Caput Quintum

DE

RESISTENTIA, QVAMFIGV.
RAE PLANAEE IN AQVA MO-
TAE PATIVNTVR.

PROPOSITIO 49.

Problema.

465. Si figura plana data celeritate in aqua di-
recte moueatur, definire resistentiam seu motus diminutionem,
quam patietur, dum datum spatium percurrit.

Solutio.

Tab. XXII,
fig. 1.

Figura plana in aqua directe moueri dicitur, quan-
do eius directio ad ipsam superficiem planam est perpen-
dicularis. Repraesentet igitur recta AB superficiem pla-
nam, cuius area sit = aa, in aqua motam in direc-
tione CO ad ipsam superficiem normali. Sit pondus seu
massa corporis, quod hanc superficiem planam habet,
quae in aquam AEFB incursit = M, eiusque celeritas,
qua in recta CO progreditur, et reipsum progredi pergeret;
nisi resistentia adessebat, debita altitudini v. Iam ad vim
resistentiae definiendam concipiatur corpus momento tem-
poris progredi, ita vt superficies plana AB perueniat in
a b aboluto spatiolo Aa = Bb = dx; sitque celeritas,
quam peracto hoc spatiolo retinebit debita altitudini v - dx.
Dum autem corpus per spatiolum Cc progreditur, a-
quam
quam ABba de loco suo pellet per confl ic tum, ita vt corpus interea collisionem transfigat cum mole aquae ABba, cuius volumen erit $a^2 dx$, eiusque massa seu pondus propterea exprimatur per $ma^2 dx$, denotante m aquae gravitatem specificam. Incurrit igitur corpus M celeritate sua ν_v in molem aquam $ma^2 dx$ quiescentem directe, ex quo perspicuum est directionem vis, quam corpus in hoc confl ic tu sentiet, fore normalem ad superficiem in currentem AB, atque transitur esse per centrum gravitatis C superficii ipsius, eo quod in recta Ce simul centrum gravitatis molis aquae ABba situm est; uryebitur ergo corpus M in hoc confl ic tu vi quadam CP, cuius directio directe est contraria directioni motus CO. Ad diminutionem motus igitur definiendum regulas communicationis motus in subsidium vocari oportet, et quidem eas, quae ad corpora perfecte mollia spectant, cum aquam hoc saltem casu omni elasticitate carere experimenta sitis declarant. Cum itaque ante confl ic tum motus quantitas adsit $= M \nu_v$; post confl ic tum vero, quoniam molles aquae ABba eadem celeritate mouebitur qua corpus M, debita siclicet altitudini $\nu-d\nu$, erit motus quantitas $(M+ma^2 dx)\nu(\nu-d\nu)=(M+ma^2 dx)(\nu \nu - \frac{d\nu}{2 \nu_0})$; has duas motus quantitates inter se aequales esse oportet, unde oritur $\frac{M\nu_0}{2 \nu_0} = ma^2 dx \nu_v$, seu $M \nu_v = 2 ma^2 \nu dx$. Ponatur nunc potentia p tanta, ut corpus in directione CP sollicitando, interea dum corpus per spatium Ce = Δx mouetur, eandem motus diminutionem produce pet, foret $d\nu = \frac{\nu dx}{M}$; iteque $p = 2ma^2 \nu_v$; ex quo perspicitur aquae resistentiam in superficiem a^2 celeritate debita altitudini ν directe motam aequi-
aequivalere ponderi voluminis aquae $2a^2v$; seu aequalem esse ponderi cylindri aquae, cuius basis aequalis sit superficie incurrenti in aquam a^2; altitudo vero adaequet duplex altitudinem celeritati corporis debitam. Idem ergo aqua per resistentiam efficit, ac si corpus M follicitaretur a potentia tanta, quantam assignavimus in directione CP; ad superficiem corporis in aquam directe impingentem normali, et per eius ipsius superficie centrum gravitatis C transeunte Q. E. I-

Coroll. 1.

