IN superiore dissertatione, in qua methodum tradidi aequationem pro infinitis curvis eiusdem generis inveniendi, ipsius Q valorem in aequatione $dz = Pdx + Qda$ determinare docui, & data aequatione $z = \int Pdx$. Namque si P ex x, et a cum constantibus, vt & unque fuerit compositum; manifestum est si $\int Pdx$ differentiatur post & non solum x sed etiam a variabilis, prodituram esse huius formae aequationem $dz = Pdx + Qda$, in qua valor ipsius Q necessario a quantitate P, qua est cognita, pendebit. Demonstrari scilicet, si differentiale ipsius P posito x constante fuerit Bda, fore ipsius Q differentiale posito a constante, Bdx, ex quo pendentia ipsius Q a P satis perspicitur.

§. 2. Cum autem inuentus fuerit valor ipsius Q, aequatio $dz = Pdx + Qda$ exprimet naturam infinitarum curvarum ordinatim datarum, quorum singulae seorsim continentur aequatione $dz = Pdx$, a se unicem vero diff-
DE INFINITIS CURVIS EIVSDEM GEN. 185

differentiœ differentiœ sunt quarumque formulas. Et hanc
rem aequationem \(dz = Pdx \) ductam qua moduli
existent quinquantae quantitas variabilis ineunt, cum Cel. Hermi-
manno aequationem modularem vocant.

§ 3. Si \(Pdx \) integrationem admittit, seu si cur-
vens ordinatum datur omnem sunt algebrarum aequatio \(z = \int Pdx \) simul erit modularis; nam quia nulla ad un
differentia, modulus \(a \) atque variabilis \(x \) et \(z \) po-
erit considerari. Sin autem \(Pdx \) integrari nequit, aequa-
tionem etiam modularis non erit algebraica, exceptis ca-
fibus quibus \(P = AX + BY + CZ \) etc. existentibus
\(A, B, C \) etc. functionibus ipsius \(a \) et constantium, atque
\(X, Y, Z \) etc. functionibus ipsius \(x \) et constantium tan-
tum, modulo \(a \) plane non ingrediens. Etiam si in
ipso aequatio \(dz = Pdx \) fit differentialis, tamen aequa-
tio modularis \(z = \int Xdx + Ydx + C/Zdx \) etc. in-
stant algebrarum est consideranda.

§ 4. Nifi autem \(P \) talem habuerit valorem aequa-
tio modularis vel erit differentialis gradus primi vel ad
nors gradus. Differentialis quidem primi gradus erit,
\(Q \) vel erit quantitas algebraica, vel integrale ipsius
\(Pdx \) multum, hoc enim casu \(z \) loco \(Pdx \) substitutum
quotiens signum summatorium, ita \(z \) ac qua aequatio mo-
dularis differentialis pura fit proditura.

§ 5. Deprecendii vero in superiori dissertazione, e
quoties algebraicum habere valorem quoties \(P \) talis
fuerit ipsorum \(a \) et \(x \) functione, \(\forall \) numerus dimensionem,
quae \(a \) et \(x \) constituant sit ibique idem atque \(-1 \), seu

Bb 2

quo-
quoties \(Px \) vel \(Pa \) fuerit functio ipsarum \(a \) et \(x \) nullius dimensionis. Deinde etiam obseruaui, quoties in \(P \) litterae \(a \) et \(x \) eundem tantum vbique consitnunt dimensionum numerum, toties \(Q \) ab integratione ipsius \(P \, dx \) pendere. Ex quo, cum tam eximia consequuntur fidicia ad aequationes modulares inveniendas, maxime in nihilum inuenire, num forte aliae dentur huiusmodi functiones ipsius \(P \), quae isdem praecogatiuis gaudeant. Hae igitur a priori inuenire constitui, quo simul methodus tales functiones inueniendi aperatur.

§ 6. Si \(P \) est functio ipsarum \(a \) et \(x \) dimensionem \(-1\), seu \(z \) functio ipsarum \(a \) et \(x \) nullius dimensionis, ostendi fore \(Px + Qa = 0 \), seu \(Q = -\frac{P}{a} \). Sumamus igitur esse \(Q = -\frac{P}{a} \) et quaeramus, qualis sit \(P \) functio ipsarum \(a \) et \(x \). At si \(Q = -\frac{P}{a} \) erit \(dz = P \, dx \) \(-\frac{P \, dx}{a} \). Quamobrem \(P \) talis esse debet functio ipsarum \(a \) et \(x \), vt \(dx - \frac{P}{a} \) per eam multiplicatum euadat integrabile. Hic autem per integrabile non solum intellego, quod integratione ad quantitatem algebraicam, sed etiam quod ad quadraturam quamcunque reducitur. Si igitur generaliter inuenimus quantitatem, in quam \(dx - \frac{P}{a} \) ductum sit integrabile, ea erit quae est valor ipsius \(P \), eius proprietatis, vt sit \(Q = -\frac{P}{a} \).

