SOLVTIO SINGULARIS CASVS
CIRCA TAUTOCHRONISMVM.
AVCTORE
Leonh. Euler.

§. 1.

Tabula IV. Cumm ante annos tres Clariss. Bernoulli methodum innumerat curias tautochronas in vacuo inueniendi proponeret, mentionem fecit problematis non parum elegantis, cuius solutionem hac scheda daturus sum. Difficillimum quidem eo tempore videbatur hoc problema, et propterea parum studii ad id solvendum impendebam. Postmodum vero cum diligentius in tautochronas pro fluidis inquisiisset, viniueralem detexi methodum problemata hujusmodi omnia solvendi, quae etiam me ad solutionem problematis illius manuduxit.

§. 2. Problema autem hoc est: Datas curiae A NB in B adiungere curiam BMC eius proprietatis, ut omnes decensus gravis alicubi in curva BMC incipientes visque ad imum punctum A sint temporibus aequalibus. Oportet ergo inueniri curiam BMC, ex hac conditione, ut sumto in curva BMC pro habitu puncto M tempus decensus per MBNA sit contans, neque penda...
CIRCA TAVTOCHRONISMVM.

Dea't a loco puncti M. Seu tempus descentīs per M BNA eaeque est debet temporīs descensus per currum datam BNA; qui est causi incidente puncto M in B.

§ 3. Descendet ergo corpus ex puncto M, et quaecumque descensus tempus per arcum MB et BMA. Ducta verticale BP, ponatur BP = a, quae igitur litera, quae locum puncti M definit, in expressione temporis per M B A - inesse non potest. Curvae datae altitudo A D sit t = t. Assumantur ut utque curva applicatae, quaequeque AQ, et XY, &c. proximae qn et - n. et, quae igitur A Q = Y, AN = r et B X = x, BY = s, quorum inter t et r aequatio est data, inter x et u defideratur. Celeritas quam corpus in N habebit est $y(x + w - t) = y(PB - DQ)$. Adeoque tempus quo arcus AN absoluitur est $\int y(x + w - t)$. Quod integrale ita debeb accipit, vt fiat $= 0$, sī sit $t = 0$.

§ 4. Deinceps si ponatur $t = t$, habebitur tempus per integram currum datam BNA, quod igitur erit expositionum formula ex a et constantibus composita. Nonnullis computavi causis specialibus, et vidi tempus descensus per currum BNA initio descensus postim in M, tempore exponi posse sequente serie $k - a - c a^2 - \gamma a^3 - \delta a^4$ etc. $\zeta^2 a - \eta a a - 0 a^2 \gamma a$ etc. cuius in quolibet caus speciali coefficientes a, c, etk. poterunt determinari. Hoc tempus igitur additum ad descensus tempus per MB, confundens esse debeb: atque vt in summa omnes termini litera a affecti esse tollant, neceesse est.

D 3 § 4.
§ 5. Ad tempus desceuis per curiam MB inueniendam; est celeritas in Y = V(a − x) et elementum temporis = ds = V(a − x). Huius integrale ita assumtum, vt fiat = 0 fi x = 0 dabit tempus descensus per YB, in quo ergo si ponatur x = a probitur descensus tempus per MB, quod cum priore constat et quantitatem ab a liberam conficere debet. Si punctum M incidunt in puncto B, i.e. si a evanescit, integrum tempus descensus erit tempus descensus per curiam BMA, quod ex superiori formula cuadit = k. Hanc ob rem etiam tempus descensus per MBNA debet esse = k. Proinde tempus per MB debet esse = a a + ε a^2 + γ a^3 + etc. + ζ V a + η a V a + θ a^2 V a + etc.

§ 6. Hoc vt fiat: assummo pro curva quaerita sequentem aequationem: ds = A dx V x + B x dx V x + C x^2 dx V x + etc. + E x dx + F x dx + G x^2 dx + etc. Tempus ergo descensus per arcum MB erit = \int \frac{A dx V x}{V(a − x)} + \int \frac{B x dx V x}{V(a − x)} + \int \frac{C x^2 dx V x}{V(a − x)} + etc. + \int \frac{E dx}{V(a − x)} + \int \frac{F x dx}{V(a − x)} + \int \frac{G x^2 dx}{V(a − x)} + etc. Si licet si integralibus his ita fumit vt sint: = 0; si x ≠ 0 ponitur ubique x = a. Determinentur ergo coefficientes A, B, C, etc. ita, vt sint

\int \frac{A dx V x}{V(a − x)} = a a, \int \frac{B x dx V x}{V(a − x)} = ε a^2, \int \frac{C x^2 dx V x}{V(a − x)} = γ a^3 etc. et \int \frac{E dx}{V(a − x)} = ζ V a; \int \frac{F x dx}{V(a − x)} = η a V a; \int \frac{G x^2 dx}{V(a − x)} = θ a^2 V a etc. Assumit vero itum loco ds valorem, vt litterae A, B, C, etc. non ab a pendentes determinentur.