466. Reducta igitur est resistentia, quam corpus plana superficie praeditum directe in aquam incurrunt patitur, ad potentiam, cuius tum directio tum quantitas pondere expressa datur.

Coroll. 2.

767. Media igitur directio resistentiae, quam superficies plana in aqua directe mota patitur, est normalis ad ipsam superficiem et per eius centrum gravitatis transit.

Coroll. 3.

468. Quantitas autem resistentiae tenet rationem compositam ex ipsa superficie et quadrato celeritatis; et hancobrem pro eadem superficie resistentiae sunt in duplicata ratione celeritatum.

Coroll. 4.

469. Si aquae volumen pondere ipsius corporis M pondus adaequantis ponatur $=V$; erit $V: M = 2a^2v$ ad pondus cylindri aquae, cuius basis est aa et altitudo a^2.
DE RESIST. QUAM FIG. PL. IN AQUAMOT. PAT. 209

quocirca resistentia, quam superficies plana a celeritate altitudini v debita in aquam directe occurrens patitur, aequa valet ponderi \(\frac{2Ma^2v}{V} \).

Coroll. 5.

470. Eandem ergo vim corpus quiescens sentiet, in cuius superficiem planam aqua celeritate altitudini v debita impingit, ideo quod effectus ex collisione corporum ortus tantum a celeritate respectiva pendet, quae utroque cauli est eadem.

Coroll. 6.

471. Haece ergo propositione aequa valet ad motum corporum in aqva quiescenti, ac in fluviis determinandum, siquidem superficies resistentiam patiens fuerit plana, atque ea directe in aquam, vel aqua directe in ipsam impingat.

Scholion 1.

472. Multum etiamnum inter Auctores, qui de aquae resistentia scripsentur, disputatur, vitrum resistentia acquiraleat duplo cylindro aquo, cuius basis aequalis sit superficie resistentiam directe excipienti, et altitudo aequalis altitudini celeritati debitae, prout hic quidem inuenimus, an simplo tantum cylindro. Elicimus hic autem duplum eiusmodi cylindri ad resistentiam aquae exprimendam, quia posuimus aquae particulas perfecte molles et omni elatere carentes, quod quidem experimenta suadent. At si aquae perfecta elasticitas tribuat, utique alia resistentiae ratio prodict. Si enim regulae, quae in collisione corporum elasticorum locum habent, in subsidium vocentur, tum adeo
adeo quadruplum memorati cylindri prodiret, resistentiaque
reperietur \(4ma^2v \); Sed cum hac consideratione aquae
maior celeritas communicetur, quam ipsum corpus retinet,
aqua a corpore ita resilire debet, vt vacuam inter cor-
pus et aquam relinqueretur. Quod cum ob aquae pondus,
quo eius partes inter se comprimitur euenire nequeat, re-
gulae communicationis, quae corporibus elasticis sunt ac-
commodatae, locum hic imunire non poterunt; sed prin-
cipium generale, quia illae regulae nituntur, et quod in con-
servatione virium viuarum consisit, erit adhibendum. Ob aquae
compressionem igitur vtique est flatuendum, corpus \(M \) et aquam
A\(B\)\(b\)a eandem acquirere celeritatem. Hoc vero posito,
quia ante conflictum vis viua adest \(Mv \), post conflictum
vero vis viua est \((M+ma^2dx)(v-dv) \), hisaequatis fiet \(Mdv =
ma^2vdx \); unde potentia equivalens resistentiae orietur = ponderi
\(ma^2v \), hoc est cylindro aquo basis \(a^2 \) et altitudini \(v \). Quaecun-
cunque autem resistentiae ratio locum habeat, calculus ma-
net idem, differt enim tantum coefficiente istius cylindri
aquei, qui illo casu est \(2 \) hoc vero \(x \). Quamobrem is-
tam controversiam non multum curabimus, cum, tertius
casis valeat, proportiones maneat eadem, ad quas prae-
cipue attendamus; vtroque enim casu directio resistentiae
est normalis ad superficiem planam directe in aquam in-
currentem, atque per ipsius superficie centrum gravisitatis
transit, etque praeterea vtroque casu proportionalis areae
superficialis et quadrato celeritatis coniunctis. Experimenta
autem, quae circa resistentiam corporum in aqua motorum
sunt insituta pro simplici cylidro pugnare videntur, id quod
cum argumento ex conversione virium viuarum petito mi-
fice congruit. Facile etiam patet resistentiam minorem
est.
esse debere, quam in solutione inuenimus; ibi enim, quia
aqua post collisionem corpus comitatur, impulsus sequentes
debiliores esse debent quam assumimus.