§ 7. Fit autem \(dx - \frac{P \, dx}{a} \) integrabile si multipli- catur per \(\frac{1}{a} \), integrale enim erit \(\frac{a}{P} \, dx - c \), designante \(c \) quantitatem constantem quamcunque ab \(a \) non pendentem. Quocirca, si \(f(\frac{x}{a} + c) \) denotet functionem quam-
cunque ipsius \(\frac{x}{a} + c \), sicut quoque \(dx - \frac{x \, da}{a} \) integrabile, si multiplicetur per \(\frac{1}{a} f(\frac{x}{a} + c) \). Quis valor cum sit maxime generalis, ert \(P = \frac{1}{a} f(\frac{x}{a} + c) \), et \(Q = -\frac{px}{a} \). Et vero \(f(\frac{x}{a} + c) \) function quae cunque ipsarum \(a \) et \(x \) nullius dimensionis. Quamobrem, quoties \(pa \) fuerit function nullius dimensionis ipsarum \(a \) et \(x \), toties ert \(Q = -\frac{px}{a} \), idque aequatio modularis \(dx = P \, dx - \frac{pxda}{a} \).

§ 8. Sit \(Q = A - \frac{px}{a} \), et \(A \) function quae cunque ipsius \(a \) et constantium; ert \(dz = P \, dx + A \, da - \frac{pxda}{a} \), seu \(dz = A \, da + P \, dx - \frac{pxda}{a} \). In qua aequatione cum \(dz = A \, da \) sit integrabile, debebit \(P \, dx - \frac{pxda}{a} \), quoque etsi integrabile. Hoc autem per præcedentem operationem euenit si \(P = \frac{1}{a} f(\frac{x}{a} + c) \). Tum igitur ert \(Q = A - \frac{px}{a} f(\frac{x}{a} + c) \). Simili ratione intelligitur si fuerit \(P = X + \frac{1}{a} f(\frac{x}{a} + c) \), denotante \(X \) functionem ipsius \(x \) tantum, ert \(Q = A - \frac{px}{a} f(\frac{x}{a} + c) \), vbi \(x \) ante \(f(\frac{x}{a} + c) \) exprimit functionem quae cunque ipsarum \(a \) et \(x \) nullius dimensionis.

§ 9. Sit \(Q = -\frac{mpx}{a} \), vbi \(m \) indicet numerum quemcunque; ert \(dz = P \, dx - \frac{mpxda}{a} \). Debebit ergo \(P \) talis esse quantitas, quae \(dx - \frac{mpxda}{a} \) si in id multiplicetur, reducta integrabile. Fit autem \(dx - \frac{mpxda}{a} \) integrabile, si sicutur in \(\frac{1}{a^m} \) integrale enim ert \(\frac{x}{a^n} \). Quare generat litter ert \(P = \frac{1}{a^m} f(\frac{x}{a^n} + c) \). Atque quoties \(P \) tales

Bb 3

ha-
habuerit valorem erit $Q = -\frac{nX}{a^{n+1}} + f\left(\frac{x}{a^n} + c\right)$. Intelligitur etiam si fuerit $P = X - \frac{1}{a^x} f\left(\frac{x}{a^n} + c\right)$, fore quoque generalius $Q = A - \frac{nX}{a^{n+1}} + f\left(\frac{x}{a^n} + c\right)$. Vbi vt ante et in posterum semper f-denotat functionem quamcunque quantitatis sequentis. At A est functio quaecunque ipsius a, et X functio quaecunque ipsius x tantum.

§. 10. Quo igitur dignoscì queat, an datus quispiam valor ipsius P in formula inuentà contineatur, poni debet $a = b^n$, quo tecto videndum est, an Pb fiat functio ipsarum b et x nullius dimensionis, vel an prodeat aggregatum ex functione quadam ipsius x tantum, et tali functione. Quod si deprehendetur, habebit P proprietatem requisitam, eritque Q aequalis huic ipsi functioni in $-\frac{nX}{a^n}$ ductae sua cum functione quaecunque ipsius A. In vniusrum autem notandum est quantitatem P functione ipsius x vt X, et Q functione ipsius a vt A posse augeri. Nam si fuerit $dz = Pdx + Qda$ aequatio modularis, talis quoque erit aequatio $dz = Pdx + Xdx + Qda + Ada$. Posito enim du loco $dz - Xdx - Ada$ habebitur $du = Pdx + Qda$, quae cum priore proposita congruit. Hancobrem superfluum foret in posterum ad valorem ipsius Q assumtum, functionem A ipsius a adicere. Quare haec apparentem generalitatem negligemus.