§ 7. Integratio huius \frac{A dx V x}{V(a − x)} pendet a quadraturae circuli; At si ope logarithmorum imaginariorium integre-
CIRCA TAVTOCHRONISMVM.

regretur, vt detec, atque ponatur \(x = a \) probit \(\frac{1}{2} A a \)

Simili modo, \(\int \frac{2 \pi d x \sqrt{a^2 - x^2}}{\sqrt{a^2 - x^2}} \) integratum dabit \(\frac{1}{2} \).

B. \(a^2 \sqrt{1 - \pi} \), \(1 - x = \pi \), \(\int \)igitur \(B = \frac{1}{2} \).

Atque porro probit \(C = \frac{2 \pi \frac{6}{7}}{\pi - \frac{1}{2}} \), et \(D = \frac{2 \pi \frac{8}{9}}{\pi - \frac{1}{2}} \).

\(\delta \) etc. quae ex curva BNA nota inveniuntur, determinantur coefficients pro curva quaecita A, B, C, D, etc.

§ 8. Pro altera parte, quae est rationalis, est debet \(\int \frac{E_{dx}}{\sqrt{a^2 - x^2}} = \pi \sqrt{a} \); fit autem \(\int \frac{E_{dx}}{\sqrt{a^2 - x^2}} = \pi E \sqrt{a} \),

ex quo producit \(E = \frac{1}{2} \). Deinde \(\int \frac{E_{dx}}{\sqrt{a^2 - x^2}} = \frac{1}{2} \).

Sit ANB linea recta ad horizontem inclinata ita, vt sit AN : A Q = n : 1 feu r = n t et \(dr = n d t \).

Ex quo \(\int \frac{E_{dx}}{\sqrt{a^2 - x^2}} = \int \frac{n d t}{\sqrt{a^2 - t^2}} = \text{Conf} \). - 2 n \(\sqrt{a + c - t} \).

Confians vero haec est \(= - 2 n \sqrt{a + c - t} \) ponatur \(\Delta = t \). Prodit tempor de facto \(\Delta \).

\(1 = \frac{1}{2} \), etc. \(- 2 n \sqrt{a} \), in serie \(\sqrt{a + c} \) resoluta. Comparretur.
SOLVITIO SINGULARIS CASVS

retur haec forma cum hac \(k = \alpha - \beta a - \gamma a^3 - \delta a^4 \)
- etc. \(- \zeta V a + \eta aV a \) - etc. probibit \(k = 2n \sqrt{c}, \alpha = \frac{1}{2} \frac{2n}{\sqrt{c}}, \beta = \frac{1}{3} \frac{2n}{\sqrt{c}}, \gamma = \frac{1}{3} \frac{2n}{\sqrt{c}}, \delta = \frac{1}{3} \frac{2n}{\sqrt{c}}, \zeta = \frac{2n}{\sqrt{c}}, \eta = \theta = 0, 2 = 0 \) etc.

§. 10. Cognitis his valoribus prodibunt \(A, B, C, \) etc. vt sequuntur. \(A = \frac{2n}{\sqrt{c}}, B = \frac{2n}{\sqrt{c}}, C = \frac{2n}{\sqrt{c}}, D = \frac{2n}{\sqrt{c}}, E = n, F = o, G = o \) etc. Pro curva igitur quae sit BMC inuenitur ista aequatio, \(ds = \frac{n}{\sqrt{c}} (\frac{x}{c} + \frac{x^2}{c} + \cdots) + \cdots \) cujus integralis haec est \(s = n x - \frac{\alpha x^3}{\sqrt{c}} \) \((\frac{1}{3} \frac{2n}{\sqrt{c}} + \frac{2n}{\sqrt{c}} + \cdots) \) etc. Facilis autem erit aequationem differentialem in expressionem finitam transmutare, est autem haec \(ds = ndx - \frac{2}{\sqrt{c}} \) \((\sqrt{x} - \frac{x}{c} + \frac{x^2}{c} + \cdots) \) etc. Quae series exprimit arcum circuli, cujus tangens est \(V x \) posito radio \(V c \), hanc ob rem erit \(ds = ndx - \frac{2}{\sqrt{c}} \) \(V x - \frac{x}{c} \)

Fig. 2. Fiat circuli quadran cujus radius \(AC = c, \) ductur tangens \(AT = V c \) et decans TMC, erit \(s = n AB AT^2 + \frac{1}{2} AB AC^2 - \frac{1}{3} \frac{c}{AM CT^2} \) Namque ex natura circuli
\(n AB = \frac{c^2}{2} \) et \(AM = \frac{c}{\sqrt{c}} \) \(V c - \frac{c}{\sqrt{c}} \), vnde data
construatio facile sequitur.