Scholion 2.

473. Experimenta scilicet, quae Newtonus cum
globis in aqua delapsis instituit, satis clare euncere viden-
tur resistantiam tantum per simplicem cylindrum aqueum,
cuius altitudo scilicet aequetur simplici altitudini celerita-
tem generanti, esse exponendum. Praeterea vero quia aqua
praeter hanc resistantiam, quae ab allisione profisciscitur,
alia habet resistantiam a tenacitate particularum oriundam,
haud parum difficile est definire per experimenta, quan-
ta sit resistantia a sola allisione orta. Quidquid igitur sit,
cum experimenta posteriori hypothesi, qua resistantia per
simplum cylindrum aqueum exponitur, satis sint consen-
tanea, cam hypothesin hic adoptabimus, et resistantiam,
quam superficies plana in aquam directe impingens patitur,
mensurabimus pondere cylindri aquei, cuius basis aequetur
areae superficiei, altitudo vero ipsi altitudini celeritati de-
bitae; ita in casu coroll. 4. resistantia aequalis erit ponen-
da ipsi \(\frac{Ma^2}{V^2} \). Eadem vero resistantiae hypothesis confirma-
ri potest sequenti argumento non quidem apodietico. Sit
vas amplissimum aqua reple tum ACDB, cuius altitudo
AC = \(\nu \), pertusum sit hoc vas infra ad latus foramine
DE cuius area sit = \(a^2 \), effluit aqua per hoc foramen
celeritate debita altitudini \(\nu \), iam venae aquae effluentis
Ed opponatur directe obex planus de ipsi foramini am-
plitudine aequalis, atque hic obex ab effluente aqua ean-

D d 2

dem
dem vim sustinebit, ac si ipse celeritate altitudini \(\nu \) debita directe contra aquam quiescentem impingeret. Consentaneum autem videtur, obicem in \(\delta \) eandem pressionem esse passurum, ac si in \(DE \) esset collocatus, hoc vero caeli obex omnino obturabit foramen effluxumque penitus impediet; nunc autem pressionem patietur aequalis ponderi cylindri aquei, cuius basis aequat ipsa superficie obicis \(a^2 \), altitudo vero altitudini \(AC = \nu \), ex quo sequitur resistentiam superficie planae in aqua directe motae aestimandam esse ex simplici cylindro aquae, cuius altitudo altitudini celeritati debitae aequalis sit. Experimenta etiam hoc ratiocinium fatis confirmant, nam quam si obex maior adhibeatur, quam est foramen \(DE \) resistentia aquae maior sentiatur, tamen hoc magnitudini obicis tribuendum videtur, quippe ad cuius latera aqua desfluit, maioremque pressionem exercet, quam si obex orificium tantum aequaret; quamobrem non dubitandum est quin obex superficiem maiorem non habens quam est amplitudo foraminis, assignatam pressionem sive sensuras. Quoniam porro eadem hypothesis confirmatur, si aquae elasticitas, quae omnino adimi non poteat, tribuatur, et praecepue, si conservatio virium vivarum statuatur, cuius vis, ubique summus conspicitur, eo minus dubitabimus carfolam recipere, eique totam resistentiae doctrinam superficiere; idque eo magis, cum illi experimenta maxime faucant.
PROPOSITIO 50.