§. 11.
§. ii. Sit nunc $Q = PE$ denotante E functionem quacunque ipsius a. Erit itaque $dz = P \, dx + PE \, da$ et P talis quantitas, quae reedit $dx + E \, da$ integrabile. At si $P = 1$ fit integrabile hoc differentiale, integrale enim erit $x + \int E \, da$. Quamobrem erit $P = f(x + \int E \, da)$ et $Q = Ef(x + \int E \, da)$. Siue si ponatur $\int E \, da = A$, fueritque $P = f(x + A)$ erit $Q = \frac{dA}{da} f(x + A)$.

Num autem datus ipsius P valor in hac formula continetur, hoc modo est inuestigandum, ponatur $x = y - A$. ut quauratur, an pro A talis accipit queat functione ipsius a et constantium, vt P fiat functione solius y et constantium, quam modulus a non amplius ingrediatur.

§. 12. Ponamus esse $Q = PY$, vbi Y fit function quaecunque ipsius x modulum a non involuens. Quo posito erit $dz = P \, dx + PY \, da$, et P talis functione quae efficat $dx + Y \, da$ integrabile. Posito autem $P = \frac{1}{2}$, sit $z = \int \frac{dz}{Y} + a = X + a$, si ponatur $\int \frac{dz}{Y} = X$. Quamobrem erit $P = \frac{1}{2} f(X + a)$. Quoties ergo P huiusmodi habuerit valorem erit semper $Q = f(X + a)$.

§. 13. Sit nunc generalius positum $Q = PEY$ erit $dz = P \, dx + PE \, Y \, da$, vbi vt ante E denotat functionem ipsius a, Y vero ipsius x. Perspicum est, si fuerit $P = \frac{1}{2}$ formulam itam differentialem effici integrabilem, prodiret enim $z = \int \frac{dz}{Y} + \int E \, da$, seu $z = X + A$ posito $\int \frac{dz}{Y} = X$. Quamobrem erit $P = \frac{1}{2} f(X + A) = \frac{dA}{da} f(X + A)$ hisque in casibus fit $Q = \frac{dA}{da} f(X + A)$.

Comprehenduntur in his formulis etiam logarithmici ipsarum A et X valores, vt si fit $X = lT$ et $A = - lF$, erit $P = \frac{dT}{T \, da} f_{T}^{T}$ et $Q = \frac{-a}{Pa} f_{T}^{T}$.

§. 14.
ADDITAMENTVM AD DISSERTAT.

§. 14. Perspicitur igitur omnes habere, si aequatio proposita fuerit vel \(dz = dX \cdot f(X + A) \) vel \(dz = \frac{dx}{X^a} f\left(\frac{X}{X^a}\right) \). Quoties ergo aequatio proposita ad has formas poterit reduci, substituendis \(X \) pro functione quamunque ipsius \(x \) et \(A \) pro functione quamunque ipsius \(a \), toties aequatio modularis poterit exhiberi: erit enim priore casu \(dz = dX f(X + A) \) + \(dA f(X + A) \) in posteriore vero casu \(dz = \frac{dx}{x}, f\left(\frac{x}{A}\right) \) - \(\frac{dA}{A} f\left(\frac{x}{A}\right) \). Id quod quidem in his nuueterminis exemplis facile perspicitur, in specialioribus vero multo difficilius. Quocirca maximum potestur erit subsidium in reducendis causis particularibus ad has generalis formas, id quod, si quidem talius reductio fieri potest, non difficulter praebetur.

§. 15. Si ponatur \(Q = PR \), designante \(R \) functionem quamcunque ipsarum \(a \) et \(x \), erit \(dx = Pdx + PR\, da \). Ad inveniendum nunc valorem ipsius \(P \), surnatur formula \(dx - R\, da \), seu aequatio \(dx - R\, da \) = o' confideretur, et quaeratur quomodo indeterminatae \(a \) et \(x \) a fere inuicem poassint separari, seu quod idem esset, per quamam quantitatem \(dx + R\, da \) debeat multiplicari, ut fiat integrabilis. Sit haec quantitas \(S \) et ipsius \(S\, dx + RS\, da \) integrale \(T \) erit \(P = S\, fT \). Hisque in causis erit \(Q = RS\, fT \). Haec operatio latissime patet et omnes causas complecitet, quibus \(Q \) cognitum et \(a \) non pendetem habet valorem.