§. 12.
§. 12. Ex aequatione \(ds = \frac{ndx}{\sqrt{v - v_x - x}} \), pareat esse \(ds < ndx \) nisi in caasu \(x = 0 \), quo est \(ds = ndx \); habebunt enim curvae \(AB \) et \(BC \) semper in \(B \) tangentem communem. Ex quo appareat curvam quaesitam esse concavum versus axem \(BP \), atque eousque scilicet in \(C \) ascenderet, quoad eius tangens fiat verticallis, in eoque puncto \(C \) curvam habere cuspident. Altitudo igitur huius curvae \(BE \) inuenietur, si in aequatione ponatur \(ds = dx \); In nostro ergo casu, quo curvam data est linea recta, dubit \(x \) altitudinem \(AB \) ex aequatione \((n - 1) \frac{l - l}{\sqrt{n^2 + v^2}} \text{ seu } h = \frac{(\sqrt{v^2 + v_x^2})^{n-1}}{v} \) oblique \(\sqrt{v^2 + v_x^2}^{n-1} = 0 \). Vel etiam fimatur arcus \(AM = \frac{n-1}{\alpha} \) \(AB \), et muta eius tangente \(AT \) erit \(\frac{AT}{\alpha} \) altitudine curvae quaestae.

§. 13. Si aequatio differentialis inuenta denuo differentietur positio \(dx \) constante prodibit aequatio haec \(dds = -\frac{ndxv_x}{(c+x)\sqrt{v - x}} \), quae positae ratione peripheriae ad diametrum \(\pi : 1 \) congruit cum \(dds = -\frac{ndxv_x}{(c+x)\sqrt{v - x}} \). Ex hac aequatione casus, quo \(c = 0 \) et \(n = \infty \), ita tamen, ut fit \(n\sqrt{c} = \sqrt{v}b \), facile cognoscitur. Euenit hoc, si recta data est infinita parua et angulum infinite parum cum horizonte constituit, ita ut tempus descessus per eam tamen sit finitum nimirum \(= 2\sqrt{b} \). Erit igitur \(AM = AB \), ideoque tangens \(AT \) infinita respectu radii \(c \), abibit ergo \(c + x \) in \(x \), atque curva quaestita hanc habebit aequationem \(dds = \frac{dxv_x}{\pi x \sqrt{v}} \) seu \(ds = \frac{2dxv_x}{\pi \sqrt{v}} \)

Tom. VI. E atque
SOLUTIO SINGULARIS: CASUS

\(s = \frac{4 \sqrt{n}}{c} \).

Hanc ob rem cura quae sit erit cyclois, ut natura rei requirit.

§. 14. Sā cura data hanc habuerit aequationem

\[b t^n \frac{dt}{t^n dt} \]

erit elementum temporis \(\sqrt{a + e - t} \), ponatur

\[a + e = f' \]

et \(f - t = x^2 \), erit \(t = f - x^2 \) et \(t^n = f^n \)

\[\frac{b}{\sqrt{f(f-1)}} = 2 \cdot d'z \].

Hinc probibit \(f^n \frac{b t \cdot \sqrt{f \cdot (a + e - t)}}{f^n} \)

\[\text{Conft.} = 2 \cdot b f^n \frac{f^n}{\sqrt{f \cdot (a + e - t)}} \]

\[= - \frac{\sqrt{f}}{f^n} - \frac{2 \cdot b \cdot f^{n+2}}{f^n} \]

\[= \frac{2 \cdot b \cdot f^{n+2}}{f^n} \]

\[= \frac{2 \cdot b \cdot f^{n+2}}{f^n} \]

\(z = \sqrt{f} \) evanescere debeat, erit Conft. \(= - \frac{2 \cdot b \cdot f^n \sqrt{f}}{f^n} \)

\[= - \frac{2 \cdot b \cdot f^n \sqrt{f}}{f^n} \]

\[= \frac{2 \cdot b \cdot f^n \sqrt{f}}{f^n} \]

Quod cum facto \(t = c \), aufer \(z = \sqrt{f} \) evanescere debeat, erit Conft. \(= - \frac{2 \cdot b \cdot f^n \sqrt{f}}{f^n} \)

\[= \frac{2 \cdot b \cdot f^n \sqrt{f}}{f^n} \]