474. *Si superficies plana in aqua oblique moueatur*, Tab. XXII. fig. 3. determinare resistentiam, *qua motus superficie ab aqua retardabitur.*

Solutio.

Quia superficies plana oblique mouerit dicitur, quando directio motus ad ipsam angulum constituit obliquum, repraesentet AB superficiem planam, cuius area sit \(= a^2\); quae moueatur in aqua directione MC, quae cum plano superficie AB angulum constituit ACM cuius sinus fit \(= n\); posito sinu toto \(= 1\); celeritas vero qua superficies mouetur debita fit altitudini \(v\). Concipiatur iam vt ante superficies AB in aqua promoueri per spatiumum Ca \(= dx\), atque hoc absuluto peruenire in \(ab\), interea conflictum habuerit necesse est cum mole aquae ABba, cuius volumen est \(= na^2 dx\). Minor igitur aquae portio motui superficie obstat, quam si directe in aqua moueretur, idque in ratione sinus anguli incidentiae ad finum totum; et hanc obstructem ex hoc capite resistentiam, quam pateretur in motu directo, diminuenda est in ratione sinus anguli incidentiae ACM ad finum totum. Deinde quoniam superficies in singulas aquae parteculas oblique impingit, tamen impulsus directio erit ad superficiem AB normalis, ita vt resistentia in superficiem AB vim exerat, cuius directio ad eam erit normalis CP, atque per ipsius superficie centrum gravitatis C transibit. At quoniam omnes conflictus huius superficie cum singulis aquae particularis sunt obliqui, minus erunt efficaces, quam si essent directi, idque in ratione sinus anguli incidentiae ACM ad finum totum. Cum

\[D \ d \ 3\] igitur
igitur in ista impulsiōne obliqua resistentia ob duplicem causam bis debeat diminui in ratione sinus anguli incidence ad finum totum, se habebit resistentia, dum superficies AB in aqua obliqua monetur, ad resistentiam quam eadem superficies eadem celeritate directe mota pateretur, ut quadratum finus anguli incidenceae MCA ad quadratum finus totius hoc est vt a^2 ad r. Quare cum vis resistentiae in casu motus recti sit $=ma^2v$, seu ponderi cylindri aquei, cuius basis est $=a^2$ et altitudo aequalis altitudini debitae celeritati, erit vis resistentiae pro praesenti casu $=n^2ma^2v$, hoc est ponderi cylindri aquei basinis habentis aequalam ipsi superficie et altitudinem aequalis altitudini celeritati debitae multiplicato per quadratum finus anguli incidenceae MCA posito fini toto $=r$. Q. E. I.

Coroll. 1.

475. Resistentiae igitur, quam idem planum sub diversis angulis in aqua motum eadem celeritate patitur, est in duplicata ratione finus anguli quem planum cum directione motus constituit.

Coroll. 2.

476. Si igitur cognita fuerit vis resistentiae, quam planum in aqua directe motum sussurit, simul innotescet resistentia, quam idem planum vtcumque oblique in aquam impingens patietur.

Coroll. 3.

477. In quacunque igitur directione superficies plana in aqua moueatur, directio resistentiae semper est eadem.
dem, est enim normalis ad planum superficie, atque per centrum gravitatis ipsius superficie transit.

Coroll. 4.

478. Resistentia porro, quam idem planum sub variis angulis diversissque celeritatibus in aqua motum patitur, est in ratione composita ex duplicata celeritatum, et duplicata sinus anguli quo in aquam impingit.

Coroll. 5.

479. Resistentiae autem, quas diversa plana in aliqua mota suferunt, rationem tenent compositam ex simplici arearum, duplicata celeritatum et duplicata sinus angulorum, quibus in aquam incurrunt.