§. 16. Progrediamur autem ulterior et in eos ipsius \(P \) valores inquiramus, in quibus \(Q \) non folum a \(P \) sed etiam
DE INFINITIS CURVIS EIVSDEM GENER. 191

\textit{etiam} \ a \ fPdx \ \textit{seu} \ a \ z \ \textit{pendet. \ Ponatur} \ \textit{igitur primo} \
\[Q = a^2 \cdot \frac{x^2}{a^3} \cdot \text{denotante} \ n \ \text{numerum quemcunque. \ Erit} \ \textit{ergo} \ \frac{dz}{dx} = \frac{a^2}{a} \cdot \frac{x^2}{a} \cdot \text{seu} \ dz = a^2 \cdot \frac{x^2}{a} \cdot \frac{dx}{a}. \ \textit{Multiplicetur} \ \textit{vntrinque} \ \text{per} \ \frac{1}{a^2}, \ \textit{quo prodeat} \ \textit{hac} \ \textit{aequatio} \ \frac{dz}{a^2} \ \textit{in qua} \ \textit{prius} \ \textit{membrum} \ \textit{est} \ \textit{integrabile. \ Debebit} \ \textit{ergo} \ \textit{etiam} \ \textit{integrabile} \ \textit{esse} \ \textit{alterum} \ \textit{membrum} \
\[\frac{Pdx}{a^2} \cdot \frac{Pxdx}{a} = \frac{Pxdx}{a^2} \cdot \frac{Pxdx}{a}, \ \text{ex quo} \ \textit{idoneus} \ \textit{ipsum} \ P \ \textit{valeur} \ \textit{est} \ \textit{quae} \ \textit{rendus}. \ \textit{Euenit} \ \textit{hoc} \ \textit{si} \ x = a^n - t, \ \textit{erit} \ \textit{eaem} \ \textit{integrale} \ \frac{x^n}{a} \cdot \frac{c}{a}. \ \textit{Quare} \ \textit{erit} \ \textit{universaliter} \ P = a^n -
\[f\left(\frac{x^n}{a} \cdot \frac{c}{a}\right), \ \text{id} \ \textit{quod} \ \textit{contingit} \ \textit{si} \ \frac{P}{a^n}, \ \textit{est} \ \textit{function} \ \textit{ipsam} \ a \ \textit{et} \ x \ \textit{nullius} \ \textit{dimensionis} \ \textit{seu} \ P \ \textit{function} \ \textit{ipsam} \ \textit{a} \ \textit{et} \ x \ \textit{dimensionum} \ n - i. \ \textit{Hoc} \ \textit{igitur} \ \textit{casu} \ \textit{est} \ n z = \ P x + Q a \ \textit{vt} \ \textit{in} \ \textit{superiore} \ \textit{dissertatione} \ \textit{oftendimus}. \]

\textsc{§ 17.} \textit{Sit} \ Q = \frac{a^2}{a} + P \ E Y, \ \textit{vbi} \ E \ \textit{ex} \ a, \ \textit{et} \ Y \ \textit{ex} \ x \ \textit{resecque} \ \textit{est} \ \textit{composum}. \ \textit{Erit} \ \textit{itaque} \ \frac{dz}{a^2} = \ P dx \ \textit{et} \ \frac{dz}{a^2} = \ P dx \ \frac{P E Y d a}{a^2} \ \textit{et} \ \frac{dz}{a^2} = \ P dx \ \frac{P E Y d a}{a^2}. \ \textit{Quam}

\textit{obrem} \ P \ \textit{ita} \ \textit{debet} \ \textit{accommodari}, \ \textit{vt} \ \frac{dx + E Y d a}{a^2} \ \textit{per} \ \textit{id} \ \textit{multiplicatum} \ \textit{equat} \ \textit{integrabile. \ Fit} \ \textit{hoc} \ \textit{autem} \ \textit{si} \ P = \frac{a^2}{Y}, \ \textit{quo} \ \textit{casu} \ \textit{integrale} \ \textit{est} \ \int_{Y}^{X} e + \int_{E d a} \ \textit{seu} \ X + A \ \textit{post} \ \int_{Y}^{X} = X \ \textit{et} \ \int_{E d a} = A. \ \textit{Quare} \ \textit{debebit} \ \textit{esse} \ P = \ \textit{Tom. VII. C c} \ \frac{a^2}{d X}
\[\frac{a^n \, dx}{dx} \cdot f(x + A), \text{ et in his casibus erit } Q = \frac{a^n \, dA}{da} \frac{f(x + A)}{f(x) + A} \cdot n. \text{ Si } x \text{ et } A \text{ a logarithmis pendent proibit } P \text{-huius-valoris } \frac{a^n \, dx}{dx} \frac{f(x)}{A} \cdot \text{ cui respondet } Q = \frac{n \, a^n \, dA}{A \, da} \frac{f(x)}{A}. \]

