$

qui se réduit à celle-ci :

$$\sin y^2 + \frac{2 \cot \frac{1}{2} \sin y}{\sin \delta} = \cot \frac{1}{2} a^2$$

ou $$\sin y = -\frac{\cot \frac{1}{2} a \left(\cos \delta + 1 \right)}{\sin \delta}$$

L'une de ces deux valeurs donne

$$\sin y = -\cot \frac{1}{2} a \cot \frac{1}{2} \delta$$

& l'autre $$\sin y = \tan \frac{1}{2} \delta \cot \frac{1}{2} a = \frac{\tan \frac{1}{2} \delta}{\tan \frac{1}{2} a}$$.

Or la première est impossible, puisque $$a < 90$$ & $$\delta < a$$, d'où tant que $$\cot \frac{1}{2} a$$ que $$\cot \frac{1}{2} \delta$$ surpasseront le sinus total ; & partant nous aurons $$\sin EF = \frac{\tan \frac{1}{2} \delta}{\tan \frac{1}{2} a}$$, qui ne peut avoir lieu à moins qu'il ne soit $$\delta < a$$, comme nous le supposons.

Par la différentiation nous apprenons que la branche F Y A fait en A avec le premier méridien un angle $\equiv \delta$; & toutes les autres branches font un angle égal avec ce premier méridien.

Coroll. 1.

XL. Si l'on prend δ négatif, on n'a qu'à poser aussi y négatif pour avoir la même équation, ce qui est une marque, que pour les déclinaisons occidentales on a sur l'autre hémisphère les mêmes lignes Halleyennes.

Coroll. 2.

XLI. Plus la déclinaison δ est petite, plus la ligne Halleyenne A F p approche du méridien A p ; & plus elle approche de la quantité a, plus son milieu F approche du sommet Z de l'hémisphère.

Coroll. 3.

XLII. On voit aussi, que ces lignes se rapportent également aux pôles naturels de la Terre, qu'aux pôles magnétiques ; & que tant que
que \(\delta < a \), ces lignes sortent d'un pole magnétique, & qu'elles rentrent dans le pole naturel opposé, sans atteindre jusqu'au méridien, qui passe par le milieu de l'hémisphère.

I. REMARQUE.

XLIII. Quand on construit quelques unes de ces lignes, on verra qu'elles ont au milieu F une promiscuité vers le sommet de l'hémisphère, qui devient de plus en plus grande & pointue, plus la déclinaison \(\delta \) approche de la quantité \(a \); & quand \(\delta = a \), elle acquiert une vraie pointe angulaire, qui se change en une intersection de deux courbes, comme nous verrons après.

2. REMARQUE.

XLIV. Comme toutes les appliquées XY se réunissent au sommet Z de l'hémisphère, le quart de cercle EFZ sera un diamètre de la courbe : auquel si nous tironnons de Y perpendiculairement l'arc YV & que nous nommions \(ZV = t \) & \(VY = u \), nous aurons \(\cos ZY = \sin y = \cos t \cos u \), & \(\tan XE = \tan (90° - \frac{1}{2} a - x) \)

\[\cot \left(\frac{1}{2} a + x \right) = \frac{\tan u}{\sin t} = \frac{\sin u}{\sin t \cos u} \]

De là nous tironnons

\[\cos \left(\frac{1}{2} a + x \right) = \frac{\sin u}{\cos y} \]

& \[\sin \left(\frac{1}{2} a + x \right) = \frac{\sin t \cos u}{\cos y} \]

\[\cos x = \frac{\cos \frac{1}{2} a \sin u + \sin \frac{1}{2} a \cos t \cos u}{\cos y} \]

& \[\cos \left(a + x \right) = \frac{\cos \frac{1}{2} a \sin u - \sin \frac{1}{2} a \cos t \cos u}{\cos y} \]

& par tant

\[\cos x \cos \left(a + x \right) \cos y^2 = \cos \frac{1}{2} a^2 \sin u^2 - \sin \frac{1}{2} a^2 \sin t^2 \cos u^2 \]

doù nous trouvons entre \(t \) & \(u \) cette équation

\[\cos \frac{1}{2} a - \cos \frac{1}{2} a^2 \sin u^2 + \sin \frac{1}{2} a^2 \sin t^2 \cos u^2 = \cot \delta \sin a \cos t \cos u \]

qui se change en celle-ci :

\[\sin \frac{1}{2} a^2 \cos^2 \cos u^2 = 2 \cot \delta \sin \frac{1}{2} a \cos \frac{1}{2} a \cos t \cos u + \cos \frac{1}{2} a^2 \sin u^2 \]

& par l'extraction de racine :

\[\sin \frac{1}{2} a \cos t \cos u = -\frac{\cos \delta \cos \frac{1}{2} a \pm \sqrt{(\cos \frac{1}{2} a^2 - \sin \delta^2 \sin u^2)}}{\sin \delta} \]

Mem. de l'Acad. Tom. XIII.
De là on voit, que si $u = 0$, ce qui arrive au point F, il y aura
\[\sin \frac{1}{2} a^2 \sin t^2 = 2 \cot \delta \sin \frac{1}{2} a \sin t + \sin \frac{1}{2} a^2, \quad \text{ou} \quad \cot t = \frac{\tang \frac{1}{2} \delta}{\tang \frac{1}{2} a}.\]
Or posons u infiniment petit, & soit $t = f + v$, prenant $f = ZF$,
de sorte que $\cot f = \frac{\tang \frac{1}{2} \delta}{\tang \frac{1}{2} a}$ & $FV = v$ infiniment petit, & l’on trouve :
\[v \sin \alpha \sin f + \frac{1}{2} v \sin \alpha \cot f = uu \sin \delta - \frac{1}{2} uu \sin \alpha \cot f.\]
Donc, tant que $\delta < a$, la courbe sera perpendiculaire en F à l’arc ZE,
mais si $\delta = a$, & $f = 0$, on aura l’équation $\frac{1}{2} uv = \frac{1}{2} uu$, ou $u = v$,
de sorte que l’angle de la courbe en F avec ZE est un demi-droit, & les branches de la courbe se couperont en Z à angles droits.

PROBLEME V.

Fig. 5. Déterminer plus exactement la figure de la ligne Halleyenne qui passe par les lieux, où la déclinaison magnétique δ est égale à la distance des pôles $AP = Bp = a$.

SOLUTION.

Posant $\delta = a$, on aura entre l’angle $APY = q$ & l’arc $PY = p$
cette équation
\[\cot a \sin p - \sin a \cot p \cot q = \cot a \sin q.\]
Mais, si nous rapportons la courbe au méridien $PAE\overline{p}$ par les coordonnées orthogonales $AX = x$ & $XY = y$, l’équation sera :
\[\cot a = \cot x \cot (a + x) \cot y^2 = \cot a \sin y,\]
qui en divisant par 1 — $\sin y$ se réduit à
\[\cot a = \cot x \cot (a + x) (1 + \sin y)\]
Or le diviseur $1 + \sin y$ marque que la courbe a un point au sommet Z, où toutes les appliquées se réunissent, l’autre équation donne
\[\sin y = \frac{\cot a - \cot x \cot (a + x)}{\cot x \cot (a + x)} = \tang x \tang (a + x)\]
Si nous prenons les abscisses du point E en posant $EX = z$ à cause de $x = 90^\circ - \frac{1}{2} a - z$, nous aurons

$$\sin y = \cot (\pi + \frac{1}{2} a) \cot (\pi - \frac{1}{2} a) = \frac{\csc \frac{1}{2} a - \sin z^2}{\sin z^2 - \sin \frac{1}{2} a^2} = \frac{\csc a + \csc 2z}{\csc a - \csc 2z}.$$

D'où l'on voit que $\csc 2z$ doit être négatif, & partant $z > 45^\circ$ avant que le rayon ZX coupe la courbe, & que si $z = 45^\circ$ ce rayon touche la courbe au sommet Z, où quatre branches semblables $ZP, ZA, Zp & ZB$ se coupent à angles droits. Or si nous partageons l'intervalle PA en deux parties égales en C, & que nous nommons l'arc $CX = v$, & l'arc $ZY = t$, à cause de $\csc t = \sin y$ & $z = 90^\circ - v$, nous aurons $\csc t = \frac{\csc a - \csc 2v}{\csc a + \csc 2v}$: d'où nous voyons que tant que $v < \frac{1}{2} a$ ou $CX < CA$, la valeur de t surpasse 90°, & alors la continuation des arcs $ZA & ZP$ passe dans l'autre hémisphère, où la déclinaison sera $180^\circ + a$, puisque tang δ est la même, soit qu'on prenne $\delta = a$ ou $\delta = 180^\circ + a$. Or prenant $v = \frac{1}{2} a$ ou $CX = CA$, on a $\csc t = 0$, ou $t = 90^\circ$ ce qui donne le point A, & en augmentant v au delà de $\frac{1}{2} a$, on trouve la courbe AY, jusqu'à ce qu'on pose $v = 45^\circ$, où $ZY = t$ évanescent. D'ailleurs prenant x infiniment petit, y le sera aussi, & on aura

$$\frac{y}{x} = \tan a$$

ce qui indique que chaque branche ZA fait en A avec le premier méridien un angle $= a$. Après cette inclinaison les quatre branches montent au sommet Z, où elles se croisent à angles droits.

COROLL. I.

XLVI. Tandis que la déclinaison δ était plus petite que a, les lignes Halleyennes forment du point A pour rentrer en P, par une courbe continue AFP, qui avait au milieu F une prominence vers le sommet Z. Or à présent cette prominence atteint le sommet Z & se change en un angle droit.
COROLL. 2.

Fig. 5. XLVII. La figure $A F p$, qu’avoient les lignes Halleyennes pendant que $\delta < a$, s’en va lorsque $\delta = a$ en celle-cy $A Y Z y p$, & perd en même tems la continuité: car maintenant l’arc $Z p$ n’est plus la continuation de l’arc $A Z$, mais plutôt celle de l’arc $P Z$, & l’arc $A Z$ à la continuation par l’arc $Z B$.

COROLL. 3.

XLVIII. Maintenant donc où $\delta = a$, des deux lignes Halleyennes qui représentent cette déclinaison, l’une $A Z B$ va d’un pole magnétique A à l’autre B, & l’autre $P Z p$ va d’un pole naturel de la Terre P à l’autre p: pendant qu’auparavant où $\delta < a$ ces lignes ont été tirées d’un pole magnétique au pole naturel opposé.

REMARQUE.

XLIX. Nous verrons bientôt, que lorsque $\delta > a$, les lignes Halleyennes prennent un tour encore différent, en passant d’un pole magnétique au pole naturel, qui lui est le plus proche. Entre ces deux cours différents le cas $\delta = a$ tient un milieu, & ne suit ni l’un ni l’autre, participant également de chacun: d’où cette ligne, que je viens de décrire, est fort remarquable. Elle est aussi la seule qui forme une intersection, pendant que les branches des autres ne se coupent nulle part.

PROBLEME VI.

Fig. 6. L. Déterminer plus exactement la figure des lignes Halleyennes, lorsque la declinaison magnétique δ est plus grande que la distance des polés $A P = P p = a$.

SOLUTION.

Soit $A F P$ une de ces lignes où $\delta > a$, & pour en connoitre le cours, nous n’ayons qu’à prendre l’abscisse $A X = x$ négative dans le problème IV. en laissant $X Y = y$: & alors nous aurons :

\[\tan \delta \left(\cos a - \cos x \cos(a-x) \cos y^2 \right) = \sin a \sin y \]

Ou prenant E au milieu de l’arc $A P$, de sorte que $A E = \frac{1}{2} a$, si nous po-
posons $EX = z$, à cause de $x = \frac{1}{2} a - z$, nous aurons:

$$\tan \delta (\cos a - \cos(\frac{1}{2} a - z) \cos(\frac{1}{2} a + z) \cos(2)) = \sin a \sin y$$

doù nous voyons que prenant z négatif ou positif l'équation ne change point, de sorte que les arcs AF et PF seront semblables. Pour trouver le milieu de cette courbe F soit $z = 0$; et on aura

$$\tan \delta (\cos a - \cos \frac{1}{2} a^2 \cos y^2) = \sin a \sin y \quad \text{ou bien}$$
$$\tan \delta (\cos \frac{1}{2} a^2 \sin y^2 - \sin \frac{1}{2} a^2) = 2 \sin \frac{1}{2} a \cos \frac{1}{2} a \sin y$$

doù l'on tire:

$$\sin y = \frac{\sin \frac{1}{2} a (\cos \delta + 1)}{\sin \delta \cos \frac{1}{2} a} = \tan \frac{1}{2} \frac{a}{\sin \delta}$$

qui n'est réelle que si $\delta > a$. Par conséquent ayant $\sin EF = \frac{\tan \frac{1}{2} \frac{a}{\sin \delta}}{\tan \frac{1}{2} \delta}$, on voit que plus la déclinaison δ est grande, plus sera petit l'arc EF.

Nous avons déjà vu, que si $z = \frac{1}{2} a$ ou $x = 0$, l'appliquée y évanouit aussi, & que la courbe AY est inclinée au méridien AP d'un angle $YAP = \delta$. Mais, posant $z = \frac{1}{2} a$, le quart de cercle ZYX coupera la courbe encore dans un autre point, Soit donc $x = 0$, & l'équation $\tan \delta \cos a \sin y^2 = \sin a \sin y$, outre la valeur $y = 0$ donne encore

$$\sin y = \frac{\tan \frac{a}{\sin \delta}}{\tan \delta}.$$ L'abscisse $EX = z$ aura donc un maximum, qui sera là où

$$\cos(\frac{1}{2} a - z) \cos(\frac{1}{2} a + z) = \frac{\sin a}{\tan \delta \sin y} \quad \text{et} \quad \sin y = \frac{\tan \delta - \sqrt{(\tan \delta^2 - \tan a^2)}}{\tan a}$$

et partant

$$\cos a + \cos 2z = \frac{\cos a (\tan \delta + \sqrt{(\tan \delta^2 - \tan a^2)})}{\tan \delta}$$

donc

$$\cos 2z = \cos a \sqrt{\left(1 - \frac{\tan a^2}{\tan \delta^2}\right)} = \sqrt{\left(1 - \frac{\sin a^2}{\sin \delta^2}\right)}$$

de sorte que

$$\sin 2z = \frac{\sin a}{\sin \delta} \quad \text{et} \quad \sin y = \frac{\sin \delta \cos a - \sqrt{(\sin \delta^2 - \sin a^2)}}{\cot \delta \sin a}.$$
COROLL. 1.

LI. Puisque \(\cos (\frac{1}{4} a - z) \cos (\frac{1}{4} a + z) = \frac{1}{2} \cos a - \frac{1}{4} \cos 2z \), l'équation entre \(y \) & \(z \) sera exprimée en sorte :

\[
\tan \delta (2 \cos a - \cos a \cos y^2 - \cos 2z \cos y^2) = 2 \sin a \sin y
\]

d'où l'on tire sans extraction de racine :

\[
\cos 2z = \frac{\cos a (1 - \sin y^2)}{\cos y^2} - \frac{2 \sin a \sin y}{\tan \delta \cos y^2}.
\]

COROLL. 2.

LII. Les lignes des grandes déclinaisons sont donc renfermées tant entre les pôles septentrionaux \(P \) & \(A \), que les méridionaux \(B \) & \(p \), & approchent d'autant plus de l'arc \(AP \), plus la déclinaison est grande : l'arc \(AP \) lui-même étant la ligne, où la déclinaison est de 180°.

REMARQUE.

LIII. La 7ème Figure représente l'état des lignes Halleyennes pour les déclinaisons orientales, lorsque la distance des pôles \(AP \) & \(Bp \) est de 30°. Les parties du méridien \(Ap \) & \(Pb \) sont les lignes, où il n'y a point de déclinaison. Ensuite on y voit de part & d'autre les lignes, où la déclinaison est de 10° & de 20°, qui étant plus petites que 30° vont d'un pôle magnétique au pôle naturel opposé, de \(A \) en \(p \) & de \(B \) en \(P \). Pour la déclinaison de 30° les lignes se croisent au milieu, & tant vers le Nord que le Sud on voit les lignes, où la déclinaison est de 45° & de 90°. Les lignes du même nom ne semblent pas être liées ensemble, mais se terminer brusquement dans les pôles : mais il faut remarquer, qu'elles tiennent ensemble par une ligne où la déclinaison est 180° + \(\delta \), ou bien 180° - \(\delta \) vers l'ouest, qui joint ou les pôles boreaux ou méridionaux, dans l'autre hémisphère. Car puisque \(\tan (180° + \delta) = \tan \delta \), ces deux cas sont compris dans la même équation. Au reste on remarque déjà un bel accord entre ces lignes & celles, qu'on voit sur la Carte de Halley; surtout pour les grandes déclinaisons ; mais en donnant aux pôles magnétiques une autre situation, on verra bientôt, qu'il sera possible de parvenir à un accord parfait, autant que l'imperfection des observations en est susceptible.

