DE LA PARALLAXE DE LA LUNE
TANT PAR RAPPORT À SA HAUTEUR QU'À
SON AZIMUTH DANS L'HYPOTHESE
DE LA TERRE SPHEROIDIQUE.

PAR M. EULER.

§. 1.

Après que M. de Maupertuis a publié son excellent Traité sur
la parallaxe de la lune, où il a montré combien les règles
ordinaires de la parallaxe, entant qu'elles sont fondées sur la figure
 sphérique de la terre, doivent être changées pour la figure véritable de
la terre; cette matière paraît d'abord si épuisée, qu'on n'y sauroit plus
rien découvrir, qui soit échappé à son attention, à moins que ce ne soient
de petites circonstances, dont on ne peut passer sans aucune erreur sensi-
ble dans la pratique. Ayant remarqué que cet Illustre Auteur n'a
pas eu égard à l'azimuth de la lune, qui devroit entrer dans la recherche
de la parallaxe, lorsque la terre n'est pas sphérique, j'ai d'abord cru que
ces circonstances pourroient être de quelque conséquence: or aussi-tot que
j'en eus fait le calcul, j’ai trouvé que l’irrégularité qui peut résulter de
l’azimuth, est si petite, qu'on la peut négliger sans faire tort à la précision
de cette théorie. Cependant, quand on veut avoir égard à cette
circonstance dans la recherche de la parallaxe, le calcul devient beau-
coup plus difficile; et puisqu'il est impossible, avant qu'on en soit ven-
u à bout, qu'on puiisse prononcer avec assés d'assurance, si l'effet qui
en résulte, mérite quelque attention ou non? je me crois obligé de dé-
velopper encore cette matière, en faisant entrer dans l'analyse cette cir-
constan-
constance de l’azimuth. Et comme cette considération deviendroit absolument nécessaire, si la figure de la terre différerait plus considérablement de la sphérique, cette recherche pourra apporter quelque usage dans la résolution d’autres questions.

§. 2. M. de Maupertuis a toujours regardé la lune, comme si elle se trouvait dans le plan du meridien, & dans ce cas il n’y a aucun doute, que la lune ne doive paraître dans le même cercle vertical, soit qu’elle soit regardée de la surface de la terre, ou de son centre. Mais dès que la lune est vue hors du plan du meridien, non seulement la distance au zénith, mais aussi son azimuth, doit souffrir quelque altération de la parallaxe; puisque la droite tirée du centre de la terre à la lune sera non seulement moins inclinée au plan horizontal, mais elle ne le coupera plus dans le même azimuth. Pour se mieux convaincre de cette vérité on n’a qu’à concevoir un plan parallèle à l’horizon, qui passe par le centre de la terre; & comme l’angle, que fait la droite tirée de la surface de la terre à la lune, avec le plan horizontal, marque la hauteur apparente, & la perpendiculaire baissée de la lune sur l’horizon, l’azimuth apparent; ainsi l’angle, que fait la droite tirée du centre de la terre à la lune avec ce plan parallèle à l’horizon, qui passe par le centre de la terre, sera la mesure de sa hauteur vraie, & la perpendiculaire baissée de la lune sur ce même plan y marquera un point, d’où la droite tirée au centre donnera à connaître l’azimuth vrai de la lune. Ces deux choses rapportées au centre étant différentes que si on les rapportoit à la place du spectateur, il en résultera une double correction de la place de la lune, l’une qui regarde la hauteur de la lune, & l’autre pour l’azimuth. Je nommerai la première correction la parallaxe de la hauteur, & l’autre la parallaxe de l’azimuth.