Scholion 1.

480. Inferiunt haec problemata infra basis ad resistentiam determinandam, quam corpora cujuscunque figurae in aqua mota patiuntur. Pendet enim resistentia a corporis superficie anteriore qua in aquam incurrit, quippe quae sola cum particulis aquae conflictatur, pars autem corporis posterior ab aqua nullam patitur resistentiam, eo quod ea ad aquam non allidit. Quamquam enim etiam pars posterior ab aqua affici videatur, dum aqua locum, quem corpus post se reliquit, occupans, in partem posticam impetum facit ac motum accelerat, tamen iste effectus vix est sensibilis, et hancobrem hic considerari non meretur; ad quod accedit, quod theoria aquae nondum sit ad eum perfectionis gradum eucta, ut aquae effectus.
effectus in posticam corporis natantis partem definiri queat. Hac igitur consideratione praetermissa, si corporis aquae innatantis anterior superficies vel plana fuerit vel ex planis pluribus constet, ope duorum horum problematum resistentia absolute poterit definiri. Praeterea vero inferiunt haec problemata ad resistentiam corporum quacunque superficie praeeditorum assignandam; quomodo quacunque enim superficies fuerit comparata, ea more solito tanquam ex innumerabilibus planis composita considerari, atque ex regulis staticis resistentia totalis, quae ex resistentiae singulorum elementorum emergit, per integrationem definiri poterit, quo pacto tam directionem medium omnium resistentiarum, quam ipsam potentiam æquabitentem determinare licebit.

Scholion 2.

481. Cum igitur nunc propositum sit resistentiam indagare, quam corpora quacunque aquae innatantia perpetuuntur, quo tota ista tractatio commode et dilucide absoluatur, certum ordinem sequi oportebit. Primum igitur hoc capite figuras tantum planas aquae tum horizontaliter tum verticaliter innatantes considerabo, atque vim resistentiae eiusque directionem determinabo, inde enim ad ipsa corpora facilius transire licebit. Eas vero figuras, quas aquae horizontaliter innatae ponemus, axe seu diametro praeditas assumemus, quia naues, ad quas hic potissimum respicimus, plano diametrali, quod verticaliter per spinam transeat, gaudent, ex quo singulae actiones horizontales diametro spinæ nautis parallela erunt præ.
praeditae. Hic autem in resistentia ingens oritur discri-
men; vtrum eiusmodi superficies secundum diametri suae
directionem in aqua moueatur, an oblique? si enim se-
cundum directionem diametri moueatur, manifestum est
medium directionem resistentiae ob similem ex vtraque
diametri parte effectum, esse in ipsa diametro postim; ita
t vt hoc casu tantum quantitas vis resistentiae inuestigari
debat: sin autem eiusmodi superficies non secundum dia-
metri suae directionem in aqua progredivatur, tum seorsim
tam medium directionem, quam ipsam quantitatem resi-
stantiae inueniri oportet, quae inuestigatio propterea plus
habebit difficulis. Deinceps in capite sequente simili
modo in resistentia corporum ipsorum aquae innatantium
inuestiganda verlabimur; eiusmodi enim corpora tantum
contemplabimur, quae praedita sint plano diametrali verti-
cali, quo nauium conditio imprimis spectetur, in qua
tractatione iterum praecipue ad directionem motus erit at-
tendendum, vtrum is fiat secundum diametrum sectionis
aqua, an ad diametrum oblique; priore enim casu media
directio resistentiae sponte datur, posteriore vero haud
exiguo labore demum est inuestiganda. In vtraque autem
tractatione eiusmodi problemata afferemus, ex quibus pa-
teat, quanam nauium figura ratione resistentiae fit ap-
tissima; quae tum ex minima resistentia tum ex idonea
resistentiae directione desumentur. Antequam autem haec
omnia evoluenda sucipiamus, hic locus maxime est idoneus
ad effectum gubernaculi in naue circa axem verticalem conuer-
tenda inquirendum; quoniam gubernaculum superficie plana so-
let esse praeditum, cuius ideo vis, quam contra aquam im-
pingens patitur, ex ifta propositione facile definiri potest.
CAPVT QVINTVM

PROPOSITIO 51.