SE
SECONDE SECTION.
Les deux Poles magnétiques de la Terre étant en deux méridiens opposés.

PROBLEME VII.

LIV. Les deux poles magnétiques de la terre n'étant pas diamétralement opposés, déterminer la direction de l'aiguille aimantée pour un lieu quelconque dans la surface de la terre.

SOLUTION.

Soient A & B les deux poles magnétiques de la terre, & L un lieu quelconque, où il faut déterminer la direction de l’aiguille. Or il est certain, que la direction magnétique se trouve toujours dans un plan qui passe par les deux poles magnétiques. Concevons donc une section du Globe, qui passe par le lieu L & les deux poles magnétiques A & B ; & cette section sera un petit cercle dont la tangente en L sera la direction de l’aiguille L. Cherchons donc d’abord le pole ou le centre de ce petit cercle sur la surface de la terre : pour cet effet divisons l’arc du grand cercle ACB, qui passe par les deux poles magnétiques A & B, en deux parties égales au point C, & par C tirez un grand cercle CO perpendiculaire à ACB, qui sera l’équateur magnétique, dont chaque point O est également éloigné des deux poles magnétiques. Le centre du petit cercle cherché sera donc quelque part dans cet équateur magnétique en O, d’où les arcs de grands cercles OA & OL seront égaux. Poisson la demi-distance des poles magnétiques ou l’arc $AC = BC = c$; & pour le lieu proposé L, auquel on tire de C l’arc du grand cercle CL, soit l’angle $ACL = n$ & l’arc $CL = m$; soit de plus l’arc inconnu $CO = \phi$. Donc, tirant l’arc du grand cercle AO, nous aurons $\cos AO = \cos \phi$; or à cet arc AO doit être égal l’arc OL. Mais le triangle sphérique OCL,

Fig. 8.
OCL, où $OCL = m$; $CO = \Phi$ et $OCL = 90^\circ - n$ donne

$$\cos \phi = \cos m \cos \Phi + \sin m \sin \phi \sin n = \cos e \cos \phi$$

d'où nous tirons $\tan \phi = \frac{\cos e - \cos m}{\sin m \sin n}$.

Or le même triangle OCL donne

$$\tan CLO = \frac{\sin \phi \cos n}{\cos \phi \sin m - \sin \phi \cos m \sin n}$$

ou, si nous substituons pour ϕ sa valeur trouvée, nous aurons:

$$\tan CLO = \frac{\cos n (\cos e - \cos m)}{\sin m^2 \sin n - \cos m \sin n (\cos e - \cos m)}$$

ou $\tan CLO = \frac{\cos n (\cos e - \cos m)}{\sin n \cos e \cos m \sin n}$.

Or la direction magnétique $L\delta$ étant perpendiculaire au rayon du petit cercle, ou à l'arc OL, nous aurons $\tan CL\delta = \cot. CLO$ et partant

$$\tan CL\delta = \frac{\sin n (1 - \cos e \cos m)}{\cos n (\cos e - \cos m)} = \frac{\tan n (1 - \cos e \cos m)}{\cos e - \cos m}$$

d'où nous connaissons l'angle $CL\delta$ que fait la direction magnétique $L\delta$ avec l'arc CL, dont la position est donnée.

Remarque.

LV. La solution de ce problème & des suivants est fondée sur ce principe, que la direction magnétique sur la terre suit toujours le petit cercle, qui passe par le lieu proposé & les deux pôles magnétiques de la terre. On m'accordera bien ce principe à l'égard de la véritable direction magnétique, qui renferme ensemble l'inclinaison & la déclinaison; mais, puisque la déclinaison dont il s'agit ici, se règle sur le plan vertical, qui passe par la direction magnétique, on en pourroit tirer quantité d'objections, dont la discussion meneroit trop loin, & surpasserot les bornes de notre connoissance. Mais on pourra en sorte fixer les idées, qui entrent ici en considération, que ces objec-
rions n'y aient plus de prise. Si l'on plaçoit là les poles magnétiques de la Terre, où l'axe magnétique traverse la surface de la Terre, on ferait sans doute fort emballé; puisque la déclinaison n'y ferait plus indéterminée, à moins que l'axe magnétique ne passeroit par le centre de la Terre. Par cette raison j'établirai les poles magnétiques de la Terre là, où la véritable direction magnétique est verticale, de sorte que dans ces endroits il ne puisse y avoir question de la déclinaison; & ce sera dans ces points, où toutes les lignes Halleyennes doivent aboutir, de même qu'aux poles naturels de la Terre. Or déterminant en forte les poles magnétiques de la terre, sans s'embarrasser de l'axe véritable magnétique, les objections mentionnées n'empêcheront plus, qu'on n'accorde le principe établi, c'est à dire que partout l'aiguille aimantée se dirige suivant la tangente du petit cercle tiré sur la surface de la Terre par chaque lieu proposé, & lesdits poles magnétiques, où l'inclinaison devient verticale.

Problème VIII.

LVI. Les deux poles magnétiques en deux méridiens opposés étant donnés, trouver la déclinaison magnétique pour un lieu proposé quelconque L.

Solution.

Soient A & B les deux poles magnétiques, le boréal A dans le méridien PAC, & le méridional B dans le méridien opposé PcBp, à des distances inégales des poles naturels P & p, savoir: AP = a & Bp = b. Qu'on coupe l'arc AB = 180° = a + b en deux parties égales en C, & soit AC = BC = 90° = \(\frac{a + b}{2}\) = c; & l'arc PC = 90° + \(\frac{a + b}{2}\) = a + c = d. Maintenant pour le lieu proposé L, par lequel passe le méridien PLp, fait la longitude vers l'ouest ou l'angle CPL = q, & l'arc PL = p; donc, ayant dans le triangle sphérique CPL les côtés PC = d, PL = p, avec l'angle Cc com.
compris \(\text{CPL} = q \), on déterminera les éléments précédents \(\text{CL} = m \) & l'angle \(\text{PCL} = n \) en forte

\[
\cos m = \cos d \cos p + \sin d \sin p \cos q \quad \&
\tan n = \frac{\sin p \sin q}{\sin l \cos p - \cos d \sin p \cos q}
\]

De là, posant \(\text{L} \delta \) pour la direction magnétique, on aura

\[
\tan \text{CL} \delta = \frac{\sin p \sin q (1 - \cos c \cos d \cos p - \cos c \sin d \sin p \cos q)}{(\sin \cos p - \cos d \sin p \cos q)(\cos c - \cos d \sin p \sin q)}
\]

Or le même triangle sphérique \(\text{CPL} \) fournit

\[
\tan \text{CLP} = \frac{\sin d \sin q}{\cos d \sin p - \sin d \cos p \cos q}
\]

duquel angle il faut soustraire l'angle \(\text{CL} \delta \) pour avoir la déclinaison magnétique \(\text{PL} \delta = \delta \) tournée vers l'Est. Posons pour rendre cette opération plus aisée :

\[
\cos d \cos p + \cos d \sin p \cos q = A \]
\[
\sin l \cos p - \cos d \sin p \cos q = B; \cos d \sin p - \sin d \cos p \cos q = C
\]

& ayant :

\[
\tan \text{CLR} = \frac{\sin d \sin q}{C}; \quad \tan \text{CL} \delta = \frac{\sin p \sin q (1 - A \cos c)}{B(\cos c - A)}
\]

on en tirera

\[
\tan \delta = \frac{\cos c \sin q (B \sin d + A C \sin p) - \sin q (A B \sin d + C \sin p)}{\cos c (B C - A \sin d \sin p \sin q^2) + \sin d \sin p \sin q^2 - A B C}
\]

Mais, en substituant les valeurs pour \(A, B, C \) on trouve

\[
B \sin d + A C \sin p = (1 - AA) \cos p; A B \sin d + C \sin p = (1 - AA) \cos d
\]
\[
B C - A \sin d \sin p \sin q^2 = (1 - AA) \cos q
\]
\[
\sin d \sin p \sin q^2 - A B C = (1 - AA) (\sin d \sin p + \cos d \cos p \cos q)
\]

donc, divisant le haut & le bas par \(1 - AA \), on obtiendra :

\[
\tan \delta = \frac{\cos c \cos p \sin q - \cos d \sin q}{-\cos c \cos q + \sin d \sin p + \cos d \cos p \cos q}.
\]
COROLL. 1.

LVII. Puisque \(c = 90^\circ - \frac{a + b}{2} \) & \(d = 90^\circ + \frac{a + b}{2} \): la formule trouvée prendra cette forme:

\[
\tan \delta = \frac{\left(\sin \frac{a-b}{2} \cos p + \sin \frac{a+b}{2} \right) \sin q}{\cos \frac{a+b}{2} \sin p - \sin \frac{a-b}{2} \cos p \cos q - \sin \frac{a+b}{2} \cos q}
\]

où je remarque que le numérateur est toujours positif pour l'hémisphère supérieur que nous avons en vue, où \(\sin q \) est positif; & quand même on prend \(\cos p = -1 \), l'autre facteur \(\sin \frac{a-b}{2} \cos p + \sin \frac{a+b}{2} \) demeure pourtant positif.

COROLL. 2.

LVIII. De là il s'ensuit que par tout cet hémisphère supérieur la déclinaison est positive, ou dirigée vers l'est; car, quoique le dénominateur devienne négatif, l'angle \(\delta \) ne devient pas pour cela négatif, mais seulement plus grand que \(90^\circ \).

COROLL. 3.

LIX. La raison en est, que le dénominateur ne saurait devenir négatif sans passer par zero: or dans ce cas il marque un angle droit, & partant s'il devient négatif, la tangente négative de \(\delta \) ne saurait subitement indiquer un angle négatif. Mais l'autre signification d'un angle obtus aura uniquement lieu.

COROLL. 4.

LX. Pour l'autre hémisphère il y en a de même, à l'égard des déclinaisons occidentales, qui y auront uniquement lieu; comme dans le cas précédent, où les pôles magnétiques étoient diamétralement opposés. D'où l'on comprend qu'il n'y a d'autre ligne sans déclinaison, que les deux méridiens opposés, qui passent par les pôles magnétiques.
REMARQUE.

LXI. Par rapport à la réduction de l'expression, que nous avons d'abord trouvée pour tang d, on évitera des calculs fort ennuyeux, quand on fait faire usage de la relation, que les trois lettres A, B, C ont entr'elles. D'abord il faut remarquer que

\[1 - AA = \sin p^2 \sin q^2 + BB = \sin d^2 \sin q^2 + CC \]

ensuite leur comparaison fournissent ces formules,
\[B \sin d + A \cos d = \cos p ; \quad C \sin p + A \cos p = \cos d \]
\[A \sin d - B \cos d = \sin q ; \quad A \sin p - C \cos p = \sin d \cos q \]
\[C + B \cos q = \cos q^2 ; \quad B + C \cos q = \sin d \cos p \sin q^2. \]

Pour en faire usage prenons la dernière formule,
\[\sin d \sin p \sin q^2 - ABC, \] qui à cause de \[C = \cos d \sin p \sin q^2 - B \cos q \]
se change en
\[\sin d \sin p \sin q^2 - A B \cos d \sin p \sin q^2 - \frac{1}{2} \sin q^2. \]
Mais \[BB = 1 - AA = \sin p^2 \sin q^2 \] donne
\[\sin d \sin p \sin q^2 - A B \cos d \sin p \sin q^2 + A \sin d \sin p \sin q^2 - A \sin p^2 \sin q^2 \cos q \]
\[- A \sin p^2 \sin q^2 \cos q. \]

Or \[B \cos d = \sin p \cos q - A \sin d \] produit
\[\sin d \sin p \sin q^2 + A \sin p^2 \sin p^2 \cos q - AA \sin d \sin p \cos q^2 \]
\[+ A \sin p^2 \sin q^2 \cos q, \]
ou \[(1 - AA) \sin d \sin p \sin q^2 + A \sin p^2 \sin q^2 \cos q, \] le reste est évident. Ce même artifice fera d'une grande utilité dans la suite.

PROBLEME IX.

LXII. Trouver les lignes Halleyennes, qui passent par tous les lieux de la terre, où la déclinaison de la bouffole est d'une quantité donnée.

SOLUTION.

Soit \(d \) la déclinaison proposée, qui étant positive sera dirigée vers l'Est, mais vers l'Ouest, si elle est négative. Par la position des
poles magnétiques les quantités c & d seront données, & si L est un lieu, par où passe la ligne cherchée, il s'agit de trouver une équation entre $PL = p$ & $CPL = q$. Or l'équation trouvée dans le problème précédent fournit celle-ci:

$$\tan \delta \sin d \sin p + (\tan \delta \cos d \cos q - \cos c \sin q) \cos p = \tan \delta \cos c \cos q - \cos d \sin q,$$

au lieu de laquelle je considérerais cette forme générale

$$A \sin p + (B \cos q - C \sin q) \cos p = D \cos q - E \sin q$$

de sorte que pour le cas présent,

$$A = \tan \delta \sin d; \quad B = \tan \delta \cos d; \quad C = \cos c; \quad D = \tan \delta \cos c; \quad E = \cos d$$

Maintenant, pour trouver la valeur de p pour chaque angle donné q, je commence par chercher un angle r de sorte que

$$\tan r = \frac{A}{B \cos q - C \sin q}$$

& j'aurai

$$\frac{A \cos (r - p)}{\sin r} = D \cos q - E \sin q.$$ Qu'on cherche ensuite deux angles m & n de sorte que

$$\tan m = \frac{B}{C} \quad & \quad \tan n = \frac{D}{E}$$

& on aura:

$$\tan r = \frac{A \cos m}{C \sin (m - q)} = \frac{A \sin m}{B \sin (m - q)}$$

$$\frac{A \cos (r - p)}{\sin r} = \frac{E \sin (n - q)}{\cos n} = \frac{D \sin (n - q)}{\sin n}.$$ Cela posé, en substituant pour les lettres A, B, C, D, E, leurs valeurs, on fera les opérations suivantes:

$$\tan m = \frac{\tan \delta \cos d}{\cos c}; \quad \tan n = \frac{\tan \delta \cos c}{\cos d}$$

$$\tan r = \frac{\tan \delta \sin m}{\sin (m - q)}; \quad \cos (r - p) = \frac{\cos c \sin (n - q) \sin r}{\sin d \sin n}.$$
Ces formules étant fort propres pour le calcul trigonométrique, on trouvera aisément $r & r — p$; car supposons qu'on trouve col$(r — p) = \cos s$, à cause de $r — p = \pm s$, les deux valeurs de p seront $p = r \pm s$.

Coroll. 1.

LXII. En chaque méridien donc il y a deux points par où chaque ligne Halleyenne passe, à moins que ces deux points ne se réunissent dans un seul, ou qu'ils ne deviennent imaginaires. Le premier arrive si l'expression $\frac{\cos c \sin (n — q) \sin r}{\sin d \sin n}$ devient égale à l'unité, & l'autre si elle surpasse l'unité.

Coroll. 2.

LXIV. Concevons qu'on tire par C un grand cercle CO, qui coupe le méridien PLP en forte en O, qu'il devienne $PO = r$; & partant $OL = r — p$: & ayant dans le triangle CPO les côtés $CP = d$; $PO = r$ & $CPO = q$, à cause de $\tan gr = \frac{\sin d \sin m}{\cos d \sin (m — q)}$ on trouve

$$\tan PCO = \frac{\sin m \sin q}{\cos d \sin (m — q)} = \frac{\tan m}{\cos d}$$

de sorte que, puisque $\tan m = \frac{\tan \delta \cos d}{\cos c}$, on aura

$$\tan PCO = \frac{\tan \delta}{\cos c}$$

ou

$$\tan pCO = \frac{\tan \delta}{\cos c}.$$

Coroll. 3.