§. 3. Pour entreprendre cette recherche, je commence par considerer la figure de la terre. Soient E & F les pôles de la terre, & C son centre: EAF soit un meridien tiré par la place du spectateur, que je suppose en M, & on fait que la figure de ce meridien sera une demi-ellipse, par la révolution de laquelle autour de l’axe EF naît la figure de...
de la terre. Qu'on nomme le demi-axe $EC = FC = a$, & le demi-diamètre de l'équateur $AC = b$, & qu'on pose $b = (1 + n) a$, & suivant les mesures faites tant vers le pole, que sous l'équateur le nombre n sera à peu près $\frac{1}{200}$. Qu'on tire par le point M la tangente TMV, qui représentera au spectateur la ligne méridienne, le point T étant dirigé vers le nord, & V vers le sud, lorsque E est le pôle boreal de la terre. De plus l'angle CTM donnera l'élévation du pôle au point M qui étant supposée connue, soit cet angle ou l'élévation du pôle $CTM = p$. Ensuite ayant tiré le rayon CM & la perpendiculaire à l'axe PM, avec la normale MN à la tangente MT, soit $CP = x$ & $PM = y$; & la nature de l'ellipse donnera cette égalité:

$$y = \frac{b}{a} V(aa - xx) \text{ ou } yy = bb - \frac{bb}{aa} xx$$

D'où nous tirons la subnormale $PN = \frac{-y'dy}{dx} = \frac{bb}{aa} x$, ou $PN = (1 + n)^2 x$. Mais l'angle PMN étant égal à $PTM = p$, nous aurons $\tan p = \frac{PN}{PM} = \frac{(1 + n) x}{V(aa - xx)}$; & partant $x = \frac{a \tan p}{V(\tan p^2 + (1 + n)^2)}$; & $V(aa - xx) = \frac{(1 + n) x}{\tan p} = \frac{(1 + n) a}{V(\tan p^2 + (1 + n)^2)}$; par conséquent $y = \frac{(1 + n)^2 a}{V(\tan p^2 + (1 + n)^2)}$. Outre cela nous aurons $PN = \frac{(1 + n)^2 a \tan p}{V(\tan p^2 + (1 + n)^2)}$, & $PT = \frac{PM^2}{PN} = \frac{(1 + n)^2 a \cot p}{V(\tan p^2 + (1 + n)^2)}$.

D'où il s'ensuit $\frac{PM}{PT} = \tan p$.

§ 4. Soit ensuite la distance du spectateur placé en M au centre C ou le rayon $CM = r$: & puisque $rr = xx + yy$ nous aurons:
\[r = \frac{a a (\tan \rho^2 + (1+n)^4)}{\tan \rho^2 + (1+n)^2} \]

\& \quad r = a V \left(1 + \frac{n (1+n)^2 (2+n)}{\tan \rho^2 + (1+n)^2} \right)

Or si \(n \) est un nombre fort petit, nous aurons par approximation:
\[r = a (1+n \cos \rho^2 + \frac{1}{2} n^2 \sin \rho^2 \cos \rho^2 + n^3 \sin \rho^2 \cos \rho^2 (2 - \frac{1}{2} \cos \rho^2) + \&c.) \]
 où il suffit pour la terre, où \(n = \frac{1}{200} \) de prendre les deux premiers termes: \(r = a (1+n \cos \rho^2) \) ou \(r = (1+n) a (1-n \sin \rho^2) \). Depuis j'ai besoin pour mon dessin de savoir l'angle CMT, que le rayon de la terre CM fait avec la meridienne TMV: soit cet angle \(CTM = \Phi \); & puisque \(\tan TCM = \frac{PM}{PC} = \frac{x}{y} \), nous aurons \(\tan TCM = \frac{(1+n)^2}{\tan \rho} \) & ajoutant cet angle \(TCM \) à \(CTM = \rho \), pour avoir leur somme \(CMV \), nous trouverons
\[\tan CMV = \frac{\tan \rho^2 + (1+n)^2}{-n (2+n) \tan \rho} \quad & \text{partant} \]
\[\tan \Phi = \frac{\tan \rho^2 + (1+n)^2}{n (2+n) \tan \rho} \quad : \text{d'où l'on déduira:} \]
\[\sin \Phi = \frac{\cos \rho (\tan \rho^2 + (1+n)^4)}{V (\tan \rho^2 + (1+n)^4)} \quad \& \right \cos \Phi = \frac{n (2+n) \sin \rho}{V (\tan \rho^2 + (1+n)^4)} \]