§. 15. Pongo e brevitas causa \(r = \frac{m}{n} + \frac{n}{n} \)

\[= p \], erit substituto \(a + e \) loco \(f \) descensus per

\[\frac{2 \cdot b \cdot p \cdot e \cdot c^{n+2} + \frac{n+2}{n+2} a \cdot c^{n+2}}{2 \cdot b \cdot p \cdot e \cdot c^{n+2} + \frac{n+2}{n+2} a \cdot c^{n+2}} \]

\[= \frac{2 \cdot b \cdot c^{n+2} a^{n+1} + \frac{n+1}{n+1} 2 \cdot b \cdot p \cdot c^{n+2} a^{n+1}}{2 \cdot b \cdot c^{n+2} a^{n+1} + \frac{n+1}{n+1} 2 \cdot b \cdot p \cdot c^{n+2} a^{n+1}} \]

etc. \(= p \), erit substituto \(a + e \) loco \(f \) descensus per

\[\frac{2 \cdot b \cdot c^{n+2} a^{n+1} + \frac{n+1}{n+1} 2 \cdot b \cdot p \cdot c^{n+2} a^{n+1}}{2 \cdot b \cdot c^{n+2} a^{n+1} + \frac{n+1}{n+1} 2 \cdot b \cdot p \cdot c^{n+2} a^{n+1}} \]

\[= \frac{2 \cdot b \cdot c^{n+2} a^{n+1} + \frac{n+1}{n+1} 2 \cdot b \cdot p \cdot c^{n+2} a^{n+1}}{2 \cdot b \cdot c^{n+2} a^{n+1} + \frac{n+1}{n+1} 2 \cdot b \cdot p \cdot c^{n+2} a^{n+1}} \]

etc.
\[c_{\frac{3}{2}} \frac{3}{2}, \frac{3}{2} \frac{3}{2} c_{\frac{3}{2}} \frac{3}{2} \] etc. atque
\[\frac{2n}{3}, 2n \frac{2n}{3}, 2n \] etc.

\[\text{§. 16.} \quad \text{Intensierunt igitur litterae A, B, C, etc.} \]

\[\text{et equatur } A = \frac{2(2n+1)}{3} c_{\frac{3}{2}} \]

\[\text{et equatur } B = \frac{2n}{3} c_{\frac{3}{2}} \]

\[\text{et equatur } C = \frac{2n}{3} c_{\frac{3}{2}} \]

\[\text{Atque } D = \frac{b}{c}, F = \frac{b}{c}, G = \frac{b}{c}, H = \frac{b}{c}, \text{ etc.} \]

\[\text{Pro curva itaque quaestit re-} \]

\[\text{geritur inaequatio } \]

\[\frac{2n+1}{3} c_{\frac{3}{2}} \]

\[\text{etc.} \]

\[\text{§. 17.} \quad \text{Quamquam hic pro curva data haec tan-} \]

\[\text{tium aequatio } \]

\[\frac{2n+1}{3} c_{\frac{3}{2}} \]

\[\text{etc.} \]
SOLVITIO SINGULARIS CASVS &c.

\[dr = Dt^5 dt \text{ etc. emergunt istae } ds = R dx, ds = S dx \text{ etc. erit aequatio pro curva quaestia haec } ds = (P + Q + R + S + \text{ etc.}) dx, \text{ si fælicet curva data habuerit aequationem } dr = At^5 dt + Bt^6 dt + \text{ etc.} \]

§. 18. Apparet etiam ex aequatione §. 16. si fuerit \(n = -\frac{1}{2} \) vel \(\frac{1}{2}, \frac{3}{2}, \frac{5}{2} \text{ etc. seriem abrumpi, atque statim haberet aequationem finitam; sit } dr = bt^{-\frac{1}{2}}, \text{ curva fælicet data cyclois, erit } n = -\frac{1}{2} \text{ atque } ds = \frac{bdx}{\sqrt{(b + x)}}. \] Ex quo coagnoceitur curvam superiorum annexam cum data inferiore eandem curvam continuam nominum cycloideum constituere.

DE SUPERFICIEBUS AD AEOVA- TIONES LOCALES REVOCATIS, VARUSQUE EARVM AFFECTIONIBVS.

AUTHORE

Iacobo Hermanno.

Tract IV.

Geometrae de aliis Superficiebus quàm de planiis, aut etiam de his quae ex revolutione figurae cuiusque curvilineae circa lineam quandam in gyrum actuæ, vix cogitassunt subinde; tamen infinites infinita genera dantur, ad quae species illae renovati non possint. Aequationes locales, quibus omnium superficierum indeoles exponi debet, tres omnino inde- terminatas inuolumt, cum tamen aequationes ad lineas curvas