LXV. Il est donc remarquable que la position du grand cercle CO ne dépend pas de l'angle $CPO = q$ & qu'elle a lieu pour tous les méridiens. Et puisque l'arc $OL = r — p$, est tant négatif que positif, ce grand cercle CO sera le diamètre des lignes Halleyennes pour la même déclinaison magnétique δ.

co-
COROLL. 4.

LXVI. Puisque $AC = c$, si nous tirons de A un grand cercle AE, qui passe avec CA un angle $CAE = \delta$, on trouvera l'arc AE égal à un quart de cercle. Donc, pour construire le cercle diamétral CO, on n'a qu'à appliquer en A un quart de cercle AE sous un angle $CAE = \delta$, & les deux points C, E détermineront ce cercle.

COROLL. 5.

LXVII. Si nous posons $q = 0$, nous aurons $r = d$ & $r - p = c$ donc $p = d + c$. Mais, ayant posé $c = 90° - \frac{1}{2} a + \frac{1}{2} b$ & $p = 90° - \frac{1}{2} a + \frac{1}{2} b$, ces deux valeurs de p sont a & $180° - b$, qui marquent les deux pôles magnétiques, auxquels toutes les lignes Halleyennes aboutissent.

1. REMARQUE.

LXVIII. Par la première équation on voit, que prenant la déclinaison δ négative, ou occidentale, l'équation demeure la même, pourvu qu'on prenne aussi l'angle q négatif. Dans ce cas les lignes Halleyennes tomberont dans l'autre hémisphère, & feront tout à fait semblables à celles du supérieur: il suffit donc d'avoir calculé ces lignes pour un hémisphère.

2. REMARQUE.

LXIX. Les formules que nous avons données pour l'usage du calcul, ne sont pas applicables au cas, où la déclinaison doit évanouir, puisque alors l'angle q évanouit nécessairement : la ligne sans déclinaison étant l'un & l'autre méridien, qui passent par les pôles magnétiques. Or, si la déclinaison est très petite, l'angle q ne saurait surpasser une certaine grandeur : pour la trouver, soit la déclinaison δ & l'angle q extrêmement petit, & à cause de $m = \frac{\delta \cos \delta}{\cos c}$ & $n = \frac{\delta \cos \delta}{\cos d}$:

$$\tan r = \frac{\delta \sin d}{\delta \cos d - q \cos c}$$ & ensuite

$$\cos (r - p) = \frac{\delta \cos \delta - q \cos c}{\sqrt{(\delta \delta - 2 \delta q \cos c \cos d + q q \cos c^2)}}$$

ou
où la plus grande valeur, donc q est susceptible, est

$$\delta \sin c \sqrt{\sin c^2 - \sin d^2} = \delta \cos \frac{1}{2} (a - b),$$

d'où l'on voit, combien les lignes Halleyennes pour les très petites déclinaisons s'éloignent des méridiens PAp et PBp. Mais il est clair en même temps, que ces lignes s'avancent d'autant plus vers le milieu de l'hémisphère, plus la déclinaison croit, et qu'il y en aura une, comme dans le cas précédent, dont les branches se coupent mutuellement, et qui fera la limite entre les petites et les grandes déclinaisons.

PROBLÈME X.

LXX. Trouver la déclinaison δ, dont la ligne Halleyenne est composée des branches, qui se coupent mutuellement.

SOLUTION.

A l'endroit où les deux branches se coupent, l'arc du méridien PL qui passe par cet endroit, aura deux valeurs égales. Donc, dans la solution du problème précédent, l'expression

$$\frac{\cos c \sin (n - q) \sin r}{\sin d \sin n},$$

sera égale à l'unité, prise positivement ou négativement. Or, afin que cette expression ne devienne pas plus grande que l'unité, il faut que l'unité soit la plus grande valeur. Voilà donc à quoi revient la solution du problème : il faut que l'expression

$$\frac{\cos c \sin (n - q) \sin r}{\sin d \sin n}$$

soit égale à l'unité, et que son différentiel soit en même temps $= 0$. Mais, tant pour la facilité du calcul, que pour rendre notre recherche plus générale, je me rendrai aux formules plus générales

$$\tan \theta = \frac{A}{B \cos q - C \sin q} \quad \& \quad \cos (r - p) = \frac{(D \cos q - E \sin q) \sin r}{A}$$

et il faut qu'il soit

premièrement

$$(D \cos q - E \sin q) \sin r = \pm A$$

et ensuite

$$dr \cos r (D \cos q - E \sin q) = dq \sin r (D \sin q + E \cos q).$$

Or
Or le différentiel logarithmique de l'équation $\tan r = \frac{A}{B \cos q - C \sin q}$

donne \(\frac{dr}{\sin r \cos r} = \frac{dq(B \sin q + \cos q)}{B \cos q - \sin q} \):

d'où nous tirons :

\[
\cos r^2 = \frac{(B \cos q - C \sin q) (D \sin q + E \cos q)}{(B \sin q + C \cos q) (D \cos q - E \sin q)}
\]

\& partant \(\sin r^2 = \frac{C D - B E}{(B \sin q + C \cos q) (D \cos q - E \sin q)} \)

d'où la valeur de $\tan r$ fournit

\[
\frac{\sin r^2}{\cos r^2} = \frac{A A}{C D - B E} = \frac{B \cos q - C \sin q}{D \sin q + E \cos q},
\]

\& la première égalité :

\[
\frac{A A}{C D - B E} = \frac{D \cos q - E \sin q}{B \sin q + C \cos q}.
\]

Posons pour abréger \(\frac{A A}{C D - B E} = M \), \& nous trouverons

\[
\tan q = \frac{D - M C}{E + M B} = \frac{B - M E}{C + M D}, \quad \& \text{partant}
\]

\[
(1 - MM) (C D - B E) = M (B B + C C - D D - E E)
\]

ou bien

\[
A^4 + A A (B B + C C - D D - E E) = (C D - B E)^2.
\]

Maintenant, si nous substituons les valeurs du problème précédent, on aura

\[
B B + C C - D D - E E = -(1 - \tan \delta^2) (\cos d^2 - \cos c^2)
\]

\[
C D - B E = - \tan \delta (\cos d^2 - \cos c^2) \quad \& \quad A = \tan \delta \sin d,
\]

\& de là on tirera enfin

\[
\tan \delta = \frac{\sqrt{\cos d^2 - \cos c^2}}{\sin d} = \frac{\sqrt{\sin a \sin b}}{\cos \frac{1}{2} (a + b)}, \quad \text{ou} \quad \cos \delta = \frac{\sin d}{\sin c},
\]

à cause de \(\cos d = - \sin \frac{1}{2} (a + b) \) \& \(\cos c = \sin \frac{1}{2} (a - b) \).

"Mém. de l'Acad. Tom. XIII." D d En-
Ensuite, pour le lieu de l'intersection, on aura à cause de
\[M = \frac{\tan \delta \sin d^2}{\cot d^2 - \cot c^2} = \frac{1}{\tan \delta}, \quad \& \quad E + MB = 0, \] l'angle \(q = 90^\circ \); et \(\sin r^2 = \frac{BE - CD}{BE} = \frac{\cot d^2 - \cot c^2}{\cot d^2} \); et \(\cot r = \frac{\cot c}{\cot d} \)
donc \(\cot (r - p) = \frac{E}{A} \sin r = 1 \), et puisque \(p = r \), on aura
\[\sin p = \frac{\sqrt{(\cot d^2 - \cot c^2)}}{\cot d} \tan \delta \tan d = \frac{\tan \delta \cot \frac{1}{2} (a + b)}{\sin \frac{1}{2} (a + b)} = \frac{\sqrt{\sin a \sin b}}{\sin \frac{1}{2} (a + b)}; \quad \text{ou} \quad \cot p = \frac{\sin \frac{1}{2} (a - b)}{\sin \frac{1}{2} (a + b)}; \]
ayant déjà trouvé \(q = 90^\circ \).

Corollaire 1.

LXXI. Puisque
\[\frac{B \cos q - C \sin q}{D \sin q + E \cos q} = \frac{D \cos q - E \sin q}{B \sin q + C \cos q}, \]
cette équation donne d'abord la tangente de \(2q \) savoir
\[\tan 2q = \frac{2(BC - DE)}{BB + CC + DD - EE}, \]
& puisque dans notre cas \(BC = DE \), on en conclut d'abord
\(2q = 180^\circ \) & \(q = 90^\circ \). Donc, \(E + MB = 0 \), ou
\(C + MD = 0 \), & partant \(M = \frac{C}{D} \), ou
\[\tan \delta \sin d^2 = \frac{1}{\tan \delta}, \] c'est à dire \(\tan \delta = \frac{V(\cot d^2 - \cot c^2)}{\sin d} \)
comme auparavant.

Corollaire 2.

LXXII. Or la même valeur de tangente \(2q \) donnée
\[\sin 2q = \frac{2(BC - DE)}{V \left[4(BC - DE)^2 + (BB - CC - DD + EE)^2 \right]} \]
&
& ensuite ayant
\[2A + B + C - D - E = E = \sqrt{4(CD - BE)^2 + (BB + CC - DD - EE)^2}\]
l'égalité des signes radicaux fournit
\[2A + B + C - D - E = \frac{2(BC - DE)}{\sin 2q}, \text{ ou bien}\]
\[2A + B + C - D - E = \frac{BB + CC + DD - EE}{\cos 2q}\]
donc \[\tan q^2 = \frac{AA + BB - DD}{AA + CC - EE} \cdot\]

COROLL. 3.

LXXIII. Pour notre cas nous aurons donc :
\[\tan q^2 = \frac{\tan \delta^2 \sin d^2}{\tan \delta^2 \sin d^2 - \cos d^2 + \cos c^2},\]
& puisque \(\tan 2q = 0\), & partant \(q = 90\), nous en concluons d'abord
\[\tan \delta^2 \sin d^2 = \cos d^2 - \cos c^2, \text{ ou } \tan \delta = \frac{\sqrt{(\cos d^2 - \cos c^2)}}{\sin d},\]
ou bien \[\tan \delta = \frac{\sqrt{\sin a \sin b}}{\cos \frac{1}{2} (a + b)}\]

COROLL. 4.

LXXIV. Le signe radical marque tant une valeur positive que négative pour la déclinaison \(\delta\): de sorte que si \(\delta\) donne une intersection dans la ligne Halleyenne, la déclinaison \(\delta\) en donnera aussi une, qui sera toujours dans un méridien perpendiculaire à ceux qui passent par les pôles magnétiques.

COROLL. 5.

LXXV. Si \(Bp = AP\) ou \(b = a\), la déclinaison \(\delta = \pm a\) donnera une ligne à intersection, & pour l'intersection on aura \(q = 90^\circ\), & \(p = 90^\circ\). Mais, si \(b = 0\), ou si un pôle magnétique étoit dans \(D d^2\) un
un pôle naturel de la Terre, on aurait $b = c$, et $p = c$: l’intersection ferait alors dans ce pôle de la Terre, pour une déclinaison infiniment petite.

I. REMARQUE.

LXXVI. Examinons plus soigneusement le cas, où l’intervalle $Bp = b$ évanouit, et puisque alors $c = 90^\circ - \frac{1}{2} a$ et $d = 90^\circ + \frac{1}{2} a$, pour trouver les lignes Halleyennes nous aurons d’abord $\tan m = \tan n = \tan b$. Soit donc $m = n = \tan b$, et nous trouverons

$$\tan r = \tan \frac{1}{2} a \sin \left(\delta + q\right)$$

$$\cos\left(r - p\right) = -\cos r$$

donc $r - p = \pm (180^\circ - r)$ de sorte que

$$p = 180^\circ \text{ ou } p = 2r - 180^\circ$$

Chaque méridien n’est donc coupé que dans un point, l’autre se perdu dans le pôle p. Or, pour trouver plus commodément l’autre point, posons $a = 90^\circ + t$, et il faudra chercher l’angle t de sorte que $\tan t = \tan \frac{1}{2} a \sin \left(\delta + q\right)$, et alors on aura $p = 2t$.

Si $q = c$, on a $t = \frac{1}{2} a$: d’où l’on voit que toutes les lignes Halleyennes sortent du pôle A, et qu’elles rentrent dans l’autre pôle P.

2. REMARQUE.

LXXVII. Dans la supposition que le pôle méridional magnétique soit réuni avec le pôle antarctique p, j’ai posé la distance $AP = 30^\circ$, et la figure 10 représente les lignes Halleyennes pour les déclinaisons de 5°, 10°, 15° et autres qui sont toutes semblables à celles, que nous avons trouvées dans la première section pour les grandes déclinaisons. Toutes ces courbes, à ce qu’on voit, aboutissent aux pôles P et A, et n’entrent nulle part dans le pôle D, quoique ce point se trouve dans le calcul appartienne à chacune de ces lignes. En construisant ces lignes on s’aperçoit d’abord, qu’elles contiennent des branches semblables, et qu’un grand cercle perpendiculaire à PAB, et tiré par le
le milieu de l'intervalle A P, en seroit le diamètre. Or, si nous rapportons les lignes Halleyennes à ce diamètre, on verra bientôt, qu'elles sont toutes de petits cercles, qui passent par les deux pôles A & P. Soit R le rayon d'un de ces petits cercles pour la déclinaison δ, prenant pour R l'arc du grand cercle, qui en représente le rayon dans la surface de la sphère, & on trouve \(\cot R = \cot \frac{1}{2} a \cot \omega \), prenant \(\tan \omega = \frac{\sin \frac{1}{2} a}{\tan \delta} \), ou bien on aura \(\tan R = \frac{\tan \frac{1}{2} a}{\sin \delta} \). La démonstration de ces formules peut conduire à de fort beaux Théorèmes de la Trigonométrie sphérique, mais ce cas est trop particulier, pour que je m'y arrête.

PROBLEME XI.

LXXVIII. Déterminer plus exactement la figure des lignes Halleyennes, lorsque les pôles magnétiques ne sont pas diamétralement opposés, mais qu'ils se trouvent pourtant en des méridiens opposés.

SOLUTION.

Ayant distribué cy-dessus les lignes Halleyennes en trois ordres, dont le premier contient les lignes, qui vont d'un pôle magnétique au pôle naturel qui lui est contraire ; & le troisième celles, qui vont d'un pôle magnétique au pôle naturel, qui lui est le plus proche. Entre ces deux ordres le second est quasi la limite, & ne renferme qu'une seule ligne, composée de deux branches, qui se croisent quelque part, & forment un point d'intersection, comme on peut voir dans la septième figure. Ces trois ordres ont lieu dans tous les cas ; quoiqu'il puisse arriver quelquefois, qu'un ou deux évanouissent ou se confondent ensemble, comme nous venons de voir dans le cas, où un pôle magnétique tombait dans un pôle naturel : car, puisque la ligne du second ordre répondait à une déclinaison infiniment petite, tant elle que le premier ordre tout entier se confondait avec la ligne sans déclinaison, & toutes les déclinaisons donnoient des lignes du troisième ordre.
ordre. Mais, si aucune des distances $AP = a$ et $BP = b$ n'évanouit, les trois ordres seront distingués, et pour les bien connaître, on n'a qu'à déterminer la ligne du second ordre, qui répond à la déclinaison d, en forte que

$$\tan d = \frac{V(\cos d^2 - \cos c^2)}{\sin d} = \frac{V \sin a \sin b}{\cos \frac{1}{2} (a + b)}$$

d'où l'on tire

$$\sin d = \frac{V(\cos d^2 - \cos c^2)}{\sin c} \quad \text{et} \quad \cos d = \frac{\sin d}{\sin c} = \frac{\cos \frac{1}{2} (a + b)}{\cos \frac{1}{2} (a - b)}$$

cette dernière expression rationnelle est la plus commode pour en tirer la déclinaison d requise pour la ligne du second ordre ; qui marque aussi tant $- d$ pour la déclinaison orientale que d pour l'occidentale. Ensuite nous avons vu que le point d'intersection tombe dans le méridien, où $g = 90^\circ$, et sa distance du polé boréal P fera l'arc PL,

en forte que $\cos PL = \frac{\cos c}{\cos d} = \frac{\sin \frac{1}{2} (a - b)}{\sin \frac{1}{2} (a + b)}$. De là on voit que, si $a > b$, ou $AP > BP$, cette intersection tombe vers le sud, et si $AP < BP$ vers le nord.