Par les approximations nous trouverons:
\[\sin \Phi = 1 - 2 n n \sin \rho^2 \cos \rho^2 - 2 n^3 \sin \rho^2 \cos \rho^2 \left(1 - 4 \cos \rho^2 \right) + \&c. \]
\[\& \right \cos \Phi = 2 n \sin \rho \cos \rho + n n \sin \rho \cos \rho \left(1 - 4 \cos \rho^2 \right) + 4 n^3 \sin \rho \cos \rho^2 \left(2 - 3 \cos \rho^2 \right) \]
dans lesquelles expressions on peut rejeter les derniers termes, comme extrêmement petits.

§. 5. Ces valeurs \(r \) \& \(\Phi \) étant trouvées de l'élévation du pôle donné \(= \rho \), soit maintenant TMQ le plan horizontal tiré par le lieu
lieu du spectateur M, dans lequel soit TMV la ligne méridienne, dont le bout T tend vers le nord, & l'autre bout V vers le sud. Que la lune se trouve actuellement en L, d'où l'on conçoive baïsée au plan horizontal la perpendiculaire LQ, & ayant tiré les droites ML & MQ, la ligne ML marquera la distance de la Lune au spectateur, l'angle LMQ la hauteur de la Lune observée, & l'angle TMQ son azimuth observé. Nommons donc

La distance de la Lune au spectateur ML = x
La hauteur de la Lune observée LMQ = h
& l'azimuth observé ou l'angle TMQ = k.

Dela nous tirerons :

LQ = x sin h & MQ = x cos h.

§ 6. Soit C le centre de la terre, & on aura le rayon MC = r & l'angle CMT = Φ, où il faut remarquer que le plan CMT est perpendiculaire au plan horizontal TMQ. Qu'on conçoive maintenant par le centre de la terre C un plan tCq parallele au plan horizontal TMQ, dans lequel la ligne t Cv soit parallele à la méridienne TMV, à laquelle on baïse du point M la perpendiculaire MN, & à cause de MC = r & de l'angle MCN = θ nous aurons MN = r sin Φ & CN = r cos Φ. Depuis la perpendiculaire LQ étant prolongée jusqu'au plan tCq, y sera aussi perpendiculaire, & il sera Qq = MN = r sin Φ, & tirant la droite Nq, elle sera parralele & egale à MQ = x cos h, & à cause du parallelisme des plans TMQ, tNg l'angle Ng sera egal à l'angle TMQ, c. à. d. à l'azimuth observé : d'où il s'ensuit que si l'on regarde la lune du point N, par le rayon LN, on l'observera au même azimuth Ng, que du point proposé M : & c'est la raison, que dans l'hypothèse de la terre sphe-rique, où le rayon est partout perpendiculaire au plan horizontal, ou le centre en N, la diversité des points de vuë de M & de N ne change rien dans l'azimuth de la Lune.

§ 7. Or il n'en est pas de même, lorsqu'on regarde la Lune du vrai centre C ; car tirant les lignes CL & Cq, puisque Lq est per-
pendiculaire au plan horizontal conçu passer par le centre C; l'angle qCL donnera la vraie hauteur de la Lune, $& l'angle \, sCq$ son vrai azimut. Soit donc

La distance de la Lune au centre de la terre $CL = z$.

La vraie hauteur de la Lune $LCq = v$.

& le vrai azimut ou l'angle $sCq = u$.

Et la différence entre les hauteurs h $&$ v fera la parallaxe de la hauteur observée; & la différence entre les azimuths k $&$ u la parallaxe de l'azimut observé.

§. 8. Cela remarqué nous aurons:

la perpendiculaire $Lq = x \sin h + r \sin \Phi$.

& dans le triangle CNq il y a connu:

L'angle $CNq = k$.

le coté $Nq = MQ = x \cos h$.

& le coté $NC = r \cos \Phi$.

d'où l'on obtiendra:

le coté $Cq = \sqrt{(xx \cos h^2 + rr \cos \Phi^2 - 2rx \cos h \cos \Phi \cos k)}$.