§. 18. Si ponatur \[Q = Fx + PEY, \text{ et } F \text{ et } E \text{ functiones sint ipsius } a, \text{ et } F \text{ vero ipsius } x. \text{ Tum erit } \frac{dz}{dz} = \frac{F \cdot dx}{dx} + \frac{P \cdot EY \, da}{EY \, da}. \text{ Ponatur } \int F \, da = IB, \text{ ita vt B sit functio ipsius } a, \text{ et duidatur per B habe-

bitur } \frac{dz}{dz} = \frac{a \, dx}{B} \frac{B}{B} \frac{dEY \, da}{EY \, da}. \text{ Cum igitur prius membrum sit integrabile, et alterum tale effici debet. Fit hoc si } P = \frac{B}{EY} \text{ tumque erit integrale } \int \frac{dz}{z} + \int EY \, da \text{ seu } X + A. \text{ Quocirca erit ipsius } P \text{ valor quae situs } \frac{B}{EY} f(x + A), \text{ Q vero erit } \frac{a \, dx}{dz} = \frac{B}{EY} \frac{dEY \, da}{EY \, da} f(x + A). \text{ Perspicitur quoque } \text{ si fuerit } P = \frac{B}{EY} \frac{dEY \, da}{EY \, da} f(x) \cdot \text{ fore } Q = \frac{\frac{a \, dx}{dz} B}{B} \frac{B}{EY} \frac{dEY \, da}{EY \, da} f(x). \]

§. 19. Latissime patebit solutio si ponatur \[Q = Fx + PR \text{ et } R \text{ fuerit functio ipsarum } a \text{ et } x. \text{ Erit enim } \frac{dz}{dz} = \frac{F \cdot dx}{dx} + \frac{PR \, da}{PR \, da}. \text{ Positio } \int F \, da = IB \text{ diuidatur per B habe-

bitur } \frac{dz}{dz} = \frac{a \, dx}{B} \frac{B}{B} \frac{PR \, da}{PR \, da}. \text{ Sit } \int S \text{ functio efficiens } d \text{, et } R \text{ da integrabile sitque } \int (S \, dx + R \, da) = T. \text{ Quo invenio erit } P = B S \text{ if } T \text{ huic respondet } Q = \frac{\frac{a \, dx}{dz} B}{B} \frac{B}{EY} \frac{dEY \, da}{EY \, da} fT. \]

§. 20. Possum praeferere plures huiusmodi valores ipsius P coniungi, hocque modo modo latius extendi.
DE INFINITIS CURVIS EIVSDEM GENER. 198

Qua si ponatur \(P = \frac{bdy}{dx} f(X + A) + \frac{bdy}{dx} f(Y + E) \) \(\epsilon \) \(Q = \frac{2bc}{a + b} + \frac{bdA}{da} f(X + A) + \frac{bdE}{da} f(Y + E) \). Atque simili modo numerus terminorum quantum libuerit, posset augeri. In his igitur caulis omnibus aequatio modularis differentialis primi casus inuenitur. Quamobrem his expeditis pergo ad eos casus inuenitandos, inquibus aequatio modularis primi gradus differentialis non datur, sed qui tamem ad aequationem modularem differentio-differentialem perducuntur.

§. 21. Si igitur \(Q \) neque algebraice per \(a \) et \(x \) neque per \(z \) potest exprimi, ii inuentiandii sunt casus quibus differentiale ipsius \(Q \) poterit exhiberi. Est autem \(Q = \frac{dz - pdx}{da} \), ergo \(dQ = \frac{dz - pdx}{da} \). Quare si differentiale ipsius \(Q \) vel per solam \(a \) et \(x \) vel per haec et \(Q \) vel etiam simul per \(z \) poterit exprimi, habebitur aequatio modularis, quae erit differentialis secundi gradus. Obtinet autem est superiore dissertatone si ponatur \(dp = L dx + M da \) fore \(dQ = M dx + N da \), ita vel haec differentialis communem litteram \(M \) invarianter. Quin autem ex dato \(P \) etiam \(M \) datur, nil aliud requiritur, nisi \(N \) determinetur. Quamobrem in eos inuentius casus, quibus \(N \) vel algebraice, vel per \(Q \) vel per \(Q \) et \(z \) exprimi potest. Tum enim habebitur aequatio modularis \(M dx + N da = d. \frac{dz - pdx}{da} \), posito in \(N \) loco \(Q \) cius valore \(\frac{dz - pdx}{da} \).

§. 22. Ex praecedentibus fatis intelligitur, si \(N \) per solam \(a \) et \(x \) determinetur, fore \(M = \frac{dx}{da} f(X + A) \) et \(N = \frac{dx}{da} f(X + A) \), sed, \(M = v + \frac{dx}{da} f(X + A) \) et \(N \)
ADDITIONEMENTVM AD DISSERTAT.