Problema.

482. Si nauis in directione quacunque progrediatur, atque gubernaculum ad datum angulum convertatur, inuenire vim, quam gubernaculum habebit ad nauim circa axem verticalem per centrum gravitatis transeuntém convertendam.

Tab. XXII. fig. 4.

Solutio.

Quoniam media directio vis aquae, in quam gubernaculum irruit, per centrum gravitatis superficie planae gubernaculi transit, ad eamque est normalis, concipiatur sectio nauis horizontalis ARBm per gubernaculi AD centrum gravitatis C transiens. Manifestum autem est hic non totius gubernaculi, sed eius tantum partis, quae aquae est immerfa centrum gravitatis sumi debere. Representabit itaque in figura A puppim, B proram, AB spinam nauis, AD gubernaculum situm tenens naturalem: Sit autem G punctum axis verticalis nauis per eius centrum gravitatis ducti, in quo per planum horizontale ARBm transit; GM vero sit directio curfis seu motus nauis, ita vt angulus BGM denotet declinationem curfis nauis a curfis directo, qui secundum directionem spinae GB fieri convenit, gubernaculum vero inclinatum sit ad angulum DAd, ita vt situm Ad obtineat, quo secundum directionem e mortality curfis GM parallelam in aquam impingit: Sit nunc anguli BGM sinus = m; cosinus = u; anguli vero DAd sinus = n; cosinus = v, existente semper sinu toto = r. Sit porro area vel superficies gubernaculi vim aquae excipiens = a²; AC = Ac = b; A G = j.
G = f; celeritasque, qua nauis mouetur, debita sit altitudini v. Denique sit pondus nauis = M, volumen partis submerse nauis = V, et momentum inertiae nauis respectu axis verticalis = Mk². His praemissis erit Acmr angulus sub quo gubernaculum Ad ad aquam alidit, qui cum sit = DAd + BGm, erit sinus eius = mv + nμ; hinc igitur vis resistentiae, quam gubernaculum sentiet erit = \(\frac{(mv + nμ)^2M_{\text{a}}}{V}\). Cuius directio cr transfibit per gubernaculi centrum gravitatis e, eritque ad Ad normalis. Momentum ergo huius vis ad nauem circa axem verticalem circumuertendam erit = \(\frac{(mv + nμ)^2M_{\text{a}}}{V}\). Gr sin. Arc. Est vero ob angulum Acr rectum, sinus Arc = v; et Acr = \(\frac{b}{v}\); unde sit Gr = f + \(\frac{b}{v}\). Quo circa momentum vis gubernaculi ad nauem circa G convertendam erit = \(\frac{(mv + nμ)^2M_{\text{a}}}{V}\(b + v\)). Quod diuisum per momentum inertiae nauis respectu axis verticalis MK², dabit vim gyratoriam nauis circa eundem axem verticalem = \(\frac{(mv + nμ)^2(b + v)\alpha^2}{VK^2}\); cui vi acceleratio momentanea mutus angularis, qui nauis circa axem verticalem per centrum gravitatis ductum imprimitur, est proportionalis. Q. E. I.

Coroll. 1.

483. Pro eadem ergo nauis, quo maior fuerit expressio \((mv + nμ)(b + xf)\) eo maior erit effectus gubernaculi ad nauem convertendam; ex quo angulus DAd definiri poterit, quo effectus gubernaculi sit maximus.
Coroll. 2.