Maintenant puisque l'angle sNq est l'azimuth observé $& l'angle sCq$ le vrai azimut, l'angle CqN fera la parallaxe de l'azimuth, qui doit être ajouté à l'azimuth observé TMQ. Or le sinus de cet angle CqN fera

$$\frac{\sin k \cdot CN}{Cq} = \frac{r \cos \Phi \sin k}{\sqrt{(xx \cos h^2 + rr \cos \Phi^2 - 2rx \cos h \cos \Phi \cos k)}}$$

Où nous aurons:

$$\sin (u - k) = \frac{r \cos \Phi \sin k}{\sqrt{(xx \cos h^2 + rr \cos \Phi^2 - 2rx \cos h \cos \Phi \cos k)}}$$

& $\cos (u - k) = \frac{x \cos h - r \cos \Phi \cos k}{\sqrt{(xx \cos h^2 + rr \cos \Phi^2 - 2rx \cos h \cos \Phi \cos k)}}$
& par conséquent :
\[\tan (u - k) = \frac{r \cos \phi \sin k}{x \cos h - r \cos \phi \cos k} \]

ce qui est la parallaxe de l'azimuth.

§ 9. Pour la hauteur vraie de la Lune \(= v \), puisqu'elle est égale à l'angle \(q \angle CL \), nous en avons d'abord la tangente \(= \frac{Lq}{Cq} \), c. à. d.
\[\tan v = \frac{x \sin k + r \sin \phi}{\sqrt{(x \sin h^2 + r \sin \phi^2 - 2rx \cos h \cos \phi \cos k)}} \]

ou bien ayant posé \(CL = z \), nous aurons :
\[\sin v = \frac{x \sin h + r \sin \phi}{z} \]

Mais la distance de la Lune au centre de la terre \(CL = z \), se trouve par le triangle \(CqL \):
\[z = \sqrt{(x + r + 2rx) (\sin h \sin \phi - \cos h \cos \phi \cos k)} \]

Or les tables astronomiques, d'où nous tirons la parallaxe de la lune, marquent pour chaque temps non pas la distance de la lune au spectateur, mais la distance au centre de la terre \(C \); & partant la quantité \(z \) doit être regardée comme connue, de laquelle il faut déterminer la valeur de \(x \) par le moyen de cette équation:
\[zz = xx + rr + 2rx (\sin h \sin \phi - \cos h \cos \phi \cos k) \]

§ 10. Puisque les deux derniers termes sont fort petits par rapport aux premiers, il y aura à peu près \(x = z \), & cette valeur étant substituée dans le dernier terme, nous en tirerons une valeur plus approchante de la vérité:
\[x = \sqrt{(zz - 2rz \sin h \sin \phi - \cos h \cos \phi \cos k) - rr} \]
\[x = z - r (\sin h \sin \phi - \cos k \cos \phi \cos h) \]

qui
qui peut être suffisante, mais si on la souhaite plus exacte, qu'on cherche un angle ψ tel que

$$\cos \psi = \sin h \sin \Phi - \cos h \cos \Phi \cos k$$

& on en déduira:

$$x = z - r \cos \psi - \frac{r^2}{2} \sin \psi^2 - \frac{r^4}{8} \sin \psi^4 - \&c.$$

Depuis les parallaxes cherchées seront exprimées ainsi

I. La parallaxe de l'azimuth $u - k$:

$$\tan (u - k) = \frac{r \cos \Phi \sin k}{r \cosh - r \sin h (\cos h \sin \Phi + \sin h \cos \Phi \cos k)}$$

II. La hauteur vraie, v:

$$\sin v = \sin h - \frac{r \sin h \cos \psi}{z} + \frac{r \sin \Phi}{z} - \frac{r^2}{2} \sin h \sin \psi^2$$

ou

$$\sin v = \sin h - \frac{r}{z} \cosh (\cos h \sin \Phi + \sin h \cos \Phi \cos k) - \frac{r^2}{2} \sin h \sin \psi^2$$