= I + \frac{dA}{dx} f(x + A) \text{ denotante V functionem quamcunque ipsius } x \text{ et I ipsius } a. \text{ Ex dato itaque P quaeratur } M, \text{ differentiendo } P \text{ posito } x \text{ constante, et differentiali invenio per } da \text{ dividendo. Quo facto quaeratur an valor ipsius } M \text{ in formula } V + \frac{dX}{dx} f(x + A) \text{ continuetur. Quod si fuerit comperturn et } X \text{ et } A \text{ et } V \text{ definitae, erit } Vdx + dXf(X + A) + Ida + dAf(X + A) = d. \frac{dx}{da} \text{ aequatio modularis desiderata. Notandum est in posterum semper loco } \frac{dX}{dx} f(x + A) \text{ poni posse aggregatum ex quotuis huiusmodi formulis } \frac{dX}{dx} f(X + A) + \frac{dY}{dx} f(Y + B) + \text{ etc. At loco } \frac{dA}{dx} f(x + A) \text{ tunc poni debet } \frac{dA}{da} f(x + A) + \frac{dR}{da} f(Y + B) \text{ etc. Hoc igitur monito in posterum tantum vnius formula } \frac{dX}{dx} f(x + A) \text{ eique respondente } \frac{dA}{da} f(x + A) \text{ vtemur.}

§. 23. Pendeat N simul etiam a Q sitque N = R + DQ, vbi D sit functionis ipsius a, et R functionis ipsarum a et x ex conditionibus sequentibus determinanda. Erit igitur dQ - DQda = Mdx - Rd, sit Dda = \frac{dH}{H} et diuidatur utrumque per H prohibit \frac{dQ}{H} - \frac{QdH}{H^2} = \frac{Mdx + Rd}{H}. In qua aequatione, cum illud membro sit integrabile, tale quoque hoc \frac{Mdx + Rd}{H} est efficiendum. Fiet igitur per praecedentem methodum M = \frac{Hdx}{da} f(x + A) et R = \frac{Hda}{da} f(x + A). Quare si in exemplo quopiam propitio ex P reperatur M talis valoris, erit N = \frac{Hda}{da} f(x + A) - \frac{da}{da} (dx - Pdx) posito \frac{dH}{H} loco D et \frac{da}{da} loco Q. Atque hinc in promptu erit aequatio modularis.

§. 24.
§ 24. Si N non a Q sed a z pendet, ita vt sit
N = R + C z, denotante C functionem ipsius a quam-
quina, erit d Q - C z d a = M d x + R d a. At quia eff
D = Q d a = P d x, addatur huius multiplum F d x = Q F d a
= P F d x, existente F functione ipsius a, quo facto orie-
tur aequatio d Q - Q F d a = F d x - C z d a = (M + P F)
d x + R d a. Ponatur F d a = \frac{d B}{B} et \frac{c d a}{C} = \frac{d G}{G}, ita vt
fit F = \frac{d B}{B d a} et C = \frac{d B}{B d a}. Perspicuum itaque est d Q-
Q F d a integrabile reddi si dividatur per B seu multi-
plicetur per \frac{1}{B}, F d x - C z d a autem fit integrabile, si
multiplicetur per \frac{1}{FG}. Quare quo idem factor summa
orum differentialium reddat integrabilem debet esse
FG = B eus \frac{c d a}{B d a} = B, vnde fit G = \frac{b d a}{d B}. Hanc obrem
alterum quoque membrum per B diisum est integrabile
efficiendum faciet \frac{M + P F}{B} d x + R d a. Quocirca facio R =
\frac{d B}{d a} f (X + A) et M + P F = \frac{b d a}{d x} f (X + A) = M +
\frac{r d a}{d x} f (X + A). Inquestigari igitur debet proposito exemplo, an loco
A, B et X tales functiones inueniri queant, quae ex-
hibent formulam \frac{b d a}{d x} f (X + A) aequalm ipsi M +
\frac{r d a}{d x} f (X + A). Hisque inuentis erit N = \frac{b d a}{d a} f (X + A) + \frac{c d a}{B d a} exi-
tentre \frac{G}{d a}, qui valor in aequatione M d x + \frac{N d a}{d x} =
d x + R d a. Substitueus dabit aequationem modularem.

§ 25. Sit nunc generalissime N = R + D Q + C z,
genentibus R, D et C isdem quibus ante valoribus. Erir
ego a Q - D Q d a - C z d a = M d x + R d a, addatur ad
hanc aequatio F d x = - Q d a = P F d x, quo habatur d Q
D Q d a - F Q d a - F d x - C z d a = (M + P F) d x +
R d a.
ADDITAMENTVM AD DISSERTAT.