Après avoir déterminé cette ligne, dont une branche passe d'un pole magnétique à l'autre, et l'autre branche d'un pole naturel à l'autre, les moindres déclinaisons donneront des lignes du premier ordre, et les plus grandes des lignes du troisième ordre : qu'on construira par les formules du § LXII.

Exemple.

LXXIX. Soit la distance des polos au nord $AP = 10^\circ$, et au sud $BP = 20^\circ$: ayant donc $a = 10$, et $b = 20$, on aura

$\cos c = 90 - \frac{1}{2} a + \frac{1}{2} b = 95^\circ$, et $\sin d = 90 - \frac{1}{2} a + \frac{1}{2} b = 105^\circ$.

De là pour la ligne du second ordre on trouvera la déclinaison $d = 14^\circ, 9', 36\frac{2}{3}'$. Soit cette déclinaison orientale, et cherchons dans tous les méridiens de 10° à 10° les points, par où cette ligne passera:
Cette ligne est représentée dans la figure 11ème, où l'on voit ou-
tre les lignes sans déclinaison, les lignes pour la déclinaison de 5° &
10° du premier ordre, & du troisième ordre, on voit les lignes de
20° & 25° de déclinaison. De là on jugera aisément, quelle doit
être la figure de ces lignes dans tout autre cas, où les pôles magné-
ques se trouvent en deux méridiens opposés, quelles que soient leurs
distances aux pôles naturels de la Terre.

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(\varphi)</th>
<th>(s)</th>
<th>(\mathcal{P}L)</th>
<th>(\mathcal{P}L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>105°, 0°</td>
<td>95°, 0°</td>
<td>10°, 0°</td>
<td>200°, 0°</td>
</tr>
<tr>
<td>10</td>
<td>101°, 24</td>
<td>84°, 37</td>
<td>16°, 47</td>
<td>186°, 1</td>
</tr>
<tr>
<td>20</td>
<td>97°, 22</td>
<td>73°, 58</td>
<td>23°, 24</td>
<td>171°, 20</td>
</tr>
<tr>
<td>30</td>
<td>93°, 3</td>
<td>63°, 7</td>
<td>29°, 56</td>
<td>156°, 10</td>
</tr>
<tr>
<td>40</td>
<td>88°, 35</td>
<td>52°, 10</td>
<td>36°, 25</td>
<td>140°, 45</td>
</tr>
<tr>
<td>50</td>
<td>84°, 11</td>
<td>41°, 16</td>
<td>42°, 55</td>
<td>125°, 27</td>
</tr>
<tr>
<td>60</td>
<td>80°, 1</td>
<td>30°, 31</td>
<td>49°, 30</td>
<td>110°, 32</td>
</tr>
<tr>
<td>70</td>
<td>76°, 16</td>
<td>20°, 1</td>
<td>56°, 15</td>
<td>96°, 17</td>
</tr>
<tr>
<td>80</td>
<td>73°, 0</td>
<td>9°, 52</td>
<td>63°, 8</td>
<td>82°, 52</td>
</tr>
<tr>
<td>90</td>
<td>70°, 19</td>
<td>0°, 0</td>
<td>70°, 19</td>
<td>70°, 19</td>
</tr>
<tr>
<td>100</td>
<td>68°, 15</td>
<td>9°, 36</td>
<td>77°, 51</td>
<td>58°, 39</td>
</tr>
<tr>
<td>110</td>
<td>66°, 50</td>
<td>18°, 56</td>
<td>85°, 46</td>
<td>47°, 54</td>
</tr>
<tr>
<td>120</td>
<td>66°, 4</td>
<td>28°, 8</td>
<td>94°, 12</td>
<td>37°, 56</td>
</tr>
<tr>
<td>130</td>
<td>65°, 57</td>
<td>37°, 16</td>
<td>103°, 13</td>
<td>28°, 41</td>
</tr>
<tr>
<td>140</td>
<td>66°, 29</td>
<td>46°, 26</td>
<td>112°, 55</td>
<td>20°, 3</td>
</tr>
<tr>
<td>150</td>
<td>67°, 40</td>
<td>55°, 54</td>
<td>123°, 34</td>
<td>11°, 46</td>
</tr>
<tr>
<td>160</td>
<td>69°, 29</td>
<td>65°, 12</td>
<td>134°, 41</td>
<td>4°, 17</td>
</tr>
<tr>
<td>170</td>
<td>71°, 57</td>
<td>74°, 57</td>
<td>146°, 54</td>
<td>-3°, 0</td>
</tr>
<tr>
<td>180</td>
<td>75°, 0</td>
<td>85°, 0</td>
<td>160°, 0</td>
<td>-10°, 0</td>
</tr>
</tbody>
</table>
TROISIÈME SECTION.
Les deux Poles magnétiques de la Terre se trouvant dans le même méridien.

PROBLÈME XII.

LXXX. Les deux poles magnétiques A & B étant situés dans un même méridien PCp, déterminer la déclinaison magnétique pour chaque lieu proposé de la terre L.

SOLUTION.

Soit la distance du pole magnétique boréal A au pole arctique AP = a, & la distance du pole méridional B au pole antarctique Bp = b. La distance des poles magnétiques AB = 180° - a - b soit partagée au milieu C; soit la moitié CA = CB = 90° - 1/2 a - 1/2 b = c, & l'arc du méridien CP = cd = 90° + 1/2 a - 1/2 b. Qu'on tire par le lieu proposé de la Terre L le méridien PLp, & soit la longitude APL = q, comptant cet angle depuis le méridien PCp vers l'occident, & la distance au pole arctique PL = p; enfin soit δ la déclinaison de la boussole en L, laquelle étant positive soit orientale, de sorte qu'une valeur négative trouvée pour δ marque une déclinaison occidentale. Cela posé, tout le raisonnement demeurant le même, comme dans la section précédente, puisque la différence se trouve uniquement dans les quantités c & d, entant qu'elles dépendent des distances a & b, on trouvera comme cy-dessus la déclinaison magnétique exprimée en forre.

\[\tan \delta = \frac{(\cos c \cos p - \cos d) \sin q}{- \cos c \cos q + \sin d \sin p + \cos d \cos p \cos q}, \]

ou

\[\cos c = \sin \frac{1}{2} (a + b), \quad \cos d = \sin \frac{1}{2} (b - a), \quad \sin d = \cos \frac{1}{2} (b - a). \]

Donc, en substituant ces valeurs, nous aurons

\[\tan \delta = \frac{[\sin \frac{1}{2} (a + b) \cos p - \sin \frac{1}{2} (b - a)] \sin q}{- \sin \frac{1}{2} (a + b) \cos q + \cos \frac{1}{2} (b - a) \sin p + \sin \frac{1}{2} (b - a) \cos p \sin q}. \]
COROLL. 1.

LXXXI. Par tout l'hémisphère que la figure représente, que je nommerai le supérieur, tant sin \(q \) que sin \(p \) ont partout des valeurs positives ; mais si \(q \) & \(p \) surpassent 90°, leurs cosinus deviennent négatifs. D'où l'on voit que le numérateur ne demeure pas toujours positif, comme dans la section précédente.

COROLL. 2.

LXXXII. Quand l'arc \(p \) est pris si grand, que \(\cos p = \frac{\sin \frac{1}{2}(b-a)}{\sin \frac{1}{2}(b+a)} \)
la déclinaison \(\delta \) évanouit, & si l'on augmente au delà l'arc \(PL = p \), la déclinaison deviendra sur ce même hémisphère négative ou occidentale. Et par la même raison les deux espèces de déclinaison auront aussi lieu sur l'autre hémisphère.

COROLL. 3.

LXXXIII. Car, puisque l'équation demeure inaltérée quoi qu'on prenne \(\delta \) & \(q \) négatifs, la déclinaison sur l'hémisphère inférieur suivra la même loi que sur le supérieur, pourvu qu'on change le titre.

COROLL. 4.

LXXXIV. Si les deux distances \(AP & BP \) sont égales \(a = b \); notre expression deviendra \(\tan \delta = \frac{\sin a \cos p \sin q}{-\sin a \cos q + \sin p} \). Donc, si \(p = 90^\circ \), c'est à dire partout sous l'équateur, la déclinaison magnétique sera \(0^\circ \). Or si \(p = 0^\circ \), on aura \(\tan \delta = -\tan q \), ou \(\delta = 180^\circ - q \); dans l'autre pole ou \(p = 180^\circ \), ayant \(\tan \delta = -\sin q \), à cause du numérateur & dénominateur négatif, on aura \(\delta = 180^\circ + q \).

COROLL. 5.

LXXXV. Ces deux dernières conclusions ont aussi lieu en général, d'où l'on voit que sur l'hémisphère supérieur proche du pole boréal \(P \) la déclinaison sera \(\delta = 180^\circ - q \), & partant orientale ; Mem. de l'Acad. Tom. XIII.
mais proche du pôle antarctique p, la valeur $\delta = 180^\circ - q$ indique une déclinaison occidentale.

REMARQUE.

LXXXVI. Voilà donc déjà une grande différence entre le cas de cette section et celui de la précédente. Car auparavant la déclinaison étoit par tout l'hémisphère supérieur orientale, et sur l'autre hémisphère partout occidentale, de sorte que sous chaque méridien elle fut partout de la même espèce. Mais dans le cas présent nous voyons, que sur le même hémisphère les deux espèces ont lieu, de sorte que sous un même méridien l'aiguille décline tant vers l'est que vers l'ouest. Par là est renversé le fondement, sur lequel M. Halley avait établi son système de quatre pôles magnétiques, croyant que s'il n'y en avait que deux, il serait impossible, que les deux espèces de déclinaison régnassent sous un même méridien, ce qui sera mis dans un plus grand jour par les recherches suivantes.

PROBLÈME XIII.

LXXXVII. Les deux pôles magnétiques A et B étant placés dans un même méridien PCp, trouver les lignes Halleyennes, qui passent par tous les endroits, où il n'y a point du tout de déclinaison.

SOLUTION.

Ayant posé comme auparavant les distances $AP = a$ et $Bp = b$, puisque pour un lieu quelconque L déterminé par l'angle $CPL = q$ et l'arc $PL = p$, la déclinaison δ est exprimée en sorte

$$\tan \delta = \frac{\left[\sin \frac{1}{2} (a + b) \cos p - \sin \frac{1}{4} (b - a) \right] \sin q}{\sin \frac{1}{2} (a + b) \cos q + \cos \frac{1}{2} (b - a) \sin p + \sin \frac{1}{4} (b - a) \cos p \cos q},$$

on voit que la déclinaison δ évantouit en deux cas, l'un où $\sin q = 0$, et l'autre où $\cos p = \frac{\sin \frac{1}{2} (b - a)}{\sin \frac{1}{2} (a + b)}$; le premier donne où $q = 0$, ou $q = 180^\circ$, et partant la déclinaison sera nulle, tant sous le méridien PcP qui passe par les deux pôles magnétiques A et B, que sous le méridien PcP qui lui est opposé.
Mais, puisque l'autre équation $\cot \gamma = \frac{\sin \frac{1}{2} (b-a)}{\sin \frac{1}{2} (a+b)}$ est aussi possible, il y a autre ces deux méridiens encore d'autres endroits, où la déclinaison évaneut également; & il est évident, que tous ces lieux font situés dans un cercle parallèle à l'équateur, dont le sinus de latitude est $\frac{\sin \frac{1}{2} (b-a)}{\sin \frac{1}{2} (a+b)}$. La latitude de ce parallèle sera donc boréale si $b > a$, ou si l'intervalle méridional Bp est plus grand que le boréal AP; & elle sera méridionale, si $AP > Bp$. Si ces deux intervalles étoient égaux, ce feroit partout sous l'équateur même, que l'aiguille n'eut point de déclinaison.

Coroll. 1.

LXXVIII. Dans ce cas donc, où les deux pôles magnétiques A & B se trouvent dans le même méridien PCp, il y a autre les deux méridiens PCp & Pcp encore un cercle parallèle MKN, où la déclinaison est nulle, ce qui produit une différence bien remarquable entre ce cas, & celui que j'ai considéré dans la section précédente.

Coroll. 2.

LXXXIX. Pour déterminer ce parallèle MKN, la distance au pole arctique P, ou l'arc PM, est tel que $\cos PM = \frac{\cos \theta}{\cos \gamma} = \frac{\cos CP}{\cos CA}$: d'où l'on déduit cette construction. Du point C comme centre avec l'intervalle CA qu'on décrit sur la sphère le petit cercle AKB, & qu'on tire un méridien PK, qui le touche en K, alors le parallèle cherché MKN passera par le point K.

Coroll. 3.

XC. Par ce parallèle MKN, & les deux méridiens PCp & Pcp, la surface de la Terre est en sorte partagée en quatre parties, que sur l'hémisphère supérieur, la déclinaison est orientale dans la partie boréale, & occidentale dans la partie méridionale. Or au contraire sur l'autre hémisphère la déclinaison est occidentale sur la partie boréale & orientale sur la partie méridionale.
COROLL. 4.

XCI. En passant donc tant l’un des deux méridiens que ce paral-
lele MKN on rencontrera toujours une déclinaison contraire à celle
qu’on a eu auparavant, à moins qu’on ne passe par les points d’in-
ter-
section M ou N, un tel passage devant être cent sé double.

REMARQUE.

XCII. Puisque les lignes sans déclinaison forment deux inter-
sections M & N, il est évident qu’aucune autre ligne Halleyenne ne
fauroit donner des intersecions. Cela est aussi clair par la détermi-
nation de la ligne du second ordre, que nous avons donnée dans la sec-
tion précédente; car, puisqu’ici l’intervalle b doit pris négatif, la
déclinaison δ à laquelle devrait repondre la ligne du second ordre, se-
roit déterminée ainsi \(\tan \delta = \frac{\sqrt{1 - \sin^2 a}}{\cos \frac{1}{2} (a + b)} \), & partant ima-
ginaire. Cependant, puisque le cas \(\delta = 0 \) donne en effet une in-
tersection, il faut remarquer, que l’équation, qui nous a fourni cy-
-des-
-fus cette valeur (69) a été divisible par \(\tan \delta \), de sorte que ce cas
n’en est pas exclus. Donc, parce que la ligne du second ordre se con-
confond ici avec la ligne sans déclinaison, il n’y aura point de lignes du
premier ordre, mais toutes les lignes Halleyennes feront du troisième
ordre. Il ne reste donc que d’en enseigner la construction, ce que je
ferai dans le problème suivant.

PROBLEME XIV.

XCIII. Dans le cas de cette section déterminer les lignes Halleyen-
nes pour tous les degrés de déclinaison tant vers l’Est que vers le Ouest.

SOLU TION.

Fig. 11.

Que \(\delta \) marque la déclinaison proposée, & soit L un point dans
la ligne que nous cherchons. Posant maintenant AC = c; CP = \(d \),
CPL = \(q \) & PL = \(p \), la solution de ce problème fera la même que
celle du problème 9, la diversité de la détermination des quantités
\(c \) & \(d \) par \(a \) & \(b \) n’y causant aucun changement, puisqu’ici nous
avons
avons $c = 90^\circ - \frac{1}{2} a - \frac{1}{2} b \& d = 90^\circ + \frac{1}{2} a - \frac{1}{2} b$. On commencera donc par chercher deux angles $m \& n$ en sorte que

$$\tan m = \frac{\tan \delta \cot d}{\cot c} = \frac{\tan \delta \sin \frac{1}{2} (b-a)}{\sin \frac{1}{2} (a+b)}$$

$$\tan n = \frac{\tan \delta \cot c}{\cot d} = \frac{\tan \delta \sin \frac{1}{2} (a+b)}{\sin \frac{1}{2} (b-a)}$$

Alors pour une longitude $CPL = q$ quelconque on cherchera deux arcs $r \& s$ en sorte que

$$\tan r = \frac{\tan \delta \sin m}{\sin (m-q)} = \frac{\cot \frac{1}{2} (b-a) \sin m}{\sin \frac{1}{2} (b-a) \sin (m-q)}$$

$$\cot s = \frac{\cot \delta \sin (n-q) \sin r}{\sin d \sin n} = \frac{\sin \frac{1}{2} (a+b) \sin (n-q) \sin r}{\cot \frac{1}{2} (b-a) \sin n}$$

De là on conclura deux valeurs pour la distance du point L au pôle arctique P, savoir $p = r \pm s$. Or il suffit de calculer les lignes pour les déclinaisons orientales, puisque celles qui répondent aux occidentales, où δ négatif, leur sont semblables, & tombent dans l'hémisphère opposé. Toutes ces lignes feront du troisième ordre, & sortiront de chaque pôle magnétique pour rentrer dans le pôle voisin de la Terre ; elles feront aussi de part & d'autres avec le grand cercle $PCp\ p\ P$ des angles égaux à la déclinaison δ. Par cette détermination on verra, que les lignes Halleyennes feront à peu près telles, qu'elles sont représentées dans la figure 14. qui n'a pas besoin d'explication.