484. Si igitur anguli \(\text{DA}d \) cosinus seu \(v \) ponatur \(= x \), erit \(n = V(1 - xx) \), atque formula \((mx + \mu V(1 - xx))(b + fx) \) seu eius radix quadrata \((mx + \mu V(1 - xx))V(b + fx) \) fit maximum, cum \(x \) determinatur ex hac aequatione: \(2 \left(m - \frac{\mu x}{V(1 - xx)} \right) (b + fx) + f(m + \mu V(1 - xx)) = 0 \), quae transit in hanc \(m(2b + 3fx) V(1 - xx) = \mu (3fxx + 2bx - f) \).

Coroll. 3.

485. Si ergo nauis cursu directo progresdiatur, et angulus BGM evanesceat, erit \(m = 0 \), et \(\mu = 1 \), atque vis gyratoria \(= \frac{n^2 a^2 v(b + vf)}{vk^2} \); maximum igitur gubernaculum praestabit effectum, si fuerit \(3fxx + 2bx - f = 0 \), hoc est, si fuerit anguli \(\text{DA}d \) cosinus \(x = \frac{-b + \sqrt{b(b + 3f)}}{3f} \).

Coroll. 4.

486. Si igitur \(b \) tam fuerit parum, ut prae \(f \) evanesceat, erit anguli \(\text{DA}d \), quo maximum effectum praestat gubernaculum, cosinus \(= \frac{1}{vk} \); hoc est angulus \(\text{DA}d \) erit \(54^\circ, 44' \).

Coroll. 5.

487. Si nauis cursus a directo declinet angulo BGM, gubernaculum autem in situ naturali - AD relinquatur, praestabit tamen gubernaculum effectum ad nauem comitem dam, cujus vis gyratoria erit \(= \frac{m^2 a^2 v(b + f)}{vk^2} \).
Coroll. 6.

488. Afficit autem praeterea vis gubernaculi ipsum nauis motum, quae mutatio reperietur, si vis resistentiae \(\frac{(mv+nu)^2Ma^2v}{v} \), concipiatur in directione parallela GR centro gravitatis applicata; retardabitur scilicet motus nauis in directione sua a potentia \(\frac{(mv+nu)^2Ma^2v}{v} \); at a semita recti-linea deturbabitur potentia \(\frac{(\nuv-mn)(mv+nu)^2Ma^2v}{v} \).

Coroll. 7.

489. Habebit insuper gubernaculum in situ Ad conatum se intecto circa A convirtendi secundum plagam dD, qui conatus exprimitur momento \(\frac{(mv+nu)^2Ma^2bv}{v} \); tanta igitur vis a gubernatore adhiberi debet ad gubernaculum in situ Ad continentium.

Coroll. 8.

490. Si igitur nauis cursu obliquo feratur, vi adeo opus erit ad gubernaculum in situ naturali AD conservandum, quae vis exprimitur momento \(\frac{Mv^2a^2bv}{v} \).

Coroll. 9.

491. Manifestum denique est omnes has vires a gubernaculo exertas ceteris paribus crescere in duplicata ratione celeritatum, quibus nauis progrediatur.

Scholion.

492. In hac igitur propositione non solum definimus quanta vi gubernaculum nauem circa axem ver-

E e γ.
CAPVT QVINTVM

ticalem per centrum gravitatis ductum circumagat, sed etiam quantum tam ipsius nauis celeritatem, quam curris directionem afficiat, in corollaris determinauimus. Præterea etiam vim assignauimus, quam naucerus adhibere debet ad gubernaculum, in dato situ conferandum tanta, sicilicet haec naucri vis requiritur, ut eius momentum respectu axis circa quem gubernaculum mobile existit, adaequet momentum inventum, quo gubernaculum ex situ AD versus AD tendit. Intelligitur vero etiam, nisi planum ARBm per nauis centrum gravitatis transeat, vim gubernaculi etiam se ex erere ad nauem circa axem horizontalem tam longitudinalern quam latitudinalem inclinandam, quae inclinatio autem attendi vix meretur, cum sit exigua, atque tum bulum eueniat, quando gubernaculum vsurpatur. Quam obrem misso gubernaculo ad ipsum proposittum reuertamur, ac primo quidem, quantum resistentiam figurae planae aquae innatantes patiantur inuestigemus.