R d a. Positis autem vt ante D d a = \frac{d a}{H}, F d a = \frac{d b}{E}, et \frac{c d a}{F} = \frac{d c}{G}, fit d Q - D Q d a - F Q d a integrabile si ductur in \frac{H}{B}, et F d z - C z d a integrabile fit ductum in \frac{F}{G}. Quare debetur esse H B = F G = \frac{G d a}{b d a} et G = \frac{F H d a}{a B}.

Atque \frac{[M - P F] d x + R d a}{H B} reddendum est integrabile: fier ergo facto H B = E, R = \frac{E d a}{d a} f (X \rightarrow A) et M + P F = \frac{E d x}{d a} f (X \rightarrow A). Quocirca in casu proposito A, X, E et F si fieri potest ita debent definiri, vt \frac{E d x}{d a} f (X \rightarrow A) aequale fiat ipsi M + P F. Hocquem inuenisse N = \frac{E d a}{d a} f (X \rightarrow A) + \frac{d H}{d a} (d z - P d x) + \frac{F z d c}{G d a}, unde aequatio modularis reperitur.

§. 26. At si nequidem differentialis secundi gradus aequatio modularis obtinere poterit; ad differentialem tertii gradus erit procedendum. Fiet ergo N = \frac{d (d x - P d x) - M d x}{d a}
atque hinc posito d N = s d x + t d a, erit s d x + t d a = d (\frac{d (d x - P d x) - M d x}{d a}). Datur autem s ex M, cum sit s d a differentiale ipsius M, quod prodit, si x ponatur consistens. Quamobrem t tantum debet inuescigari. Sit ergo t = R + E N + D Q + C z, ideoque d N - E N d a - D Q d a - C z d a = s d x + R d a. Cum sit autem d Q - N d a = M d x et d z - Q d a = P d x, addantur horum multipla ad illum aequationem, vt prodeat haec aequatio d N - E N d a - F N d a + F d Q - D Q d a - G Q d a + G d z - C z d a = (s + M F + P G) d x + R d a. Sit E d a = \frac{d f}{f}, \frac{D d a + G d a}{F} = \frac{d g}{G} et \frac{c d a}{G} = \frac{d b}{b}, fiatque f = F \frac{G}{b}. **G b.**
DE INFINITIS CURVIS EIVSDEM GENER.

$\equiv G \ h$. Quo facto aequationis inventae prius membrum fit integrabile diuifum per f; hanc ob rem et $\frac{(s+M+P)dx+rda}{f}$ efficidum est integrabile. Ponendum igitur est $R = \frac{\int da}{\int dx}$ $f(x+A)$ et $s+MF+PG = \frac{\int dx}{\int da} f(x+A)$. In aequatione ergo praestitae, quia s et M ex P determinatur, debent F, G et f et X ex hac aequatione determinari. Quo facto sumatur $g = \frac{f}{y}$ et $b = \frac{f}{y}$, et $C = \frac{db}{b\int da}$, et $D = \frac{y}{\int da} - G$ et $E = \frac{df}{\int da} - F$. Atque ex his cognita erit aequatio $t = R + EN + DQ + CZ$, ex qua aequatio modularis facile conflatetur. Simili modo ex his intelligitur quomodo pro altioribus differentialibus gradibus operatio debeat institui, vt ad aequationes modulares permiscatur.

§ 27. In compendium nunc, quae hactenus tradidimus, redigamus tum quo facilius quaeis aequatio proposita reduci queat, tum quo procedius ad cuinque gradu differentialia clarius perspicatur. Proposita igitur aequatione $d\alpha = Pdx$, ponatur α constans et a tantum variabile fitque $dP = M\int da$, $dM = p\int da$, $dp = r\int da$ etc. Si igitur $Q = \frac{dQ}{\int da}$, $N = \frac{dN}{\int da}$, $q = \frac{dQ}{\int da}$, et $s = \frac{dS}{\int da}$ etc. vbi dQ, dN, et $d\alpha$, etc. sunt differentiales quorum Q, N et q, quae ex valoribus $\frac{dQ}{\int da}$, $\frac{dN}{\int da}$ et $\frac{dS}{\int da}$, inueniuntur positione a, α et α variabilibus. Hanc igitur ob rem cognitae erunt M, p, r etc. ex illo P, ex his vero habeuntur Q, N, q etc. Sint praeterea A, B, C, D, E, F etc. functiones ipsius α et constantium, et X, Y etc. functiones ipsius α non inoluentes α.

§ 28
§. 28. His praemissis si fuerit P talis functio ipsius x et a, vt BP comprehendatur in hac forma \(\frac{dx}{dx} f(X + A) \) seu plurium huiusmodi formularum aggregato, semper dari poterit aequatio modularis differentialis primi gradus. Namque erit \(PdA dx = z \frac{dx}{B} + Q \) \(dA dx \) seu \(BPdA dx = z dB dX + BQdAdX \). Quae aequatio ob datum Q est modularis respondens aequationi propositae.