§. II. Puisque la fraction $\frac{r}{z}$ étant environ $\equiv \frac{r}{100}$ est fort petite, & l'angle Φ ne diffère qu'insensiblement d'un angle droit, son costinus $\cof \Phi$ sera extrêmement petit, & pourra être rejeté dans les termes, qui sont fort petits d'eux mêmes. Or pour avoir la veritable parallaxe de la hauteur, nous la trouverons:

$$\sin (v - h) = \frac{r}{z} (\cos h \sin \Phi + \sin h \cos \Phi \cos k) + \frac{2zz}{rr} \tan h \sin \psi^2 + \frac{r^2}{2zz} \tan h (\cos h \sin \Phi + \sin h \cos \Phi \cos k)^2$$

& négligeant dans les derniers termes le $\cof \Phi$, nous aurons:

$$\sin (v - h) = \frac{r}{z} \cosh \sin \Phi + \frac{r}{z} \sin h \cos \Phi \cos k + \frac{2zz}{rr} \tan h (1 + \sin \Phi^2 \cos 2h)$$

ou puisque dans ce dernier terme il est permis de supposer $\sin \Phi = 1$,

$$\tan 3$$

à cause
à cause de \(\frac{1 + \cos 2h}{2} = \cos h^2 \), la parallaxe de la hauteur \(v - h \) se trouvera par cette formule

\[
\sin (v - h) = \frac{r}{z} \cos h \sin \Phi + \frac{r}{z} \sin h \cos \Phi \cos k + \frac{rr}{zz} \sin h \cos h
\]

qu'il faut ajouter à la hauteur observée pour avoir la véritable. De même il faut ajouter la parallaxe de l'azimuth \(u - k \) à l'azimuth observé, & compté depuis le nord, cette parallaxe se trouvant de cette formule.

\[
\tan (u - k) = \frac{r \cos \Phi \sin k}{z \cos h - r \sin h (\cos h \sin \Phi + \sin h \cos \Phi \cos k)}
\]

Or des formules trouvées là haut nous tironons:

\[
r \sin \Phi = a \left(1 + n \cos p^2 + \frac{1}{2} nn \sin p^2 \cos p^2 - \frac{1}{3} n^3 \sin p^2 \cos p^4 \right) &
\]

\[
r \cos \Phi = a \left(2n \sin \cos p - nn \sin p \cos (2 \cos p^2 - 1) + 7n^3 \sin p \cos p^3 (2 - 3 \cos p^2) \right)
\]

ou bien

\[
r \sin \Phi = a \left((1 + \frac{1}{2} n)^2 + \frac{1}{2} n \cos 2p - \frac{1}{16} nn \cos 4p \right) &
\]

\[
r \cos \Phi = a \left(n \sin 2p - \frac{1}{2} nn \sin 4p \right)
\]

en négligeant les termes qui contiennent \(n^3 \).

§. 212. Que la lune soit observée à l'horizon, de sorte que la hauteur apparente \(h = 0 \), or son azimuth reste \(k \). Dans ce cas la parallaxe de la hauteur fera \(v \), & on aura

\[
\sin v = \frac{r}{z} \sin \Phi = \frac{a}{z} \left(1 + n \cos p^2 + \frac{1}{2} nn \sin p^2 \cos p^2 \right)
\]

qui fera la parallaxe horizontale, & on voit qu'elle ne dépend plus de l'azimuth de la lune \(k \). Donc sous l'équateur ou \(p = 0 \) la parallaxe horizontale de la lune fera \(\frac{a}{z} (1 + n) = \frac{b}{z} \); & sous l'un ou l'autre pole \(\frac{a}{z} \). Comme la parallaxe horizontale, qu'on trouve dans
Les tables astronomiques, est tirée des Observations faites ou à Paris, ou à Londres : c'est à dire environ sous le 49° degré de l'elevation du pole, en posant \(p = 49^\circ \), la parallaxe horizontale de la Lune tirée des tables astronomiques sera \(\frac{a}{z} (1 + 0,43041n + 0,12258nn) \).