PROPOSITIO 52.

Problema.

Tab. XXIII.
fig. r.

493. Innatat aquae figura plana MAN diametri AP praedita secundum directionem AC ipsius diametri AP data cum celeritate, inuenire resistentiam, quam haec figura ab aqua patietur.

Solutio.

Primum perspicuum est, quia figura secundum directionem axis AC in aqua progreditur, ob vtrinque omnia similia mediam directionem resistentiae in ipsam diametrum AP incidere debere, ita ut tantum opus sit eum quan-
quantitatem determinare. Hancobrem ponatur celeritas, qua figura in aqua secundum directionem AC progreditur, debita altitudini ν ac ducantur ad diametrum AP duae ordinatae orthogonalles MPN, mpn, vtrinque aequalia et similia curvae elementa Mm, Nn abscindentia, quae elementa quantam resistentiam excipiant est indagandum. Ponatur AP = x, PM = PN = y erit Pp = dx, et Mm = Nn = √(dx² + dy²) = ds. Iam anguli, quo elementa Mm et Nn in aquam illidunt, sinus est = dy / ds. Si autem elementa haec in aquam directe seu normaliter impingent, foret vis resistentiae = vds hoc est ponderi cylindruli aquei basis ds et altitudinis ν. Praesenti igitur caus vis, quam vtrumque elementum patitur, erit = v/ds²; cuius vtriusque vis directio est normalis ad ipsa elementa, ideoque in normales MR et NR incidet. Si nunc haec duae vires resolvantur in binas, quarum alterae directioes habeant in applicatis, alterae parallelas axi AP, illae se mutuo destruent, hae vero conspirabunt, habebuntque medium directionem in AP incidentem. Quamobrem ob resistentiam elementorum Mm, Nn, curvae in directione AP resistetur vi v/ds²; ex quo tota curva MAN resistentiam pariet = 2 ∫ v/ds² = 2 v∫ dy² / ds², ob ν constantem, huiusque vis directio sita erit in ipsa diametro AP. Q. E. I.

Coroll. 1.

494. Directio resistentiae ergo, quam eiusmodi figura secundum diametrum AC in aqua promota seait, directe contraria erit directioni motus, et hancobrem motus tantum a resistentia retartabitur, directio vero non afficietur.
ficietur, fiquidem figurae centrum gravitatis in diametro AP fuerit situm.

Coroll. 2.

495. Resistentia ergo ab A ad M et N progrediens eousque crescit, quoad fiat $dy = 0$, hoc est quoad curvae tangentes axi AP fiat parallelae. Quamobrem si curva fuerit indefinita, resistentia ex iis tantum ramorum AM et AN portionibus aestimari debet, qui inter A et lora vbi est $dy = 0$ interiacent.

Coroll. 3.

496. Si sola ordinata MPN in aqua directe, hoc est secundum directionem AP eadem celeritate moueretur, tum resistentia quam sentiret, foret $= 2 v q$; ex quo resistentia ordinatae MPN se habebit ad resistentiam curvae MAN vt y ad $\int \frac{dy}{dz}$.

Coroll. 4.

497. Quoniam vbique est $dy < ds$, erit $\frac{dy}{dz} < \frac{dz}{dy}$ ideoque $\int \frac{dy}{dz} < y$; quamobrem resistentia, quam cura MAN patitur semper minor erit quam resistentia, quam sola ordinata MPN sentiret.

Coroll. 5.

498. Eo minor ergo erit figurae MAN resistentia, quo magis discrepat a recta transversali MPN; sine quo minus vbique est elementum applicatae dy respectu elementi curvae.