§. 29. Deinde si P talis sit functio ipsarum a et x vt BP + CM aequalis fieri posset \(\frac{dx}{dx} f(X + A) \) seu quocunque huiusmodi formularum aggregato, aequatio modularis ad differentialis secundi gradus ascendet: Erit enim \(BPdA dx + C M dA dx = z dB dX + BQ dAdX + QdC dX + CN dAdX \). Quae est aequatio modularis quaestit, et innoluit differentialis secundi gradus, quia eam littera N ingreditur, quae per \(dQ \) idemque per \(ddx \), \(ddx \) et \(dda \) determinatur.

§. 30. At si fuerit \(BP + CM + Dp \) aequalis hui formule \(\frac{dx}{dx} f(X + A) \) vel aggregato quocunque huiusmodi formularum; aequatio modularis erit differentialis tertii gradus, prohibet enim ipsa aequatio \(BPdA dx + C M dA dx + D p dA dx = z dB dX + BQ dAdX + QdC dX + CN dAdX + NdD dX + Dq dAdX \). Quemadmodum ex ante traditis colligere licet, si modo quantitates ab a tantum pendentes ad has formulas accommodantur.

§. 31. Simili modo ad altiora differentialis progressus facile absolvuitur. Nam si \(BP + CM + Dp \)
DE INFINITIS CURVIS EIVSDEM GENER.

Er aqueetur formulae \(\frac{dx}{dx} f(X + A) \) vel talium plurimum formulorum aggregatum, orietur aequatio modulatoris ita \(BpDA \ dx + C M dA \ dx + D p dA \ dx + E r dA \)
\(d x = z d B d X + B Q d d d X + Q d C d X + C N d d d X \)
\(= N d D d X + D q d a d X + q d E d X + E r d d d X \).
qua eurit differentialis quarti gradus. Atque hoc modo quosque libuerit haec operationes facile continuantur ex sola allatarum inspexitione.

§ 32. His autem omnibus perspectis maxima tamen difficultas saepenuméro posta erit in dignoscenda functione P, an in his expositis generibus continetur et in quonam genere. Etiam si enim generaales ipsius P valores, qui ex assumtis formulis obtinentur nihil difficultatis in se habere videantur, tamen exemplis particularibus propositis accommodatio saepissime erit difficillima. Cuius rei ratio nequaquam methodo tradita est tribuenda, sed imperfectae functionum cognitionis, quae adhuc habetur. Quamobrem non solum in hoc negotio, sed in plurimis etiam aliis casibus maxime virile foret, si functionum doctrina magis perficeretur, et excoleretur.

§ 33. Quantum quidem mihi hac de re meditari licuit, eximium subcidium inueni, si P statim ad hujusmodi formam \(\frac{dx}{dx} f(X + A) \) vel hujusmodi formulorum aggregatum reducatur, id quod sequenti modo saeculim praeestatur, Prima aequatio proposita non constringatur inter \(z \) et \(x \) sed inter \(z \) et \(y \), ita ut aequatio ad modularem perducenda sit \(dz = T dy \), exiliente \(T \) Tom. VII.
functione ipsius \(y \) et moduli \(a \). Tum accipiatur pro \(x \) talis functio ipsarum \(a \) et \(y \), quae transmutet \(T \) in functionem ipsarum \(a \) et \(x \) contentam in formula \(f(X \rightarrow A) \), vel pluribus huic similibus, earumque multiplis, in quibus \(X \) est functio ipsius \(x \) tantum, et \(A \) ipsius \(a \).

Hoc igitur facto prodeat aequatio \(dx = S dx f (X \rightarrow A) \)

vbi \(S \) sit quantitas tam simplex quam fieri potest.

Quare \(P \) erit \(S f (X \rightarrow A) \) idemque cum \(M, p \) etc. coniuncta facilis cum generalibus formulis comparatur.

Inuentum autem hoc modo aequatione modulari, valor ipsius \(x \) in \(a \) et \(y \) assumtus, ubique loco \(x \), loco \(dx \) autem differentiale huius valoris positus \(a \) et \(y \) variabilibus substitutatur. Quo facto habebitur aequatio modularis inter \(a, y \) et \(x \), quae quaeratur.

\(§ \). 34. \) Ad pleniorem quidem methodi haerentia traditae cognitionem maximum lucem afferent exempla et problemata, quorum solutio istam methodum requirit. Sed quia ipsorum problematum dignitas particularis tractionem poshulat, in aliud tempus, ne hoc tempore nimis sim longus, eam differo.