Coroll. I.

XCIV. On peut observer ici comme cy-dessus, que si l'on applique en A un quart de cercle AE, qui passe avec le méridien PCp un angle $CAE = \delta$ vers l'occident, si δ est positif, le grand cercle tiré par les points $C & E$ coupera tous les méridiens PLp en sorte en O que $PO = r$.

Fig. 14.
COROLL. 2.

Fig. 13. & 14. XCV. Or le petit cercle parallèle à l'équateur MKN, où la déclinaison est nulle, coupe en forte les méridiens de l'hémisphère supérieur, que sous la partie vers le Nord la déclinaison est orientale, & sous la partie vers le Sud occidentale.

REMARQUE.

XCVI. Puisque toutes les lignes Halleyennes sont du troisième ordre, & que chacune ne s'éloigne du pôle qu'à une certaine distance, il sera bon de déterminer pour chaque déclinaison la plus grande distance du pôle arctique, afin qu'on sache jusqu'à quelle latitude chaque degré de déclinaison s'étend. Ce sera le sujet du problème suivant.

PROBLEME XV.

XCVII. Pour chaque déclinaison proposée déterminer la distance, à laquelle la ligne Halleyenne, qui lui répond, s'éloigne du pôle boreal de la Terre.

SOLUTION.

Ayant trouvé entre p & q cette équation:

$$\tan d \sin d \sin p + (\tan d \cos d \cos q - \cos c \sin q) \cos p = \tan d \cos c \cos q - \cos d \sin q$$

il s'agit de déterminer la plus grande valeur de p, laquelle se trouve par la différentiation en supposant $dp = 0$, en sorte

$$(\tan d \cos d \sin q + \cos c \cos q) \cos p = \tan d \cos c \sin q + \cos d \cos q$$

multiplions la première par $\cos q$ & celle-cy par $\sin q$, pour avoir leur somme.

$$\tan d \sin d \sin p \cos q + \tan d \cos d \cos p = \tan d \cos c$$

ou

$$\sin d \sin p \cos q = \cos c - \cos d \cos p$$

Multiplions aussi la première par $\sin q$ & la seconde par $-\cos q$; & alors leur somme donnera

$$\tan d \sin d \sin p \sin q - \cos c \cos p = -\cos d$$

ou
ou \[\sin d \sin p \sin q = \frac{\cos c \cos p - \cos d}{\tan \delta}. \]

Ajoutons ensemble les carrés de ces deux formules pour éliminer \(q \), & nous aurons

\[\tan d^2 \sin d^2 \sin p^2 = \tan d^2 (\cos c - \cos d \cos p)^2 + (\cos c^2 \cos p^2 - \cos d)^2 \]

qui se réduit à celle-ci :

\[\sin d^2 \sin d^2 \sin p^2 = \sin d^2 \cos c^2 - 2 \sin d \cos c \cos d \cos p + \sin d^2 \cos d^2 \cos p^2 + \cos d^2 \cos c^2 \cos d \cos p + \cos d^2 \cos c^2 \cos l \cos p \]

& posant pour \(\cos d^2 \) sa valeur 1 — \(\sin d^2 \), on parvient à

\[\sin d^2 \sin c^2 \sin p^2 = (\cos d - \cos c \cos p)^2 \]

par conséquent :

\[- \sin d \sin c \sin p + \cos p = \cos d \]

dont la résolution est très aisée en cherchant un angle \(g \), que

tang \(g = \sin d \tan c \), & on aura

\[\cos (p + g) = \frac{\cos d \cos g}{\cos c} \]

d'où l'on trouve \(p \) doublement.

Pour la longitude \(q \) à laquelle répond cette plus grande valeur de \(p \), à cause de \(\cos c \cos p - \cos d = \pm \sin d \sin c \sin p \), on obtiendra

\[\sin d \sin p \sin q = \pm \cos d \sin c \sin p, \text{ ou } \sin q = \pm \frac{\cos d^2 \sin c}{\sin d}. \]

& partant tous ces lieux les plus éloignés du pôle \(P \) ne tombent pas dans un même méridien, mais plus la déclinaison \(\delta \) approche de \(90^\circ \), l'angle \(q \) sera plus petit : qui évanaouira, si \(\delta = 90^\circ \).

Coroll. I.

XCVIII. Si l'on pose \(\frac{\cos d \cos g}{\cos c} = \cos h \), on aura \(p + g = \pm h \)

& les deux valeurs de \(p \) seront \(p = g \pm h \). Car puisque pour chaque
que déclinaison δ il y a deux lignes Halleyennes, l'une boréale, l'autre méridionale, dans les hemisphères opposés, la plus petite valeur de p fient pour la boréale, & la plus grande pour la méridionale.

COROLI. 2.

XCIX. Les deux valeurs de ρ répondent aussi à ces deux lignes, de sorte que la positive convient à celle qui est dans l'hémisphère supérieur; & la négative pour l'inférieur. Nous avons déjà observé que si δ est positif, ou la déclinaison orientale, la ligne boréale est dans l’hémisphère supérieur & la méridionale dans l'inférieur.

COROLI. 3.

C. Si la déclinaison δ évanouit, on aura ρ = 0, & partant \[\frac{\cot h}{\cot c} = \frac{\cot d}{\cot e} \], & de là \(p = \pm h \), ce qui est la distance du parallèle, où il n'y a point de déclinaison au pole P. Alors, quoique tous les points de cette ligne soient également éloignés du pole, on trouve pourtant \(\sin q = \pm \frac{\sin c}{\sin d} \), & cet angle convient aux déclinaisons extremèment petites.

COROLI. 4.

CI. Pour de plus grandes déclinaisons la longitude ρ devient plus petite, & si \(δ = 90° \), on aura \(ρ = 0 \), dans ce cas les points les plus éloignés des pôles de la Terre seront dans les pôles magnétiques, par lesquels toutes les ligne Halleyennes passent.

EXEMPLE.

CII. Soit PA = a = 10° & PB = b = 20°; donc \(c = 90° - \frac{1}{2} a = 75° \) & \(d = 85° \); & calculons pour chaque déclinaison tant la plus grande distance p au pole P que l'angle CPL = q.

Décli-
Table: Ligne boreale and Ligne meridionale

<table>
<thead>
<tr>
<th>Déclinaison</th>
<th>Ligne boreale</th>
<th>Ligne méridionale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>distance p</td>
<td>angle q</td>
</tr>
<tr>
<td>0°</td>
<td>70°, 19'</td>
<td>75°, 51'</td>
</tr>
<tr>
<td>5°</td>
<td>53, 19</td>
<td>75, 0</td>
</tr>
<tr>
<td>10</td>
<td>40, 38</td>
<td>72, 43</td>
</tr>
<tr>
<td>15</td>
<td>31, 58</td>
<td>69, 29</td>
</tr>
<tr>
<td>20</td>
<td>26, 6</td>
<td>65, 40</td>
</tr>
<tr>
<td>25</td>
<td>21, 59</td>
<td>61, 30</td>
</tr>
<tr>
<td>30</td>
<td>19, 2</td>
<td>57, 7</td>
</tr>
<tr>
<td>35</td>
<td>16, 51</td>
<td>52, 35</td>
</tr>
<tr>
<td>40</td>
<td>15, 10</td>
<td>47, 58</td>
</tr>
<tr>
<td>45</td>
<td>13, 54</td>
<td>43, 17</td>
</tr>
<tr>
<td>50</td>
<td>12, 54</td>
<td>38, 27</td>
</tr>
<tr>
<td>55</td>
<td>12, 6</td>
<td>33, 47</td>
</tr>
<tr>
<td>60</td>
<td>11, 29</td>
<td>29, 0</td>
</tr>
<tr>
<td>70</td>
<td>10, 37</td>
<td>19, 22</td>
</tr>
<tr>
<td>80</td>
<td>10, 9</td>
<td>9, 42</td>
</tr>
<tr>
<td>90</td>
<td>10, 0</td>
<td>0, 0</td>
</tr>
</tbody>
</table>

Remark

CIII. On voit par ce calcul, que les intervalles entre les lignes Halleyennes deviennent d’autant plus petits, plus la déclinaison augmente : ainsi dans les lignes boréales, celle qui répond à 5° est éloignée de 17° de la ligne sans déclinaison ; or de 5° à 10° il n’y a que 12°, 41′ d’intervalle, & de 10° à 15° l’intervalle est 8°, 40′ & ainsi de suite. Dans les lignes méridionales les intervalles sont plus grands, puisque la distance des pôles du Sud est plus grande : car en général plus les pôles magnétiques sont éloignés des pôles de la Terre, plus les lignes Halleyennes s’éloignent aussi des pôles ; & si les pôles magnétiques se trouvaient effectivement dans un même méridien, par quelques observations des grandes déclinaisons il ne feroit pas difficile d’estimer la vraie distance des pôles magnétiques aux pôles de la Terre.

Mém. de l’Acad. Tom. XIII.
re ; mais, comme il n'est pas probable que cela arrive, & quand même il arriveroit, il ne sauroit durer long tems à cause de leur variabilité, il ne vaut pas la peine que je m'y arrête. Cependant le cas où les deux distances $A P = a$ & $B P = b$ sont égales, semble en lui même si remarquable, qu'il mérite bien un développement particulier, ce que je ferai dans le problème suivant.

PROBLÈME XVI.

CIV. Si les deux pôles magnétiques A & B sont dans le même méridien également éloignés des pôles de la Terre P & p, déterminer les lignes Halleyennes, pour tous les degrés de déclinaison.

SOLUTION.

Puisqu'ici $b = a$, on aura $c = 90^\circ - a$, & $d = 90^\circ$; donc à l'endroit L déterminé par l'arc $PL = p$, & l'angle $CL = q$, la déclinaison δ sera déterminée en forte :

$$\tan \delta = \frac{\sin a \cos p \cos q}{\sin a \cos q + \sin p}.$$

Et partant, si la déclinaison δ est donnée, on aura entre p & q cette équation : $$\tan \delta \sin p - \sin a \sin q \cos p = \tan \delta \sin a \cos q,$$

pour la construire posons $$\tan r = \frac{\tan \delta}{\sin a \sin q},$$

& nous aurons $- \cos (p - r) = \sin a \cos q \sin r$. Soit donc s un rel angle que $\cos s = \sin a \cos q \sin r$, & puisque $p - r = 180^\circ + s$, nous aurons les deux valeurs suivantes p :

$$p = 180^\circ - r - s \quad \& \quad p = 180^\circ - r + s.$$

La ligne sans déclinaison sera donc, outre les méridiens PCp & Pcp, l'équateur même de la Terre, & les déclinaisons orientales se trouveront tant sur l'hémisphère supérieur vers le nord, que sur l'inférieur vers le sud ; le contraire arrive à l'égard des déclinaisons occidentales. Toutes ces lignes Halleyennes appartiennent au troisième ordre, &
si l'on veut savoir seulement leur plus grand éloignement des pôles, le problème précédent fournira une règle bien facile. Car, à cause de \(c = 90^\circ - a\) & \(d = 90^\circ\), la plus grande distance de la ligne Halleyenne pour la déclinaison \(\delta\) au pôle étant posée \(= p\), sera exprimée par cette égalité

\[
\sin \delta \cos a \sin p - \sin a \cos p = 0, \quad \text{ou} \quad \tan p = \frac{\tan \alpha}{\sin \delta},
\]

& la longitude \(q\), à laquelle cette plus grande distance \(p\) se trouve, en sorte : \(\sin q = \cos \delta \cos a\).

Coroll. 1.

CV. On peut rendre le calcul des lignes Halleyennes plus commode, en cherchant les arcs \(r\) & \(s\) en sorte que

\[
\tan r = \frac{\tan \delta}{\sin a \sin q} \quad \text{&} \quad \cos s = - \sin a \cos q \sin r,
\]
car alors les deux valeurs de \(p\) seront

\[p = s - r \quad \text{&} \quad p = - s - r.\]

Coroll. 2.

CVI. En prenant \(\delta\) positif, si l'on donne à \(q\) successivement toutes les valeurs depuis \(0^\circ\) jusqu'à \(180^\circ\), l'arc \(r\) sera toujours moindre que \(90^\circ\), & tant que \(q\) est < \(90^\circ\), l'arc \(s\) sera plus grand que \(90^\circ\), & partout la première valeur \(p = s - r\) positive, & l'autre \(p = - s - r\) négative plus grande que \(90^\circ\), qui s'étendra dans l'hémisphère inférieur au delà de l'équateur.

Coroll. 3.

CVII. Si l'on pose \(q = 90^\circ + \phi\), on aura pour \(r\) la même valeur que posant \(q = 90^\circ - \phi\), mais alors au lieu de \(s\) on trouvera \(180^\circ - s\) : donc les deux valeurs de \(p\) seront :

\[p = 180^\circ - s - r \quad \text{&} \quad p = - 180^\circ + s - r\]
dont la première est positive & l'autre négative.
COROLL. 4.

CVIII. Il suffit donc de pousser le calcul seulement jusqu'à \(q = 90^\circ \), & puisque les lignes Halleyennes dans les quatre quartiers de la Terre sont semblables entr'elles, il suffit de les calculer pour un seul quartier, car alors

\[
q = 90^\circ - \phi \quad \text{donne} \quad p = s - r
\]

& \(q = 90^\circ + \phi \) donne \(p = 180^\circ - s - r \)

prenant \(\tan \theta = \frac{\tan \delta}{\sin \alpha \cos \phi} \) & \(\cos s = \frac{\sin \alpha \sin \phi}{\sin r} \).

COROLL. 5.

CIX. Si l'on prend \(\phi < \delta \), on trouvera la seconde valeur de \(p \) négative, qui répond à la longitude \(q = 90^\circ + \phi \): il en sera donc marqué un point dans l'hémisphère inférieur, où la déclinaison n'est pas \(\delta \), mais \(180^\circ - \delta \): qui convient avec la déclinaison occidentale de \(180^\circ - \delta \), cette ligne étant la continuation de celle qui répond à la déclinaison orientale \(\delta \).

REMARQUE.

CX. La manière dont je me sers ici pour déterminer les lignes courbes tracées sur une surface sphérique, par une équation entre l'angle \(CPL = q \) & l'arc \(PL = p \), peut indiquer le même point en plusieurs manières. Ainsi l'angle \(q \) demeurant le même comme les arcs \(p, \pm 360^\circ + p, \pm 720^\circ + p \) &c. marquent le même point de la sphère, les deux coordonnées \(p \) & \(q \) ensemble peuvent varier pour le même point car on peut aussi rapporter le point \(L \) à la longitude \(180^\circ - q \), ou à cette négative \(-(180 - q) \), en prenant au lieu de \(p \) l'arc négatif \(-p \), ou \(360^\circ - p \). Une telle différence dans nos formules ne change donc rien dans les courbes mêmes.
QUATRIÈME SECTION.

Les deux Poles magnétiques de la Terre étant placés en deux méridiens différents.

PROBLÈME XVII.

CXI. Les deux pôles magnétiques A & B étant placés en deux méridiens différents PAp & PBp, déterminer la déclinaison magnétique pour un lieu quelconque L de la Terre.

SOLUTION.

Soient les distances des pôles magnétiques aux pôles de la Terre AP = a, BP = b, & l'angle que font les deux méridiens des pôles magnétiques, APB = γ. Qu'on tire par les pôles magnétiques l'arc de grand cercle ACB dont le milieu soit en C, & posons CA = CB = c, & on aura à cause de PB = 180° — b ;

\[\cos 2c = \sin a \sin b \cos \gamma - \cos a \cos b. \]

Tirons par C le méridien PC, & au lieu des trois éléments principaux a, b, γ, introduisons dans le calcul ces trois dérivés déterminables par ceux-là :

CA = CB = c ; CP = d ; & l'angle ACP = e.