Et puisque par la figure de la terre est \(n = \frac{1}{200} \), la parallaxe horizontale tabulaire sera \(1,002155 \frac{a}{z} \) : laquelle étant connue pour chaque temps proposé, soit nommée \(\theta \), de sorte que \(\theta = 1,002155 \frac{a}{z} \).

Or pour toute autre elevation du pole \(p \), soit la parallaxe horizontale de la Lune \(\pi \) à la même distance de la lune à la terre, & on aura, sin \(\pi \) ou \(\pi = \frac{a}{z} (1 + \frac{1}{200} \cos p^2 + \frac{1}{80000} \sin p^2 \cos p^2) \)

& partant \(\pi = \frac{\theta}{1,002155} (1 + \frac{1}{200} \cos p^2 + \frac{1}{80000} \sin p^2 \cos p^2) \)

Par conséquent sous l'équateur fera la parallaxe horizontale de la lune \(\pi = 1,00284 \theta \), ou d'une \(\frac{352}{1465} \) partie plus grande que sous l'elevation du pole \(49^\circ \). Mais sous le pole la parallaxe horizontale de la lune fera \(\pi = 0,99785 \theta \) ou d'une \(\frac{1}{465} \) partie plus petite, que sous l'elevation du pole de \(49^\circ \). Donc quand la parallaxe horizontale à l'elevation du pole de \(49^\circ \) est \(60' \), elle fera alors sous l'équateur \(60', 10'' \), \(14''' \) & sous le pole elle fera \(59', 52''', 15''''. \) Donc la difference entre les parallaxes de l'équateur & des poles fera \(17'', 59''''.

§ 13. C'est ainsi qu'on trouvera pour chaque endroit de la terre & pour chaque temps proposé la parallaxe horizontale de la lune, par
le moyen des tables parallætiques, que je suppose justes pour l'éleva-
tion du pole de 49°. Et nommant cette parallaxe = π, on aura
π = \(\frac{r}{k} \) θin Φ, & partant \(\frac{r}{z} = \frac{\pi}{\sin \Phi} \). Laquelle étant trouvée, on
obtiendra la parallaxe de l'azimuth, supposant la lune encore à l'horis-
zon, & son azimuth = k, de sorte que k = o, par cette formule:

\[
tang (u-k) = \frac{\pi}{\sin k \cot \Phi = u-k = \frac{\pi}{\sin k \cot \Phi}}
\]

d'où l'on voit que cette parallaxe u - k est à la parallaxe horizontale π
en raison du sinus de l'azimuth, à la tangente de l'angle Φ. Cette pa-
rallaxe sera donc la plus grande, lorsque la lune se leve vers l'est, ou
se couche vers l'ouest, où son azimuth k est = 90°; & lorsque l'angle
Φ est le plus petit; ce qui arrive sous l'élevation du pole p, quand tang
p = 1 + n, ou sous l'élevation du pole de 45°, 8' à cause de n = \(\frac{1}{200} \)

Dans ce cas il deviendra tang Φ = \(\frac{2(1+n)}{n(2+n)} \) & u - k = \(\frac{r(2+n)}{2(1+n)} \)
π si k: par conséquent si k = 90° & n = \(\frac{1}{200} \) cette parallaxe de l'azi-
muth sera \(\frac{2}{401} \pi \). Dans ce cas donc, si la parallaxe horizontale de
la hauteur π est 60', la parallaxe horizontale de l'azimuth k = 90°
sera = 17'' , 57''' . Or dans ce cas la parallaxe de l'azimuth étant la
plus grande, puisqu'elle ne monte qu'à 18'', erreur qui dans l'obser-
vation de l'azimuth est insensible, on voit bien qu'on se peut sans faute
passer de cette correction de l'azimuth observé.