Maintenant soit proposé un lieu quelconque L de la Terre, où L δ représente la direction magnétique, auquel ayant tiré l'arc du grand cercle CL, soit comme dans le problème septième CL = m & l'angle A CL = n ; & on aura \(\tan \angle CL = \frac{\tan n (1 - \cos c \cos m)}{\cos c - \cos m} \).

Considérons PC comme le premier méridien, & ayant tiré par L le méridien PLp, soit la longitude comptée vers l'occident ou l'angle CPL = q, & l'arc PL = p. Maintenant le triangle sphérique CPL fournira \(\cos CL = \cos m = \cos d \cos p + \sin d \sin p \cos q \)

\[\tan \angle PCL = \tan (n - e) = \frac{\sin p \sin q}{\sin d \cos p - \cos d \sin p \cos q} \]

Ff 3
\[\tan \text{CLP} = \frac{\sin d \sin q}{\cos d \sin p - \sin d \cos p \cos q} = \tan (\text{CL} \delta + \delta) \]

posant la déclinaison en L entant qu'elle est orientale, ou l'angle \(\text{PL} \delta = \delta \). Posons comme dans le problème huitième pour abréger:

\[\cos d \cos p + \sin d \sin p \cos q = A; \quad \sin d \cos p = \cos d \sin p \cos q = B \]

\& nous aurons:

\[\cos n = A; \quad \tan (n - e) = \frac{\sin p \sin q}{B} = \frac{1 + \tan e}{\tan n} \]

\&

\[\tan (\text{CL} \delta + \delta) = \frac{\sin a \sin q}{C} = \frac{\tan \text{CL} \delta + \tan \delta}{1 - \tan \delta \tan \text{CL} \delta} \]

d'où nous tirons:

\[\tan \delta = \frac{\sin d \sin q - C \tan \text{CL} \delta}{\cos c - A} \cdot \frac{1}{\frac{B}{\tan e} + \frac{\sin p \sin q}{\tan \text{CL} \delta}} \]

Or de la nous avons

\[\tan n = \frac{B \tan e + \sin p \sin q}{B - \tan e} \cdot \frac{1}{\frac{A \cos c}{\tan \text{CL} \delta}} \]

\& partant

\[\tan \text{CL} \delta = \frac{B \tan e + \sin p \sin q}{\frac{1}{A}} \cdot \frac{1}{\frac{A \cos c}{\tan \text{CL} \delta}} \]

Donc substituant cette valeur il proviendra

\[\tan \delta = \frac{\sin d \sin q (\cos - A) (B - \tan e \sin p \sin q) - C (1 - A \cos c) (B \tan e + \sin p \sin q)}{C (\cos - A) (B - \tan e \sin p \sin q) + \sin d \sin q (1 - A \cos c) (B \tan e + \sin p \sin q)} \]

ou bien

\[\tan \delta = \frac{-\sin q \sin q (\cos - A) \sin p + \cos d \tan c (B \tan e \sin p \sin q^2 - BC) + \cos d \tan c (B \tan e \sin p \sin q^2 - BC)}{\sin d \sin p \sin q^2 - \cos d \tan e \sin q (A \sin d \sin p \sin q^2 - BC) + \tan e \sin q (A \sin p + B \sin d) - \cos d \tan c \sin q (A \sin d \sin p + B \sin p)} \]

Or nous avons vu ci-dessus §. LV. que

\[AC \sin p + B \sin d = (1 - AA) \cos d; \quad AB \sin d + C \sin p = (1 - AA) \cos d \]

\[A \sin d \sin p \sin q^2 - BC = (1 - AA) \cos d; \quad \sin d \sin p \sin q^2 - ABC = (1 - AA) \]

\[(\sin d \sin p + \cos d \cos p \cos q) \]

donc
donc, puisque le numérateur & dénominateur est divisible par $1-AA$, on trouvera par cette réduction

$$\tan \theta = -\frac{cl\sin \gamma + cf \cdot cl \cdot \sin \gamma + tangle \cdot cl \cdot (\sin \gamma + cl \cdot cl \cdot \sin \gamma)}{\sin \gamma + cl \cdot cp \cdot cl \cdot cl \cdot cl \cdot cl \cdot cl}$$

d'où l'on peut déterminer la déclinaison magnétique pour tous les lieux de la Terre par les trois éléments donnés c, d & e.

COROLL. 1.

CXII. Des trois éléments principaux a, b, γ, les trois autres c, d, e, que nous avons introduits dans le calcul, sont déterminés en sorte

$$\cos 2c = \sin a \sin b \cos \gamma - \cos a \cos b$$

$$\cos d = \frac{\cos a - \cos b}{2 \cos c} \quad \text{et} \quad \tan e = \frac{\sin a \sin b \sin \gamma}{(\cos a + \cos b) \cos c}$$

& de là

$$\tan APC = \frac{\sin b \sin \gamma}{\sin a + \sin b \cos \gamma} \quad \text{et} \quad \tan BPC = \frac{\sin a \sin \gamma}{\sin b + \sin a \cos \gamma}$$

COROLL. 2.

CXIII. Donc, pour le lieu proposé L si l'on prend

$$\tan \theta = \frac{\sin a \sin \gamma}{\sin b + \sin a \cos \gamma}$$

le méridien PLp passera par le pôle magnétique B; & si l'on prend

$$\tan \theta = \frac{\sin b \sin \gamma}{\sin a + \sin b \cos \gamma}$$

le méridien PLp passera par le pôle magnétique A.

COROLL. 3.

CXIV. Réciproquement si les éléments c, d, e sont regardés comme donnés, les primitifs a, b, γ en sont déterminés en sorte :

$$\cos a = \sin c \sin d \cos e + \cos c \cos d$$

$$\cos b = \sin c \sin d \cos e - \cos c \cos d$$

$$\tan APC = \frac{\sin c \sin e}{c \cos d - \sin c \cos d} ; \quad \tan BPC = \frac{\sin c \sin e}{c \cos d + \sin c \cos d}$$

d'où
d'où \[
\tan \gamma = \frac{2 \sin c \cos c \sin d \sin e}{\sin d^2 \sin \varepsilon^2 - \sin e^2 \sin d^2 \sin e^2}.
\]

COROLL. 4.

CXV. Pour faciliter ce calcul, on peut chercher un angle \(f \) de sorte que \(\tan f = \tan e \cos e \), & alors on aura

\[
\cos a = \frac{\cos c \cos (d-f)}{\cos f}; \quad \cos b = \frac{\cos c \cos (d+f)}{\cos f};
\]

\[
\tan APC = \frac{\tan c \sin e \cos f}{\sin (d-f)}; \quad \tan BPC = \frac{\tan c \sin e \cos f}{\sin (d+f)}
\]

& \(\gamma = APC + BPC \).

PROBLEME XVIII.

CXVII. Sous chaque méridien de la Terre déterminer les endroits, où la déclinaison magnétique est d'une quantité donnée ou vers l'Est ou vers l'Ouest.

SOLUTION.

Ayant établi les éléments \(c, d, e \), qui déterminent la position des pôles magnétiques sur la Terre, soit \(\delta \) la déclinaison magnétique proposée, & dirigée vers l'Est, si \(\delta \) est un angle positif. Prenons \(PC \) pour le premier méridien, duquel soit éloigné le méridien proposé \(PLp \) vers l'Ouest de l'angle \(CPL = q \), & il s'agit de trouver l'arc \(PL = p \) par le moyen de l'équation trouvée dans le problème précédent, que je représenter de cette façon

\[
\sin d (\tan \delta + \cos c \tan e) \sin p
\]

\[
+ \left[\cos d (\tan \delta + \cos c \tan e) \cos q - (\cos c - \tan \delta \tan e) \sin q \right] \cos p =
\]

\[
(\tan e + \delta \cos c) \cos q - \cos d \left(1 - \tan \delta \cos c \tan e \right) \sin q
\]

Posons pour abréger

\[
A = \sin d (\tan \delta + \cos c \tan e)
\]

\[
B = \cos d (\tan \delta + \cos c \tan e)
\]

\[
C = \cos c - \tan \delta \tan e
\]

\[
D = \tan e + \tan \delta \cos c
\]

\[
E = \cos d \left(1 - \tan \delta \cos c \tan e \right)
\]

pour
fournit pour avoir à résoudre cette équation:

\[A \sin p + (B \cos q - C \sin q) \cos p = D \cos q - E \sin q \]

Cherchons comme ci-dessus §. LXI. deux arcs \(r \) & \(s \), de sorte que

\[\tan r = \frac{A}{B \cos q - C \sin q} \quad \text{&} \quad \cos s = \frac{(D \cos q - E \sin q) \tan r}{A} \]

& nous aurons pour \(p \) cette double valeur \(p = r \pm s \). Mais, pour rendre ce calcul plus commode, cherchons deux arcs \(m \) & \(n \) tels que

\[\tan m = \frac{B}{C} \quad \text{&} \quad \tan n = \frac{D}{E} \]

d'où nous aurons:

\[\tan r = \frac{A \cos m}{C \sin (m - q)} = \frac{A \sin m}{B \sin (m - q)} \]
\[\tan s = \frac{E \sin r \sin (n - q)}{A \cos n} = \frac{D \sin r \sin (n - q)}{A \sin n} \]

Il ne reste donc que de calculer commodément les valeurs des lettres \(A, B, C, D, E \). Pour cet effet cherchons deux angles \(f \) & \(g \) tels que

\[\tan f = \tan e \cos c \quad \text{&} \quad \tan g = \frac{\tan e}{\cos c} \]

d'où nous tirons

\[A = \frac{\sin d \sin (f + \delta)}{\cos d \cos f}; \quad B = \frac{\cos d \sin (f + \delta)}{\cos d \cos f} \quad \text{&} \quad D = \frac{\cos e \sin (g + \delta)}{\cos d \cos g} \]

\[C = \frac{\cos c \cos (g + \delta)}{\cos d \cos g}; \quad E = \frac{\cos f \cos (g + \delta)}{\cos d \cos g \cos f} \]

Si nous substituons ces valeurs, tous revient à calculer les angles \(f, g, m, n, r, \text{&} s \) par les formules suivantes

\[\tan f = \tan e \cos c \quad ; \quad \tan g = \frac{\tan e}{\cos c} \]

\[\tan m = \frac{\cos d \cos g \sin (f + \delta)}{\cos e \cos f \cos (g + \delta)} \quad ; \quad \tan n = \frac{\cos c \cos f \sin (g + \delta)}{\cos d \cos g \cos (f + \delta)} \]
\[
\tan r = \frac{\tan \alpha \sin m}{\sin (m - q)} ; \quad \text{et enfin} \quad \cos s = \frac{\sin r \sin (n - q)}{\tan \delta \tan (f - \delta) \cos n},
\]
d'où l'on déduit \(p = r + s \).

Coroll. 1.

CXVIII. Il faut ici remarquer, que les deux premiers arcs \(f \) \& \(g \) ne dépendent, ni de la déclinaison proposée \(\delta \), ni de la longitude \(q \); mais uniquement de la position des pôles magnétiques, ou des éléments \(c \), \(d \), \(e \). Ces deux arcs demeurent donc les mêmes pour toutes les déclinaisons \(\delta \) \& toutes les longitudes.

Coroll. 2.

CXIX. Les deux arcs suivants \(m \) \& \(n \) renferment outre les éléments \(c \), \(d \), \(e \) la déclinaison magnétique proposée \(\delta \); mais, comme ils ne dépendent pas de \(q \), ils demeurent les mêmes pour toutes les longitudes ; \& ce ne sont que les deux derniers arcs \(r \) \& \(s \) qu'on est obligé de calculer pour chaque longitude.

Coroll. 3.

CXX. On peut aussi observer que \(\tan m \cdot \tan n = \frac{\tan (f + \delta) \tan (g + \delta)}{\tan (f - \delta) \tan (g - \delta)} \), d'où le calcul de ces deux arcs sera facilité, quoiqu'il soit sans cela assez prompt, puisque la même quantité \(\frac{\cos c \cos f}{\cos d \cos g} \) entre dans l'un \& l'autre.

Coroll. 4.

CXXI. Par ces formules on calculera aisément toutes les lignes Halleyennes, qui passent par tous les endroits, où la déclinaison est la même. Pour la ligne sans déclinaison les arcs \(m \) \& \(n \) seront déterminés plus simplement en sorte

\[
\tan m = \frac{\cos d}{\cos c} \tan f = \cos d \tan e \quad \text{\&} \quad \tan n = \frac{\tan e}{\cos d},
\]

\& de là on aura

\[
\tan r = \frac{\tan d \sin m}{\sin (m - q)} \quad \text{\&} \quad \cos s = \frac{\sin r \sin (n - q)}{\cos c \sin d \sin u}
\]
PROBLEME XIX.

CXXII. Entre toutes les lignes Halleyennes déterminer celle qui est du second ordre, dont les branches forment un point d'intersection.

SOLUTION.

Pour trouver la déclinaison δ à laquelle répond cette ligne du second ordre, ayant représenté notre équation générale en cette forme:

\[A \sin p + (B \cos q - C \sin q) \cos p = D \cos q - E \sin q \]

la solution de ce problème est déjà donnée dans le problème X, & ses corollaires, d'où celle-ey nous fournira la plus simple:

\[\tan 2q = \frac{2(BC - DE)}{-BB + CC + DD - EE} \quad \text{et} \quad \tan q^2 = \frac{AA + BB - DD}{AA + CC - EE} \]

Or les valeurs de A, B, C, D, E exposées dans le problème précédent donnent:

\[BC - DE = -\cos^2 d \sin c^2 \tan e (1 + \tan d^2) \]
\[BB + EE = \cos^2 d (1 + \cos c^2 \tan e^2) (1 + \tan d^2) \]
\[CC + DD = (\cos c^2 + \tan e^2) (1 + \tan d^2) \]

& partant

\[\tan 2q = \frac{-2 \cos d \sin c^2 \tan e}{\cos c^2 + \tan e^2 - \cos d^2 (1 + \cos c^2 \tan e^2)} = \frac{2 \tan q}{1 - \tan q^2} \]

où la déclinaison δ n'entre plus. Mais pour l'autre formule nous trouvons

\[AA + BB - DD = \sin c^2 (\tan d^2 - \tan e^2) \]
\[AA + CC - EE = \sin d^2 (1 + \tan e^2) (\tan d^2 + \cos c^2) \]

& partant

\[\tan q^2 = \frac{\sin c^2 (\tan d^2 - \tan e^2)}{\sin d^2 (1 + \tan e^2) (\tan d^2 + \cos c^2) - \cos d^2 \sin c^2 (1 - \tan d^2 \tan e^2)} \]

\[\tan \frac{g}{2} \]

ou
ou bien

\[
\begin{align*}
t \tan^2 q &= \frac{\tan \delta^2}{\tan \epsilon^2 (\tan \delta^2 + \cos \epsilon^2)} - \cos \delta^2 (1 + \cos \epsilon^2 \tan \epsilon^2)(1 + \tan \delta^2) \\
d'où l'on tire
\end{align*}
\]

\[
\begin{align*}
&1 - \tan^2 q_1 \\
&\frac{(\cos \epsilon^2 + \tan \epsilon^2)(1 + \tan \delta^2)}{(1 + \tan \epsilon^2)(\tan \delta^2 + \cos \epsilon^2)} - \cos \delta^2 (1 + \cos \epsilon^2 \tan \epsilon^2)(1 + \tan \delta^2)
\end{align*}
\]

& partant

\[
\begin{align*}
t \tan q &= \frac{\cos \delta^2 \sin \epsilon^2 \tan \epsilon (1 + \tan \delta^2)}{1 + \tan \epsilon^2 (\tan \delta^2 + \cos \epsilon^2)} - \cos \delta^2 \sin \epsilon^2
\end{align*}
\]

qui se réduisent à celles-ci

\[
\begin{align*}
t \tan q &= \frac{\sin \epsilon^2 \cos \delta^2 \sin \epsilon \cos \epsilon}{1 - \cos \delta^2 (\cos \epsilon^2 - \cos \epsilon^2 \sin \epsilon^2)} - \cos \delta^2 \sin \epsilon^2
\end{align*}
\]

\[
\begin{align*}
t \tan q^2 &= \frac{\sin \epsilon^2 (\cos \epsilon^2 - \cos \epsilon^2 \sin \epsilon^2)}{1 - \cos \delta^2 (\cos \epsilon^2 - \cos \epsilon^2 \sin \epsilon^2)} - \cos \delta^2 \sin \epsilon^2
\end{align*}
\]

& de là nous parvenons à cette équation

\[
\begin{align*}
&\cos \delta^4 \sin \epsilon^2 - \cos \delta^2 (1 + \sin \epsilon^2 \cos \epsilon^2 - \cos \epsilon^2 \sin \epsilon^2) + \sin \delta^2 \cos \epsilon^2 = 0 \\
&\text{ou à celle-ci}
\end{align*}
\]

\[
\begin{align*}
&\cos \delta^4 \sin \epsilon^2 - \cos \delta^2 (\sin \epsilon^2 + \sin \delta^2 - \sin \epsilon^2 \sin \delta^2 \sin \epsilon^2) + \sin \delta^2 \cos \epsilon^2 = 0
\end{align*}
\]

dont la résolution nous découvre la déclinaison \(\delta \), pour laquelle la ligne Halleyenne aura des intersections. De là il est évident, que la déclinaison \(\delta \) peut être prise positivement & négativement.