§ 14. Que la lune se trouve maintenant élevée sur l'horizon à
la hauteur = h, & qu'elle soit observée à l'azimuth = k, les par-
laxes tant de la hauteur h, que de l'azimuth k seront aisément determi-
nées par la parallaxe horizontale de la hauteur = π, que je suppose
déjà
déjà connue. Car puisque \(\frac{r}{z} = \frac{\pi}{\sin \phi} \), la parallaxe à ajouter à la hauteur sera:

\[
\sin (v - h) = \pi \left(\cot h \frac{\sin h \cos k}{\tan \phi} + \frac{\sin h \cos h}{\sin \phi^2} \right)
\]

ou puisque dans les parties du rayon il y a à peu près \(\pi \frac{1}{60} \), cette valeur sera assez exacte pour le dernier terme, & ainsi la parallaxe de la hauteur sera:

\[
\pi \left(\cot h \frac{\sin h \cos k}{\tan \phi} + \frac{\sin h \cos h}{60 \sin \phi^2} \right)
\]

Or la parallaxe de l'azimuth se trouvera:

\[
\frac{\pi \sin k}{\cot h \tan \phi - \frac{1}{60} \sin h \left(\cot h \tan \phi + \sin h \cos k \right)}
\]

Supposant dans le dénominateur \(\pi \frac{1}{60} \). Il est bien vrai qu'à une très grande hauteur, lorsque la lune se trouve près du zenith, cette correction peut devenir très considérable : mais dans ces cas l'azimuth même devient très incertain, & les Astronomes n'y ayant plus égard, on n'a pas besoin de correction. Quand la lune est plus éloignée du zenith, la parallaxe de l'azimuth sera assez exactement:

\[
\frac{\pi \sin k}{\cot h \tan \phi}.
\]

Enfin il faut encore remarquer, que quand la lune est observée au zenith même, de sorte que \(h = 90^\circ \), la parallaxe n'évanouira point entièrement sur la terre sphéroïdique ; elle sera encore \(\frac{\pi}{\tan \phi} \), dont la lune doit être approchée du pole. Cette parallaxe serait la plus grande sous l'élévation du pole de \(45^\circ, 8' \), si la lune dans ces régions pouvait monter au zenith, auquel cas elle serait \(17''', 57''' \), la parallaxe horizontale de la hauteur étant \(\pi = 60' \).
§. 15. Si la terre étoît sphérique, nous n’aurions pour la parallaxe de la hauteur que cette formule \(\pi \left(\text{cof} h + \frac{\sin h \, \text{cof} h}{60} \right) \), dont on fait usage dans l’Astronomie, & qui aura aussi lieu sous l’équateur & sous les pôles, quoique la figure de la terre soit elliptique. Mais pour les autres endroits de la terre, la parallaxe de la hauteur sera pour l’ordinaire plus grande, que suivant la règle vulgaire. Car nous avons vu, que pour la hauteur \(= h \), & l’azimuth \(= k \) & sous l’elevation du pole ou le rayon de la terre fait avec la méridienne un angle \(= \Phi \), la parallaxe de la hauteur est \(= \pi \left(\text{cof} h + \frac{\sin h \, \text{cof} k}{\tan \Phi} + \frac{\sin h \, \text{cof} h}{60 \sin \Phi^2} \right) \).

Car premierement si l’angle \(\Phi \) n’est pas droit, le dernier terme \(\frac{\sin h \, \text{cof} h}{60 \sin \Phi^2} \) devient plus grand, & la parallaxe par consequent plus grande. Et si la lune se trouve dans la moitié boreale du ciel, ou que son azimuth \(k \) est moindre que 90°, le \(\text{cof} k \) étant positif, augmentera encore la parallaxe de la hauteur. Mais si la lune se rencontre dans la moitié méridionale du Ciel, le \(\text{cof} k \) devenant negatif, diminuera la parallaxe; de sorte que si la lune passe par le méridien, où il y a \(\text{cof} k = -1 \), la parallaxe de la hauteur sera \(= \pi \left(\text{cof} h - \frac{\sin h}{\tan \Phi} + \frac{\sin h \, \text{cof} h}{60 \sin \Phi^2} \right) \) & puisque dans les passages de la lune par le méridien il est de la dernière importance de connoitre exactement sa parallaxe, il sera d’autant plus nécessaire d’avoir égard à ce changement de la parallaxe, qui résulte de la figure de la terre, plus on tâche de porter la méthode d’observer à un plus haut degré de perfection.