COROLL. I.

CXXIII. La résolution de cette équation carrée-carrée donne

\[
\begin{align*}
&\cos \delta^2 = \\
&\cos \epsilon^2 + \sin \delta^2 - \sin \epsilon^2 \sin \delta^2 \sin \epsilon^2 + \sqrt{[\cos \epsilon^2 + \sin \delta^2 - \sin \epsilon^2 \sin \delta^2 \sin \epsilon^2]^2 - 4 \sin \epsilon^2 \sin \delta^2 \cos \epsilon^2} \\
&\frac{2}{\sin \epsilon^2}
\end{align*}
\]

&
& ensuite
\[\cos \delta = \frac{\sqrt{(\sin^2 \delta - \sin^2 \delta \sin^2 e + 2 \sin \delta \sin e \cos e) + \sqrt{(\sin^2 \delta - \sin^2 \delta \cos^2 e) \sin^2 e - 2 \sin \delta \sin e \cos e}}}{2 \sin \delta} \]

ou
\[\cos \delta = \frac{\sqrt{[(1 + \sin e \sin \delta \cos e)^2 - \cos e^2 \cos \delta \sin^2 e] + \sqrt{[(1 - \sin e \sin \delta \cos e)^2 - \cos e^2 \cos \delta \sin^2 e]}}}{2 \sin \delta} \]

COROLL. 2.

CXXIV. Mais, pour calculer cette valeur, qu'on cherche les angles \(h, k \) & \(l \) par ces formules:

\[\tan h = \sin e \sin d \sin e; \quad \cos k = \frac{\cot \epsilon \cot \delta \sin h}{\sin (e + h)}; \quad \cos l = \frac{\cot \epsilon \cot \delta \sin h}{\sin (e - h)} \]

& alors on aura
\[\cos \delta = \frac{\cos \epsilon \cos \delta \sin (k + l)}{2 \sin \epsilon \cos k \cos l} \]

EXEMPLE 1.

CXXV. Supposons pour la position des pôles magnétiques
\(\text{AP} = a = 15^\circ; \quad \text{BP} = b = 25^\circ; \quad \text{APB} = \gamma = 40^\circ \)

& on trouvera les éléments dérivés:
\(\text{CA} = \text{CB} = c = 71^\circ, 10'; \quad \text{CP} = d = 84^\circ, 43'; \quad \text{ACP} = e = 6^\circ, 38' \)

& de là les angles \(\text{APC} = 25^\circ \) & \(\text{BPC} = 15^\circ \).

Ensuite pour la ligne du second ordre l'équation carré-carrée devient
\[\cos^4 \delta = 2,09367 \cos^2 \delta - 1,09210 \]

& de là \(\delta = 6^\circ, 52' \).

REMARQUE.

CXXVI. Par cet exemple on comprend, que l'angle \(e \) sera toujours fort petit, & que l'arc \(\text{CP} = d \) approchera fort d'un angle droit. De là on peut tirer une approximation pour la valeur de \(\delta \):

\[\text{car, si } e = 0, \text{ on a ou } \cos \delta = 1, \text{ ou } \frac{\sin d}{\sin \epsilon} : \text{ donc, puisque la dernière est imaginaire dans notre supposition, ou } d > c, \text{ la } \]

\(G g 3 \)
première doit fournir l'approximation. Or, posant \(r = \sin d^2 \) pour \(\cot d^2 \) notre équation fera
\[
\cot c^2 \sin d^2 \sin e^2 = \sin d^2 (\sin d^2 - \sin c^2 - \sin d^2 \sin d^2 \sin e^2) + \sin d^4 \sin e^2
\]
d'où l'on tire à peu près \(\sin d^2 = \frac{\cot c^2 \sin d^2 \sin e^2}{\sin d^2 - \sin c^2} \)
& encore plus exactement :
\[
\sin d^2 = \frac{\cot c^2 \sin d^2 \sin e^2}{\sin d^2 - \sin c^2} - \frac{\sin c^2 \cot c^2 \sin d^4 \cot d^2 \sin e^4}{(\sin d^2 - \sin c^2)^3}
\]
Mais la première donne déjà la valeur de \(d \) à un ou deux minutes près, de sorte qu'on peut prendre \(\sin d = \frac{\cot c \sin d \sin e}{\sqrt{(\sin d^2 - \sin c^2)}} \).

Exemple 2.

CXXVII. Supposons \(a = 15^\circ, b = 30^\circ, \) & \(\gamma = 45^\circ, \)
& on aura
\(c = 69^\circ, 4', 48''; d = 81^\circ, 57', 30''; \) & \(e = 7^\circ, 57', 48'' \)
enfuite les angles \(\text{APC} = 30^\circ, \text{BPC} = 15^\circ; \) & pour la ligne Halleyenne du second ordre
\(\cot d^4 = 2,10487 \cot d^2 + 1,10217 = 0, \) & \(d = 8^\circ, 25'. \)

Remarque.

CXXVIII. Si les deux distances \(a \) & \(b \) étoient égales, \(d \) feroit de \(90^\circ \); & plus la distance \(b \) surpassa \(a \), l'arc \(d \) devient plus petit : ainsi dans le dernier exemple \(d \) est plus petit que dans le premier. L'arc \(c \) dépend principalement des distances \(a \) & \(b \), & son complément est un peu plus petit que \(\frac{a + b}{2} \). En considérant la Carte de Halley, il semble que la ligne pour la déclinaison de \(10^\circ \) étoit à peu près celle du second ordre, d'où l'on peut convenablement déterminer les éléments \(c, d, e \). Or il paroit aussi que la distance \(b \) étoit beaucoup plus grande que \(a \), & partant \(d \) bien au dessous de \(90^\circ \).
Si nous posons \(c = 70^\circ \), \(d = 82^\circ \), afin que pour la ligne du second ordre il devienne \(\delta = 10^\circ \), il faudrait prendre \(e = 9^\circ, 10' \). Faisons donc sur cette hypothèse, qui selon toute apparence ne s'écarte pas beaucoup de l'état magnétique représenté dans la Table de Halley, le calcul, pour en construire une Carte, par laquelle on pourra juger, si deux pôles magnétiques sont suffisants pour expliquer les phénomènes de la déclinaison.

HYPOTHESE.

CXXIX. Faisons donc les positions suivantes :

\[AC = BC = c = 70^\circ; \quad CP = d = 82^\circ \quad \& \quad AC\,P = e = 9^\circ, 10' \]

afin que la ligne du second ordre réponde à la déclinaison de \(10^\circ \).

Pour en déduire les premiers éléments \(a, b, \gamma \), cherchons un angle \(i \), de sorte que \(\tan i = \tan c \, \cos e \), & l'on aura

\[\cos a = \frac{\cos c \cos (d - i)}{\cos i}; \quad \cos b = -\frac{\cos c \cos (d + i)}{\cos i} \]

\[\tan APC = \frac{\tan e \sin i}{\sin (d - i)}; \quad \tan BPC = \frac{\tan e \sin i}{\sin (d + i)} \]

et \(\gamma = APC + BPC \); d'où l'on trouve

\(i = 69^\circ, 46' \); \(d - i = 12^\circ, 14' \); \(d + i = 151^\circ, 46' = 180^\circ - 28^\circ, 14' \)

\(a = 14^\circ, 53' \); \(APC = 35^\circ, 33' \); & \(\gamma = 53^\circ, 18' \)

\(b = 29, 23 \); \(BPC = 17, 45 \);

Maintenant pour faire le calcul, qu'on commence par les angles \(f \& g \) qu'on trouve : \(f = 3^\circ, 10' \) & \(g = 25^\circ, 15' \)

de là on aura pour le calcul suivant en logarithmes

\[l \tan m = 9,56656 + l \sin(f + \delta) - l \cos(g + \delta) \]

\[l \tan n = 10,43344 + l \sin(g + \delta) - l \cos(f + \delta) \]

Passons donc en particulier aux Lignes Halleyennes.

Pour
Pour la Ligne sans déclinaison.

CXXX. Posant $\delta = 0$ on aura $m = 1^\circ, 17'$ & $n = 49^\circ, 13'$

& delà $l \tan r = \frac{9,20463}{l \sin (m - q)}$

$l \cos s = \frac{10,58984}{l \sin r + l \sin (n - q)}$

d'où l'on fera le calcul pour tous les degrés de longitude en comptant depuis le premier méridien PC vers l'occident.

| Longitude | Les deux valeurs de p | Dans les méridiens depuis 0°, jusqu'à $17^\circ, 45'$, de même que depuis $144^\circ, 27'$, jusqu'à 180° les valeurs de p sont imaginaires.
<table>
<thead>
<tr>
<th>q</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$17^\circ, 45'$</td>
<td>$150^\circ, 37'$</td>
<td>$150^\circ, 37'$</td>
</tr>
<tr>
<td>20</td>
<td>121, 26</td>
<td>174, 28</td>
</tr>
<tr>
<td>30</td>
<td>95, 27</td>
<td>132, 19</td>
</tr>
<tr>
<td>40</td>
<td>84, 32</td>
<td>113, 16</td>
</tr>
<tr>
<td>50</td>
<td>77, 20</td>
<td>101, 44</td>
</tr>
<tr>
<td>60</td>
<td>71, 41</td>
<td>92, 55</td>
</tr>
<tr>
<td>70</td>
<td>66, 44</td>
<td>86, 14</td>
</tr>
<tr>
<td>80</td>
<td>62, 3</td>
<td>80, 37</td>
</tr>
<tr>
<td>90</td>
<td>57, 13</td>
<td>75, 25</td>
</tr>
<tr>
<td>100</td>
<td>52, 0</td>
<td>70, 24</td>
</tr>
<tr>
<td>110</td>
<td>45, 56</td>
<td>65, 8</td>
</tr>
<tr>
<td>120</td>
<td>35, 57</td>
<td>56, 39</td>
</tr>
<tr>
<td>130</td>
<td>27, 53</td>
<td>51, 5</td>
</tr>
<tr>
<td>140</td>
<td>9, 46</td>
<td>37, 4</td>
</tr>
<tr>
<td>144, 27</td>
<td>14, 53</td>
<td>14, 53</td>
</tr>
</tbody>
</table>
Pour la Ligne Halleyenne de la déclinaison 5° Est.

CXXXI. Posant \(\delta = 5° \), on trouve \(m = 3°, 28' \) & \(n = 54°, 5' \)

& de là \(\tan r = 9,63372 \) — \(l \sin (m - q) \)

\(l \cos s = 10,22237 + l \sin r + l \sin (n - q) \)

d'où l'on obtient les déterminations suivantes.

<table>
<thead>
<tr>
<th>Longitude (q)</th>
<th>Les deux valeurs de (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13°, 42'</td>
<td>112°, 27'</td>
</tr>
<tr>
<td>15 ,</td>
<td>97 , 34</td>
</tr>
<tr>
<td>20 ,</td>
<td>84 , 46</td>
</tr>
<tr>
<td>30 ,</td>
<td>74 , 17</td>
</tr>
<tr>
<td>40 ,</td>
<td>67 , 54</td>
</tr>
<tr>
<td>50 ,</td>
<td>62 , 49</td>
</tr>
<tr>
<td>60 ,</td>
<td>58 , 12</td>
</tr>
<tr>
<td>70 ,</td>
<td>53 , 39</td>
</tr>
<tr>
<td>80 ,</td>
<td>48 , 58</td>
</tr>
<tr>
<td>90 ,</td>
<td>43 , 52</td>
</tr>
<tr>
<td>100 ,</td>
<td>38 , 7</td>
</tr>
<tr>
<td>110 ,</td>
<td>31 , 21</td>
</tr>
<tr>
<td>120 ,</td>
<td>22 , 58</td>
</tr>
<tr>
<td>130 ,</td>
<td>11 , 59</td>
</tr>
<tr>
<td>140 ,</td>
<td>— 4 , 0</td>
</tr>
<tr>
<td>145 ,</td>
<td>— 16 , 22</td>
</tr>
<tr>
<td>148 , 35</td>
<td>— 41 , 12</td>
</tr>
</tbody>
</table>
Pour la Ligne Halleyenne de la déclinaison 5° Ouest.

CXXXII. Posant $\delta = -5^\circ$, on trouve: $m = -0^\circ, 43'$ et $n = 43^\circ, 13'$ et de là

\[l \tan r = 8,95151 - l\sin(q - m) \]
\[l \cos s = 10,77994 + l\sin r + l\sin(q - n) \]

d'où l'on obtient les déterminations suivantes:

<table>
<thead>
<tr>
<th>Longitude q</th>
<th>Les deux valeurs de p</th>
</tr>
</thead>
<tbody>
<tr>
<td>13°, 43'</td>
<td>-160°, 14'</td>
</tr>
<tr>
<td>15</td>
<td>-134°, 58</td>
</tr>
<tr>
<td>20</td>
<td>-111°, 24</td>
</tr>
<tr>
<td>30</td>
<td>-93°, 49</td>
</tr>
<tr>
<td>40</td>
<td>-84°, 50</td>
</tr>
<tr>
<td>50</td>
<td>-73°, 56</td>
</tr>
<tr>
<td>60</td>
<td>-69°, 44</td>
</tr>
<tr>
<td>70</td>
<td>-65°, 48</td>
</tr>
<tr>
<td>80</td>
<td>-61°, 55</td>
</tr>
<tr>
<td>90</td>
<td>-57°, 37</td>
</tr>
<tr>
<td>100</td>
<td>-52°, 42</td>
</tr>
<tr>
<td>110</td>
<td>-46°, 41</td>
</tr>
<tr>
<td>120</td>
<td>-38°, 27</td>
</tr>
<tr>
<td>130</td>
<td>-25°, 2</td>
</tr>
<tr>
<td>140</td>
<td>-13°, 25</td>
</tr>
<tr>
<td>148, 35</td>
<td>-9°, 58</td>
</tr>
</tbody>
</table>

Pour
Pour la Ligne Halleyenne de la déclinaison 10° Est.

CXXXIII. Posant $d = 10°$, on a $m = 5°, 52'$ & $n = 58°, 7'$

& de là

\[
\begin{align*}
\text{tang } r &= 9,86190 - l \sin (m - q) \\
\text{col } s &= 10,05592 - l \sin r + l \sin (n - q)
\end{align*}
\]

d'où l'on obtient les déterminations suivantes.

<table>
<thead>
<tr>
<th>Longitude q</th>
<th>Les deux valeurs de p</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0°, 0'$</td>
<td>$65°, 1'$</td>
</tr>
<tr>
<td>$10, -$</td>
<td>$63, 4$</td>
</tr>
<tr>
<td>$20, -$</td>
<td>$60, 17$</td>
</tr>
<tr>
<td>$30, -$</td>
<td>$57, 12$</td>
</tr>
<tr>
<td>$40, -$</td>
<td>$53, 54$</td>
</tr>
<tr>
<td>$50, -$</td>
<td>$50, 25$</td>
</tr>
<tr>
<td>$60, -$</td>
<td>$46, 39$</td>
</tr>
<tr>
<td>$70, -$</td>
<td>$42, 34$</td>
</tr>
<tr>
<td>$80, -$</td>
<td>$38, 5$</td>
</tr>
<tr>
<td>$90, -$</td>
<td>$33, 2$</td>
</tr>
<tr>
<td>$100, -$</td>
<td>$27, 18$</td>
</tr>
<tr>
<td>$110, -$</td>
<td>$20, 38$</td>
</tr>
<tr>
<td>$120, -$</td>
<td>$12, 43$</td>
</tr>
<tr>
<td>$130, -$</td>
<td>$3, 9$</td>
</tr>
<tr>
<td>$140, -$</td>
<td>$8, 40$</td>
</tr>
<tr>
<td>$150, -$</td>
<td>$23, 27$</td>
</tr>
<tr>
<td>$160, -$</td>
<td>$41, 38$</td>
</tr>
<tr>
<td>$170, -$</td>
<td>$60, 30$</td>
</tr>
<tr>
<td>$172, -$</td>
<td>$62, 49$</td>
</tr>
<tr>
<td>$175, -$</td>
<td>$64, 35$</td>
</tr>
</tbody>
</table>

Cette ligne n'est pas tout à fait celle du second ordre, mais il s'en faut fort peu; la raison en est, que je n'ai pas affiché exactement déterminé cyr-deus la valeur de l'angle e pour ce but peu important. Cette ligne est déjà du troisième ordre, & dans cette hypothèse la ligne du second ordre répond à la déclinaison de $9°, 45', 18'$.

Pour
Pour la Ligne Halleyenne de 10° vers l'Ouest.

CXXXIV. Posant $\delta = 10^\circ$, on a $m = 2^\circ, 36'$ et $n = 35^\circ, 42'$

& de là
\[\tan r = 9,50981 - \sin (q - 2^\circ, 36') \]

\[\cos s = 10,15963 - \sin r - \sin (q - 35^\circ, 42') \]

d'où l'on obtient les déterminations suivantes.

<table>
<thead>
<tr>
<th>Longitude</th>
<th>Les deux valeurs de p</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>p</td>
</tr>
<tr>
<td>$0^\circ, 0'$</td>
<td>$-64^\circ, 34'$</td>
</tr>
<tr>
<td>10, —</td>
<td>$-65, 17$</td>
</tr>
<tr>
<td>20, —</td>
<td>$-64, 29$</td>
</tr>
<tr>
<td>30, —</td>
<td>$-63, 15$</td>
</tr>
<tr>
<td>40, —</td>
<td>$-61, 46$</td>
</tr>
<tr>
<td>50, —</td>
<td>$-60, 7$</td>
</tr>
<tr>
<td>60, —</td>
<td>$-58, 15$</td>
</tr>
<tr>
<td>70, —</td>
<td>$-56, 9$</td>
</tr>
<tr>
<td>80, —</td>
<td>$-53, 42$</td>
</tr>
<tr>
<td>90, —</td>
<td>$-51, 22$</td>
</tr>
<tr>
<td>100, —</td>
<td>$-47, 30$</td>
</tr>
<tr>
<td>110, —</td>
<td>$-43, 20$</td>
</tr>
<tr>
<td>120, —</td>
<td>$-38, 0$</td>
</tr>
<tr>
<td>130, —</td>
<td>$-30, 53$</td>
</tr>
<tr>
<td>140, —</td>
<td>$-20, 51$</td>
</tr>
<tr>
<td>150, —</td>
<td>$-5, 43$</td>
</tr>
<tr>
<td>160, —</td>
<td>$+18, 11$</td>
</tr>
<tr>
<td>170, —</td>
<td>$+52, 7$</td>
</tr>
<tr>
<td>175, —</td>
<td>$+61, 24$</td>
</tr>
</tbody>
</table>
Pour la Ligne Halleyenne de la déclinaison de 15° vers l'Est.

CXXXV. Posant \(\delta = 15^\circ \), on a \(m = 8^\circ, 34' \), et \(n = 61^\circ, 32' \)\

\[
l \text{tang } r = 10,02527 - l \sin (8^\circ, 34' - q) \\
l \text{col } s = 9,95954 + l \sin r + l \sin (61^\circ, 32' - q)
\]
d'où l'on obtient les déterminations suivantes:

<table>
<thead>
<tr>
<th>Longitude</th>
<th>Les deux valeurs de (p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°, 0'</td>
<td>+44°, 29'</td>
</tr>
<tr>
<td>10</td>
<td>+46°, 50'</td>
</tr>
<tr>
<td>20</td>
<td>+47°, 1'</td>
</tr>
<tr>
<td>30</td>
<td>+45°, 48'</td>
</tr>
<tr>
<td>40</td>
<td>+43°, 40'</td>
</tr>
<tr>
<td>50</td>
<td>+40°, 52'</td>
</tr>
<tr>
<td>60</td>
<td>+37°, 32'</td>
</tr>
<tr>
<td>70</td>
<td>+33°, 43'</td>
</tr>
<tr>
<td>80</td>
<td>+29°, 24'</td>
</tr>
<tr>
<td>90</td>
<td>+24°, 30'</td>
</tr>
<tr>
<td>100</td>
<td>+18°, 59'</td>
</tr>
<tr>
<td>110</td>
<td>+12°, 42'</td>
</tr>
<tr>
<td>120</td>
<td>+5°, 53'</td>
</tr>
<tr>
<td>130</td>
<td>+2°, 29'</td>
</tr>
<tr>
<td>140</td>
<td>-1°, 30'</td>
</tr>
<tr>
<td>150</td>
<td>-21°, 15'</td>
</tr>
<tr>
<td>160</td>
<td>-30°, 56'</td>
</tr>
<tr>
<td>170</td>
<td>-39°, 8'</td>
</tr>
</tbody>
</table>

\[Hh 3 \]

Pour
Pour la Ligne Halleyenne de la déclinaison de 15° vers l'Ouest.

CXXXVI. Posant $\delta = -15^\circ$, on a $m = -4^\circ, 23'3$; $n = 26^\circ, 15'$, & de là

1. $\tan r = 9, 73640 - \tan (q + 4^\circ, 23')$

2. $\cos s = 9, 83368 + \sin r + \sin (q - 26^\circ, 15')$

<table>
<thead>
<tr>
<th>Longitude q</th>
<th>Les deux valeurs de p</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>$-25^\circ, 22'$</td>
</tr>
<tr>
<td>10°</td>
<td>$-34, 29$</td>
</tr>
<tr>
<td>20</td>
<td>$-40, 32$</td>
</tr>
<tr>
<td>30</td>
<td>$-44, 15$</td>
</tr>
<tr>
<td>40</td>
<td>$-46, 22$</td>
</tr>
<tr>
<td>50</td>
<td>$-47, 22$</td>
</tr>
<tr>
<td>60</td>
<td>$-47, 33$</td>
</tr>
<tr>
<td>70</td>
<td>$-47, 4$</td>
</tr>
<tr>
<td>80</td>
<td>$-46, 0$</td>
</tr>
<tr>
<td>90</td>
<td>$-44, 17$</td>
</tr>
<tr>
<td>100</td>
<td>$-41, 55$</td>
</tr>
<tr>
<td>110</td>
<td>$-38, 44$</td>
</tr>
<tr>
<td>120</td>
<td>$-34, 32$</td>
</tr>
<tr>
<td>130</td>
<td>$-29, 0$</td>
</tr>
<tr>
<td>140</td>
<td>$-21, 40$</td>
</tr>
<tr>
<td>150</td>
<td>$-12, 5$</td>
</tr>
<tr>
<td>160</td>
<td>$-0, 5$</td>
</tr>
<tr>
<td>170</td>
<td>$+13, 12$</td>
</tr>
</tbody>
</table>
I REMARQUE.

CXXXVII. Quand on trace ces lignes sur une Carte ou sur un Globe, on y remarquera d'abord une si grande conformité avec les lignes de Halley, qu'on puisse attendre dans l'incertitude, où nous sommes encore sur la vraie position des pôles magnétiques de la Terre: & l'on ne sauroit presque plus douter, que si nous en avions une connaissance parfaite, l'accord ne devint plus grand, puisque ces lignes sont susceptibles d'une variété infinie en changeant tant les distances des pôles magnétiques aux pôles de la Terre, que l'intervalle des méridiens qui passent par les pôles magnétiques.

II REMARQUE.

CXXXVIII. Cependant je suis obligé d'avouer, que la Carte de Halley renferme quelques circonstances, qu'on ne sauroit jamais mettre d'accord avec l'hypothèse de deux pôles magnétiques. La principale est la distance entre les lignes sans déclinaison sur l'équateur: l'une, à la droite de laquelle la déclinaison est occidentale & à la gauche orientale, coupe sur la Carte de Halley l'équateur au 17ème degré vers l'Ouest du méridien de Londres, & l'autre, où la déclinaison de part & d'autre suit une loi opposée, le coupe au 119° vers l'Est du méridien de Londres, de sorte que l'intervalle entre ces deux intersections est 136°. Or, selon le calcul que je viens de faire ici, cet intervalle se trouve de 210°, lequel en changeant les éléments pourroit bien devenir plus petit: mais on ne le sauroit diminuer au delà de 180°, tant qu'on suppose le pole méridional magnétique plus éloigné du pole antarctique que le pole boréal du pole arctique, & plus avancé vers l'Ouest comme les autres phénomènes l'exigent évidemment. Et si l'on pouvait bien compter sur les intersections, je dois avouer qu'il faudroit abandonner cette hypothèse de deux pôles magnétiques.

III REMARQUE.

CXXXIX. Examinons donc plus soigneusement sur quoi fonde M. Halley la position de ces lignes sans déclinaison pour l'année 1700.
1700. Et d'abord j'observe, que M. Halley ne la donne pas lui-même pour fort exacte, tant faute d'un assez grand nombre d'observations, que principalement, puisque la plupart des observations sur lesquelles cette Carte est dressée, ont été faites très longtemps avant l'époque de 1700. Or l'on fait que la déclinaison au même endroit change très considérablement avec le temps, & il aurait fallu connaître exactement ce changement annuel pour chaque endroit, avant qu'on ait pu faire usage de ces observations. A Paris par exemple la déclinaison fut nulle en 1666, & en 1756 l'aiguille déclinoit de 17°, 45' vers l'Ouest, d'où il s'ensuit que la ligne sans déclinaison, qui passait en 1666 par Paris, s'est avancée dans cet intervalle de 90 ans environ par un espace de 100° vers l'Est, ce qui fait plus d'un degré par an. Or il paroit par les observations que M. Halley rapporte, qu'à l'Isle de Helena la déclinaison étoit 0°, 40' vers l'Est en 1677; & la Carte montre encore pour 1700 presque la même déclinaison. Ensuite, aux côtes découvertes par Diemen, c'étoit en 1642, que la déclinaison fut observée nulle, & la Carte dressée pour 1700 représente la ligne sans déclinaison à peu près encore au même endroit : quoique par le changement observé à Paris il semble, que cette ligne devroit être avancée dans cet intervalle vers l'Est par 60°, ce qui s'accorderoit fort bien avec l'intervalle de 210°, que mon calcul indique. De là je conclus que cet intervalle a été effectivement en 1700 beaucoup plus grand que la Carte Halleyenne ne le représente.

IV REMARQUE.

CXL. La Carte que Mrs. Mountaine & Dodson ont publiée pour l'année 1744 s'accorde beaucoup plus à cet égard avec ma Théorie, ledit intervalle y étant de 170°: mais elle renferme d'autres irrégularités, qui sont tout à fait incompatibles. Elle donne à la ligne sans déclinaison un tour si bizarre par les Indes orientales, qu'il ne saurait être accordé avec aucune Théorie: & il semble que les Auteurs y ont voulu représenter à la fois des observations plus vieilles & plus modernes: d'ailleurs les erreurs auxquelles les observations sont sujettes...
ries, ne permettroient jamais de découvrir un tel tour bizarre, quand même il y en aurait un. Après cela, la route qu'ils donnent à cette ligne sans déclinaison, & qu'ils tirent par le Japon, est ouvertement fausse, puisqu'on fait par les observations faites en Sibérie que cette ligne y passe : d'où je conclu qu'elle aurait du être continuée depuis l'équateur, par la Chine, & de là par la Tartarie : & par cette raison les lignes qu'ils ont tirées dans la Mer pacifique, surtout dans la partie septentrionale, doivent manquer de fondement.

V REMARQUE.

CXLI. Au reste le cas que je viens de calculer, ne différera pas beaucoup de l'état magnétique de la Terre pour l'année 1744, si l'on place, autant que je puis conclure des observations qui paroissent les plus certaines, le pole magnétique septentrional dans le méridien marqué de 250° dans les Cartes : car alors on obtiendra, tant pour l'Europe que pour l'Amérique septentrionale, les déclinaisons qu'on a observées actuellement. Or pour les côtes du Brésil elles deviendraient un peu trop petites ; mais, pour redresser cette erreur, on n'a qu'à augmenter la distance du pole méridional magnétique, ou à augmenter l'angle γ entre les méridiens tirés par les pôles magnétiques. Je crois qu'il faudroit faire l'un & l'autre à la fois pour expliquer les déclinaisons observées sur les côtes orientales de l'Amérique, & aux Indes orientales, puisqu'ici les grandes déclinaisons s'étendent jusqu'à l'équateur. Comme ici j'ai supposé a = 14°, 53'; b = 29°, 23'; & γ = 53°, 18', il sera bon de calculer encore quelques autres hypothèses, en laissant deux éléments les mêmes, & changeant seulement le troisième : car alors, si l'on dresse sur chacune une Carte en forte, qu'elle reponde aux déclinaisons de l'Europe, on verra aisément laquelle approche le mieux aux autres parties de la Terre. Par ce moyen, après avoir fait quelques représentations sur des hypothèses différentes, il ne sera pas difficile d'en conclure la vraie situation des pôles magnétiques, qui a eu lieu alors. Après quelques estimes je voudrois croire, qu'en A. 1744, la distance a étoit plus petite que 14°, 53', & la

Mem. de l'Acad. Tom. XIII.
distance b un peu plus grande que $29^\circ, 23'$: mais qu’il faudroit augmenter l’angle γ au de là de 60°: ces trois corrections semblent nécessaires pour représenter les grandes déclinaisons dans les mers des Indes orientales.

HYPOTHESE.

CXLII. Pour représenter à peu près les lignes magnétiques pour à présent, j'ai dressé une Carte semblable à celle de Halley sur les éléments suivants: $a = 14^\circ$, $b = 35^\circ$, & $\gamma = 63$
d'où l'on a $c = 68^\circ, 31'$, $d = 78^\circ, 5'$, & $e = 10^\circ, 41'$
& les lignes qui se croisent, répondent à la déclinaison de $12^\circ, 5'$. Si l'on compare cette Carte avec celle qui a été publiée en Angleterre pour l’année 1744, on y remarquera un assez bel accord, sur tout à l'égard des déclinaisons qui paraissent les plus sûres. Et si l'on y découvre quelques aberrationis, il ne sera pas difficile de trouver les corrections qu'il faudra apporter aux éléments supposés. Les réflexions suivantes nous pourront fournir les éclaircissements nécessaires à dessus.

I. Puisque la déclinaison à l'Isle de S. Helene a surpassé 5°, & qu'à Paris la déclinaison n'a pas été si grande que sur ma Carte, je voudrais d'abord reculer toutes les lignes magnétiques de 10° vers l’ouest, pour la mettre d’accord avec les observations. Or, si depuis 1744, jusqu'à présent les pôles magnétiques étoient avancés vers l’est de 10°, la Carte devroit répondre à l’état présent, ce qui est la raison que je les ai fixés en forte sur la Carte.

II. Maintenant les déclinaisons marquées sur la Carte aux côtes orientales du Brésil, étant parfaitement d’accord avec celles que marque la Carte Angloise pour l’an 1744: cet accord sera détruit, lorsqu’on avance toutes les lignes de 10° vers l’ouest: mais on
on y remédiera en augmentant la distance du pole magnétique méridional au pole antarctique. Je voudrais donc mettre \(b = 40^\circ \); & par là on s'approcheroit aussi davantage des grandes déclinaisons, qui s'observent vers l'équateur dans la Mer des Indes.

III. Si la déclinaison dans le détroit de Hudson a été de \(35^\circ \) A. 1744, il est clair qu'il faudroit aussi augmenter la distance du pole magnétique boréal au pole arctique; peut être suffira-t-il de poser \(a = 17^\circ \). Au reste je ne trouve aucune raison, pourquoi il faudroit changer l'angle \(\gamma \); de sorte que supposant ces éléments: \(a = 17^\circ \), \(b = 40^\circ \), & \(\gamma = 63^\circ \), on représentera assez exactement l'état des lignes magnétiques pour l'année 1744. Cependant ces éléments ne sont pas si exacts, qu'il vaudroit la peine d'y fonder un nouveau calcul.